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Abstract

Our society is increasingly interconnected, making it easy for cascades/epidemic

(diseases, disinformation etc). Current epidemic control efforts are based on approxi-

mate network epidemic models, which often ignore the unique complexity and rich infor-

mation embedded in the complex interconnections of real-world networks/populations.Deep

reinforcement learning (RL) is a powerful tool at learning policies for these nonlin-

ear, complex processes in high-dimension. To control an epidemic outbreak on a

Susceptible-Infected-Susceptible network epidemic model, we design a RL framework

with a custom reward structure using the node2vec embedding technique. Results in-

dicate deep RL is able to determine and converge on an optimal intervention policy in

a relatively short time.
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1 Introduction and Background

1.1 Graph Theory

A weighted directed graph (also called a digraph) can be defined as G, which contains three

sets pV,E,W q. V fi v1, v2....vn is the set of n nodes in the graph. E Ă V
Ś

V denotes the

set of all edges connected nodes on a graph. Each edge is associated with a positive real

weight w PW . We define the set of neighbors by i P V as Ni “ j : pi, jq P E. The adjacency

matrix of a weighted, directly graph G given by AG “ raijs is an nˆ n matrix where each

entry aij defines the weight of a given edge pvj , viq. Adjacency matrices provide many useful

functions for performing operations on graphs, but in particular provide efficiency for com-

putationally heavy tasks such as machine learning. For the purpose of this investigation,

we only consider graphs with positively weighted edges. Therefore, the adjacency matrix of

graphs used are always non-negative.

One useful application for the mathematical representation of graphs is the analysis of social

networks. Social networks can be built from a variety of information sources such as text,

databases, sensor networks, communication systems, and social media [3]. Of particular

interest to this investigation is the utilization of graphs for representation of complex social

media relationships. The recent rise in misinformation and rumor propagation on social

networks is of critical importance due to its ability to influence elections and international

politics [2]. Recent research in social networks and their relation to the spread of misinfor-

mation finds that one of the primary spread factors for conspiracy theories is the formation

of homogeneous clusters in the network. These central clusters in the graph can crudely be

described as ‘echo-chambers’. Often, a central source inside an echo-chamber is slowly re-

sponsible for propagating misinformation, while other members of the echo-chamber ensure

that every other member receives it.
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1.2 Epidemiology

The use of mathematics to study and analyze epidemic processes dates back to the 18th

century. Bernoulli began studying the age-specific equilibrium prevalence of individuals

immune to smallpox. Since then, the focus of study in the analysis of epidemic spread

among populations has been in the solutions of differential equations involved in both the

Susceptible-Infected-Susceptible (SIS) as well as the Susceptible-Infected-Recovered (SIR)

model and their variations (See Figure 1) [1]. For example, the SIR model can be described

with the following set of differential equations.

BS

Bt
“ ´βSI (1)

BI

Bt
“ βSI ´ γI (2)

BR

Bt
“ γI (3)

The following figure outlines exactly how individuals transition from one state to another

under different spread models.

Figure 1: A visualization of various epidemic spreading models. λ represents the probability of
transitioning from susceptible to infected. τ represents the probability of transition from infected
to recovered, or infected to susceptible in the SIS model. In SEIR and SEIS, an additional state is
added: exposed. The rate at which exposed individuals become infected is e.
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1.3 Spread Models

There exists an inherent link between the modeling of epidemic spread and network science.

Early epidemic models were often based on wide, random-mixing populations, and rather

homogeneous distributions of individuals [10]. However, in the real world individuals have

a finite number of total connections for which they can transmit the disease. Therefore,

networks play an important role in painting a more complete picture of overall epidemic

dynamics. Knowing this, it becomes increasing important to understand the difference

between spread models, as small differences in how nodes change condition can radically

change how different network topology effect overall spread [7].

The most common two epidemic models are the SIR (Susceptible-Infected-Recovered) model

and the SIS (Susceptible-Infected-Susceptible) model [9]. In the SIS model, an individual

can occupy one of two states: susceptible or infected. Any susceptible individual i that is

connected to an infected neighbor has as probability βi of entering the infected state. Con-

versely, an individual i in the infected states has a probability δi of recovering and reverting

back to the susceptible state. The SIS model is most often used to model the spread of

recurring diseases for which an immunity is not built [21]. Of particular interest in these

classes of diseases in sexually transmitted diseases, such as chlamydia or gonorrhea, where

it is quite common for an individual to re-infected.

In the SIR model, individuals are classified instead in to one of three states susceptible,

infected, and recovered. Similar to the SIS model, any susceptible individual i in contact

with an infected neighbor has a probability betai of entering the infected state. However, in

this model, an individual i in the infected state cannot revert back to the susceptible state.

