You are here

AN EXPERIMENTAL AND NUMERICAL STUDY OF SECONDARY FLOWS AND FILM COOLING EFFECTIVENESS IN A TRANSONIC CASCADE

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
In the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these temperatures are already well above the melting temperature of the components. A primary cooling methodology, called film cooling, creates a blanket of cool air over the surface and is an effective way to help protect these components from the hot mainstream gasses. This paper focuses on the effect of the film holes upstream of the first row of blades in the turbine because this is the section that experiences the highest thermal stresses. Many factors can determine the effectiveness of the film cooling, so a complete understanding can lead to effective results with the minimum flow rate of coolant air. Many studies have been published on the subject of film cooling, but because of the difficulty and expense of simulating turbine realistic conditions, many authors introduce vast simplifications such as low speed conditions or linear cascades. These simplifications do not adequately represent the behavior of a turbine and therefore their results are of limited use. This study attempts to eliminate many of those simplifications. The test rig used in this research is based on the NASA-GE E3 design, which stands for Energy Efficient Engine. It was introduced into the public domain to provide an advanced platform from which open-literature research could be performed. Experimental tests on a transonic annular rig are time-consuming and expensive, so it is desirable to use experimental results to validate a computational model which can then be used to extract much more information. The purpose of this work is to create a numerical model that can be used to simulate many different scenarios and then to apply these results to experimental data.
Title: AN EXPERIMENTAL AND NUMERICAL STUDY OF SECONDARY FLOWS AND FILM COOLING EFFECTIVENESS IN A TRANSONIC CASCADE.
16 views
5 downloads
Name(s): Kullberg, James, Author
Kapat, Jayanta, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these temperatures are already well above the melting temperature of the components. A primary cooling methodology, called film cooling, creates a blanket of cool air over the surface and is an effective way to help protect these components from the hot mainstream gasses. This paper focuses on the effect of the film holes upstream of the first row of blades in the turbine because this is the section that experiences the highest thermal stresses. Many factors can determine the effectiveness of the film cooling, so a complete understanding can lead to effective results with the minimum flow rate of coolant air. Many studies have been published on the subject of film cooling, but because of the difficulty and expense of simulating turbine realistic conditions, many authors introduce vast simplifications such as low speed conditions or linear cascades. These simplifications do not adequately represent the behavior of a turbine and therefore their results are of limited use. This study attempts to eliminate many of those simplifications. The test rig used in this research is based on the NASA-GE E3 design, which stands for Energy Efficient Engine. It was introduced into the public domain to provide an advanced platform from which open-literature research could be performed. Experimental tests on a transonic annular rig are time-consuming and expensive, so it is desirable to use experimental results to validate a computational model which can then be used to extract much more information. The purpose of this work is to create a numerical model that can be used to simulate many different scenarios and then to apply these results to experimental data.
Identifier: CFH0003772 (IID), ucf:44728 (fedora)
Note(s): 2011-05-01
B.S.M.E.
Engineering and Computer Science, Department of Mechanical, Materials and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): Film Cooling
Turbine
CFD
E3
NASA
TSP
Five Hole Probe
Cascade
Star-CCM+
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH0003772
Restrictions on Access: campus 2012-04-01
Host Institution: UCF

In Collections