You are here

ISOLATION AND CHARACTERIZATION OF A NOVEL SUBSTRATE FOR THE PRO-APOPTOTIC OMI/HTRA2 PROTEASE

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
Omi, also known as HtrA2, is a mammalian pro-apoptotic mitochondrial protein and a member of the HtrA (high temperature requirement A) family of serine proteases. Omi promotes the caspase-dependent apoptotic pathway through cleavage of IAPs (inhibitor of apoptosis proteins); this cleavage inactivates IAPs and facilitates caspase activity. Omi's proteolytic activity is necessary and essential for its pro-apoptotic function. This study is aimed to further understand the role of Omi in the cytoplasm by using the yeast two-hybrid system to identify novel Omi interactors/substrates. A HeLa (cervical carcinoma cell line) cDNA library was screened using Omi as a "bait" protein. One of the proteins indentified in this screen as a strong Omi interactor was the S5a protein and was selected for further analysis. S5a is a soluble cytosolic mammalian protein and a component of the proteasome's 19S regulatory subunit. The proteasome is a large cytosolic protein complex responsible for the controlled degradation of damaged or denatured cellular proteins. Further characterization of the interaction through an in vitro proteolytic assay demonstrated that Omi can cleaves recombinant S5a protein. This data suggests that S5a is a bona fide substrate of Omi that is degraded upon induction of apoptosis. It also provides a new mechanism that leads to the inactivation of the proteasome during cell death.
Title: ISOLATION AND CHARACTERIZATION OF A NOVEL SUBSTRATE FOR THE PRO-APOPTOTIC OMI/HTRA2 PROTEASE.
20 views
10 downloads
Name(s): Ward, Nathan, Author
Zervos, Antonis, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Omi, also known as HtrA2, is a mammalian pro-apoptotic mitochondrial protein and a member of the HtrA (high temperature requirement A) family of serine proteases. Omi promotes the caspase-dependent apoptotic pathway through cleavage of IAPs (inhibitor of apoptosis proteins); this cleavage inactivates IAPs and facilitates caspase activity. Omi's proteolytic activity is necessary and essential for its pro-apoptotic function. This study is aimed to further understand the role of Omi in the cytoplasm by using the yeast two-hybrid system to identify novel Omi interactors/substrates. A HeLa (cervical carcinoma cell line) cDNA library was screened using Omi as a "bait" protein. One of the proteins indentified in this screen as a strong Omi interactor was the S5a protein and was selected for further analysis. S5a is a soluble cytosolic mammalian protein and a component of the proteasome's 19S regulatory subunit. The proteasome is a large cytosolic protein complex responsible for the controlled degradation of damaged or denatured cellular proteins. Further characterization of the interaction through an in vitro proteolytic assay demonstrated that Omi can cleaves recombinant S5a protein. This data suggests that S5a is a bona fide substrate of Omi that is degraded upon induction of apoptosis. It also provides a new mechanism that leads to the inactivation of the proteasome during cell death.
Identifier: CFH0004208 (IID), ucf:44971 (fedora)
Note(s): 2012-05-01
B.S.
Medicine, Burnett School of Biomedical Sciences
Bachelors
This record was generated from author submitted information.
Subject(s): Omi
proteasome
S5a
apoptosis
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH0004208
Restrictions on Access: public
Host Institution: UCF

In Collections