Instead, these individuals have a probability deltai of transitioning from the infected state

to the recovered state. It is worth noting that the ‘recovered’ state does not necessarily

correspond to an individual who is safe from the disease, or otherwise healthy. In many

real world models, these individuals also represent those who have died or otherwise been

removed the population capable of contracting the disease
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1.4 Differential Equation Models

Many solutions in the past to the optimal control problem for epidemic processes have fo-

cused on use of differential equations to model both the population dynamics as well as the

control dynamics. Of this research, much has focused on removal or transfer of populations,

rather than vaccination. The quarantine and isolation strategies lend themselves much bet-

ter to differential equation models as their movement is much more regular than discrete

vaccinations.

One analysis by Yan, Zou, and Li [29] examined a model of severe acute respiratory syn-

drome (SARS) high infection risk pS1ptqq-low infection risk pS2ptqq-asymptomatic (E(t))-

quarantined (Q(T))-asymptomatic(I(t))-isolated(J(t))-recovered(R(t))-dead model. The fol-

lowing equations modeled the removal and quarantine process.

S “ ´βS1
I ` qE ` εQ` lJ

N

E “ ´βpSi ` pS2q
I ` qE ` εQ` lJ

N
´ pu1ptq ` k1qE

Q “ u1ptqE ´ σQ

I “ ´kE ´ pu2ptq ` γ1 ` δqI

K “ u2ptqI ` σQ´ pγ2 ` δqJ

R “ γ1I ` γ2J

D “ δI ` δJ

Using these differential equations, the goal can therefore be formalized to the minimization

of the following:

Jpu1, u2q “

ż tf

0

rB1Eptq `B2Qptq `B3Iptq `B4Jptq `
C1

2
u21ptq `

C2

2
u22ptqsdt

The results of their investigation found that their existed many optimal control policies that

experienced significantly greater results to simple constant control, as well control based on

complete investment into their quarantine and isolation strategies.
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Recent work by Ruscheul, Pereira, Yanchuk, and Young [23] uses this same approach to

a more simple Susceptible-Infected-Quarantined (SIQ) model. For their model, they intro-

duce further variables to assist in the definition of quarantined. If a host does not enter

state Q at time τ remain infections until they recover on their own. A host that enters state

Q remains in this state for κ. If a a host remains infected with τ units without recovering,

it enters Q with a probability p. r is defined as the reproductive number of the disease in

the absence of isolation. In the relevant literature, ”reproductive number” often refers to

some defined threshold that a disease or spread process to meet for its continued growth to

be assured. The differential equations are outlined as follows.

Sptq “ qrSptqIptq ` Iptq ` rεSpT ´ τκqIpt´ τ ´ κq

Iptq “ rSptqIptq ´ Iptq ´ rεSpt´ τqIpt´ τq

Qptq “ rεrSpt´ τqIpt´ τq ´ Spt´ τ ´ κqIpt´ τ ´ κqs

In this context, epsilon “ pe´τ is the effectiveness of identifying infected individuals for

quarantining.

2 Problem Statement

2.1 Model

For our approach, we analyze the traditional SIS (susceptible-infected-susceptible) model of

network epidemic outbreak. We formally define the following terms.

• Agent state Xiptq P t0, 1u indicates the health status of node i at time-step t, where

Xiptq “ 0 implies susceptible, and Xiptq “ 1 implies infected.

• Each agent i has an infection rate denoted βi.

• Each agent i also has a recover rate denoted δi.
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• The probability of moving from susceptible to infected state is denoted by the following

relationship:

• Ni represents all the neighboring nodes in the network G

PrpXipt` 1q “ 1|Xiptq “ 0q “
ÿ

jPNi

βiXj

PrpXipt` 1q “ 0|Xiptq “ 1q “ δi

(4)

Given a network of size N , since each node can be in one of two states, the state space is

of size 2N , which grows exponentially in the size of the network and is difficult to analyze.

Mean field approximations are use to average out the effect of neighboring nodes on each

other. In summary, rather than have nodes switch states as expressed in (4), each node has

probability of infection, which quantifies the likelihood of being in the infected state [18].

