You are here

DETECTION OF DRUG-RESISTANCE CONFERRING SINGLE NUCLEOTIDE POLYMORPHISMS IN MYCOBACTERIUM TUBERCULOSIS USING BINARY DNAZYMES

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
Mycobacterium tuberculosis (Mtb) is the pathogen that causes Tuberculosis (TB) and is responsible for an average of 1.5 million deaths annually. Although a treatment regimen does exist, Multi-Drug Resistant (MDR-TB) and eXtremely Drug Resistant (XDR-TB) TB strains are becoming a more prevalent concern partly due to failure of patient compliance with the current six to nine month drug treatment regimen. The current diagnostic methods are not able to identify these MDR and XDR-TB strains efficiently therefore more effective point-of-care (POC) diagnostics and drug susceptibility testing (DST) are urgently needed to detect drug resistance and facilitate prompt, appropriate treatment plans. In order to detect TB and efficiently identify drug resistance, this project seeks to develop a novel diagnostic technology based on deoxyribozyme (DNAzyme) sensors. The overall goal of this project is to create an assay which combines Polymerase Chain Reaction (PCR) and DNAzymes to identify drug resistance conferring Single Nucleotide Polymorphisms (SNPs). To safely test the ability of DNAzyme sensors to detect SNPs indicative of multi-drug resistant TB, we have constructed a panel of drug resistant (drugR) nonpathogenic M. bovis BCG. We have designed a multiplex PCR that amplifies 6 chromosomal regions of the genome necessary for the species specific detection of TB and determination of a drug susceptibility profile based on the presence of SNPs. To improve the sensitivity and selectivity of the detection and DST of Mtb, we have designed and optimized DNAzyme sensor assays combined with multiplex PCR analytes that will enable the rapid, POC detection of drug resistance. This work aims to develop novel tools for the prompt and specific diagnosis of TB allowing for the implementation of an iv effective treatment regimen that will ultimately lessen transmission and control the emerging global threat of MDR and XDR-TB.
Title: DETECTION OF DRUG-RESISTANCE CONFERRING SINGLE NUCLEOTIDE POLYMORPHISMS IN MYCOBACTERIUM TUBERCULOSIS USING BINARY DNAZYMES.
37 views
19 downloads
Name(s): Addario, Marina, Author
Rohde, Kyle, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Mycobacterium tuberculosis (Mtb) is the pathogen that causes Tuberculosis (TB) and is responsible for an average of 1.5 million deaths annually. Although a treatment regimen does exist, Multi-Drug Resistant (MDR-TB) and eXtremely Drug Resistant (XDR-TB) TB strains are becoming a more prevalent concern partly due to failure of patient compliance with the current six to nine month drug treatment regimen. The current diagnostic methods are not able to identify these MDR and XDR-TB strains efficiently therefore more effective point-of-care (POC) diagnostics and drug susceptibility testing (DST) are urgently needed to detect drug resistance and facilitate prompt, appropriate treatment plans. In order to detect TB and efficiently identify drug resistance, this project seeks to develop a novel diagnostic technology based on deoxyribozyme (DNAzyme) sensors. The overall goal of this project is to create an assay which combines Polymerase Chain Reaction (PCR) and DNAzymes to identify drug resistance conferring Single Nucleotide Polymorphisms (SNPs). To safely test the ability of DNAzyme sensors to detect SNPs indicative of multi-drug resistant TB, we have constructed a panel of drug resistant (drugR) nonpathogenic M. bovis BCG. We have designed a multiplex PCR that amplifies 6 chromosomal regions of the genome necessary for the species specific detection of TB and determination of a drug susceptibility profile based on the presence of SNPs. To improve the sensitivity and selectivity of the detection and DST of Mtb, we have designed and optimized DNAzyme sensor assays combined with multiplex PCR analytes that will enable the rapid, POC detection of drug resistance. This work aims to develop novel tools for the prompt and specific diagnosis of TB allowing for the implementation of an iv effective treatment regimen that will ultimately lessen transmission and control the emerging global threat of MDR and XDR-TB.
Identifier: CFH0004844 (IID), ucf:45435 (fedora)
Note(s): 2015-08-01
B.S.
Medicine, Burnett School of Biomedical Sciences
Bachelors
This record was generated from author submitted information.
Subject(s): tuberculosis
mtb
tb
dnazyme
deoxyribozyme
mycobacterium
drugR
drug
resistance
detection
SNP
polymorphism
single
nucleotide
binary
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH0004844
Restrictions on Access: campus 2020-08-01
Host Institution: UCF

In Collections