2.2 Cost

In the trivial case, δ̄ can simply be set to 1 for each agent to ensure that all agents have

the maximum possible recovery rate for control of an outbreak. This trivial case, while

effective, does not provide useful or interesting information that can develop insight into

real world epidemic outbreaks. In real world outbreak scenarios, controllers have significant

barriers and limitations that must be considered [16]. Additionally, assuming an ability

to arbitrarily vaccinate any disease or epidemic fails consider natural scarcity of corrective

matters. In many developing areas, investing an arbitrary amount of money and resources

into prevention of outbreaks is simply not possible. Even in situations in which full scale

vaccination strategies can be deployed, extreme measures must be avoided due to the possi-

bility of external economic and even social consequences. For example, much of the recent

economic losses in Southeast Asia in recent decades can be attributed to losses of poul-

try due to the excessive government culling of infected birds [13]. Thus, both technical and

real-world concerns require the setting of reasonable bounds for infection and recovery rates.

To normalize the costs of vaccinations, we use the following two functions, where βi and δi
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represent the infection rate and the recovery rate of the node i, respectively [18]:

fipβiq “
β´1
i ´ β̄i

´1

¯
β´1
i ´ β̄i

´1 and gipδiq “
p1´ δiq

´1 ´ p1´
¯
δiq
´1

p1´ δ̄iq´1 ´ p1´
¯
δiq´1

3 Previous Approaches

3.1 Graph Heuristics

The most common approach to solving the problem of network epidemic control is the use

of simple graph heuristics such as centrality. Centrality of a node in a network describes

how ”important” a single node is compared to other nodes in the network, however there

is no single formal definition of this measure [6]. The most simple measure of centrality is

degree centrality, which is defined as the sum of all incoming nodes. [20]

ki “
N
ÿ

j“1

Aij (5)

Another common measure of network centrality is betweenness. The betweenness measure

of a node describes how likely one is to encounter the node on a random walk of the network.

The betweenness centrality is given by the expected number of visits to each node i during

a random walk.

Bi “
N
ÿ

a“1

N
ÿ

b“1

wpa, i, bq (6)

To investigate the link between different measures of centrality and the probability of a node

of becoming infected, we performed a simple experiment using a simulation of the epidemic

model. A random Erdos-Renyi graph of size n “ 1000 with an average degree of 5 was

generated. Each simulation of the modified SIS epidemic was run for 100 time steps and

the total number of times each node was infected was recorded. After 500 total simulations

were run, the total number of times each node was infected was tallied and converted to

log form. Four measures of centrality were considered: degree, closeness, betweeness, and

eigenvector centrality. Because each measure of centrality fundamentally in absolute scale,
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we instead mark each node by their standard deviations from the average centrality across

all 1000 nodes. This experiment revealed a clear link between a node’s level of centrality

and that node’s propensity to infection, shown in the figure below.

Figure 2: A comparison between the z-score of a node’s centrality (based on four measures) on a
random Erdos-Renyi graph of n=1000 and the total number of times each node became infected
over 500 simulations of 50 timesteps each. The edge probability was 0.2. At each timestep the
status of each individual node was recorded, then the log of total number of times infected was
plotted against the standard deviations of centrality (z-score). This was done rather than recording
the number of times nodes transitioned, as the dynamics of the spread can effect whether a node
stays infected as well as transitions.

These results show that while there are slight variations in the different centrality meau-

res, overall they average out to nearly the same trend. In recent experiments, Khansari and

Kaveh [11] found that continually removing the most central nodes in a network contributed

the most to the reduction in overall rate of spread. Their research measured two heuristics

for rating the strength of some control measure: epidemic threshold and largest-connected-

component size. Epidemic threshold of a network is the minimum number of nodes that

must be infected for a network to reach an epidemic level. A larger epidemic threshold indi-

8



cates a smaller chance for the network to reach epidemic status. This threshold can be found

by taking the reciprocal of the largest eigenvalue of the adjacency matrix of the network [4].

The Largest-Connected-Component size simply refers to the largest fully connected path in

the network. While our approach is primarily concerned with reducing epidemic threshold,

understanding the largest path an infection can travel is crucial to analyzing the path of

spread. Of all centrality-based targeting approaches, PageRank-Degree and radiality-Degree

centrality were found to be most effective at reducing the epidemic threshold of a network.

Interestingly, targeting nodes for vaccination based on eccentricity produced worse than

random results.

While a centrality based removal approach presents an important benchmark for understand-

ing how individual nodes in a network contribute to epidemic threshold, it fails to capture

the more dynamic features involved in epidemic spread. Nonetheless, these contributions

provide important estimations for oftentimes highly complex systems.

3.2 Optimization

Estimation techniques explained above have further uses in providing average control poli-

cies. The problem of optimal control of network spread processes can be reduced to one of

two optimization problems.

Rate Constrained Problem: Given a maximum rate of infection, find the minimum total cost

of vaccination

Budget Constrained Problem: Given a maximum cost of vaccination, find the minimum rate

of infection possible

Both of these perspectives allow us to formalize the optimal control problem. Previous

work as shown that eigenvalues of graphs are useful in estimating stability of various network

processes [19]. Further work, specifically with the process of epidemic spread, has found that

the overall epidemic stability of a network can be approximated by the following eigenvalue

9



[17].

λ1pBAG ´Dq (7)

Where AG represents the adjacency matrix of the network. B represents the diagonal matrix

of infection rates, while D represents the diagonal matrix of recovery rates such that

Bii “ βi and Dii “ δi. (8)

Preciado et al. [18] further finds that that this mean field approximation of the modified

SIS model determines the disease-free equilibrium of the network in the following way:

If the real part of the principle eigenvalue of BAG ´D satisfies

<rλ1pBAG ´Dsqs ď ´ε (9)

for some ε ě 0, we say that the disease-free equilibrium is globally exponentially stable. This

epsilon can either be set for the purpose of replicating some real world epidemic process,

or empirically based on experimental results. They therefore formalize both problems with

the following geometric programs.

The rate constrained problem can be formalized as

minimize
tβi, δiun1

n
ÿ

i“1

fipβiq ` gipδiq

subject to <rλ1pBAG ´Dsqs ď ´ε

(10)

with appropriate bounds on βi and δi, where f and g are the cost functions for correction

and prevention, respectively.

The budget constrained problem can be formalized as

Minimize
q1,...,qN

n
ÿ

i“1

fipβiq ` gipδiq

subject to <rλ1pBAG ´Dsqs ď ´ε

(11)
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where C is a predetermined ”budget” for an overall vaccination strategy. Similar to epsilon,

this budget can either be determined based on real world data or from experimental results

based on solutions to problem 1. Both of these two optimization problems are solved via

Geometric Programming, and allow for optimal control of network epidemics on weighted

and directed networks in polynomial time.

However, these findings are still dependant on mean-field approximations of the spread pro-

cess, and do not take into account the complex spread dynamics present in true epidemic

models. These findings, using the approximations, put great weight on the correlation be-

tween the investment on a node and its centrality (based on multiple measures of centrality).

In fact, based a certain threshold, the geometric optimization technique yields an almost

perfect linear relationship between the centrality of nodes and their overall investment on

vaccination. However, further research shows that the value of peripheral nodes is greatly

underestimated when using approximation techniques [26].

4 Reinforcement Learning

4.1 Background

Reinforcement learning is a subset of machine learning that attempts to map action states

to actions for the purpose of maximizing some type of reward. Reinforcement learning is

unique to other forms of learning as it does not rely on labeled training data, but instead

learns by doing, similar to how humans train [27]. In most reinforcement learning models,

we define abstract actor learning and doing actions as the ”agent”. The system that the

agent acts in is known as the ”environment”. In a well defined reinforcement learning sys-

tem, every action that an agent can take in some environment can be objectively rated or

judged in some way. As we require the agent to have some metric to optimize, we call this

rating the ‘reward’.

However, in most situations, a static, unchanging environment is not particularly useful. In
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our model’s case, the state of the dynamic spread process is ever-changing, and therefore our

reinforcement learning approach much account for this. Therefore, in most reinforcement

learning models, rewards are mapped from some pair of action and state. In our case, any

given node on the network can either be in the infected or susceptible state. Due to this,

the total number of possible states in the environment of an arbitrarily sized network in

combinatorially large. Learning the optimal action for each of these states, or even learning

the expected reward for each of these states, is therefore not feasible.

4.2 Models

The most basic of deep reinforcement learning models is ”Deep Q-Learning” a modification

of the basic reward signal mode that underlines traditional reinforcement learning using

neural networks. In Q-Learning, we build a mapping of states (s) and action (a) pairs to a

representation of maximal possible future reward (Q). We can formalize this process with

the Bellman equation.

Q˚ps, aq “ Es1 εrr ` γmax
a

Q˚ps1, a1q|s, as (12)

Over multiple iterations of the environment, for any state, we take the action with the high-

est potential Q value (with some small chance of random action, determined by a separate

function) [15]. Additionally, future reward is discounted by some percentage γ. This is

due to the inherent stochastic nature of the environments we wish these agents to learn.

Q-Learning is valuable for solving small scale problems with both a small state space and

action space, however it is difficult to use with environments with a very large state space.

In fact, it is impossible to perform with a continuous action space. The solution to the state

space problem is instead of learning a function that maps every single state, action pair to

a expected reward value (Q-value), we learn a function to estimate the reward values for

each possible action in some state. Neural networks have been proven in experiments to be

extremely good at performing this specific operation [15].
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For environments containing a continuous action space, representing the entire action space

is impossible, as clearly a neural network could not represent a Q value for every single

real value between zero and one. Therefore, ”actor critic”[12] methods have instead opted

to not only use a neural network for estimating the value of each action, but also which

action has the greatest Q value. In these models, the ”actor” network attempts to learn

the policy itself, while a seconds network called the ”critic” is deployed to estimate the Q

value of the action that the first network outputted. By performing gradient ascent on the

critic network, the loss from backpropagation can be transferred over the critic, allowing for

a direct policy to be learned.

While for this research many different types of reinforcement learning models were tested,

the results presented in this research utilized Proximal Policy Optimization (PPO)[24]. PPO

receives its namesake from its ”clipping” procedure, which allows the model to sample sub

optimal actions to find possible new global optima. However, clipping prevents the PPO

model from searching too far outside what it has already determined to be a relatively

optimal policy. The model samples different actions on a Gaussian distribution centered

around the current most optimal policy, then uses that distribution to choose which actions

to take. This allows the model to continually search for new policies, which always taking

a relatively optimal action.

4.3 Reward Model

Our reward model is built to provide a balance between containing the epidemic outbreak

and doing so at minimal cost. This proves to be a difficult task, as there is no inherently

clear way to weigh the value of preventing spread against minimal use of preventative and

corrective resources. It is a non-trivial task to ascertain exactly how much any given cor-

rective resource ought to be worth when compared to the survival of any given timestep.

Therefore, we can not simply use a flat reward amount for the survival of a timestep, and

instead design it as a controllable variable. This way, our model can be tuned to allow for

many different types of networks, without having to rework the entire model when testing

13



it on different data. For example, when using flat reward amounts for each different type of

graph, we found experimentally that the reinforcement learning model would rarely attempt

to balance survival and correction, and would exclusively favor one over the other except

in rare circumstances. However, it is worth noting that in real life circumstance it is likely

we would favor survival over optimal correction, massive loss of life from disease spread

can often have incalculable external cost. Despite this fact, it is still important to consider

hard constraints that communities may have for intercepting outbreaks, and therefore the

importance of optimizing the cost of correction cannot be ignored.

We define ε as the allowable epidemic threshold, as a percentage of the total nodes on the

network. For most experiments, This value is set to 0.5.

We define as a constant representing the base reward given to the model for surviving

one time step (preventing the total number of infected nodes to surpass Nκ. Due of the

complexity of large networks, the value will often need to be manually adjusted based on the

individual networks to prevent unintended results. This parameter is especially important

as it can tip the model to favoring survival over optimally when set great enough. In our

experiments, we found that if this parameter was not set great enough, the model would

often ignore looking for paths of survival, and would simply optimize for whatever time step

the epidemic would often overrun at.

We define B as the ”budget” allotted to the model. This also functions as a percentage of

the total number of nodes in the network. Intuitively, we expect much larger networks to

have a smaller percentage of their nodes being ”critical” nodes. For example, consider a map

of the United States with the capital of each state being what can be considered ”critical”

nodes with respect to some viral infection spreading over airlines. If we add more cities into

the airline network, we are simply making the network more dense, the capitals remain the

most central and important nodes. Therefore, it is important to force the model to try and

spend a smaller percentage of the overall possible investment in order to ”push” the model
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toward faster learning. for the purpose of controlling epidemic processes. Because the cost

of investment into correction and prevention is normalized between 0 and 1, the maximum

cost of any given time step in the model is N, where N is the size of the network.

Rt “

$

’

’

&

’

’

%

ω ` pnG ˚Bq ´
ř

iPG, if
ř

i inGXi ă ε

´150, otherwise

(13)

where Rt refers to the reward given at time-step t.

To demonstrate the susceptibility of results of the model to the individual graphs, we perform

a simple experiment comparing the results of a trivial vaccination strategy on three different

small graphs: the Karate-Club social graph [30], Watts-Strogatz Small World Graph [28],

and an Erdos-Renyi Random Network [5]. We define the Trivial Solution as simply setting β

to
¯
β and δ to δ̄ at all time-steps in the simulation, therefore forcing maximal investment into

both correction and prevention. (Note that for these tests, a simplified method of measuring

rewards were used, so the absolute values differ from the experimental results presented later.

This is because the PPO model we used relies on batch sampling to measure progress, which

is much more resource intensive then a simple consecutive run of the epidemic simulation).
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Figure 3: A comparison of the effect on a trivial vaccination strategy on different small random
graphs. The following parameters were used: β̄ “ 0.3,

¯
β “ 0.1, δ̄ “ 0.4,

¯
δ “ 0.2, κ “ 0.5, ω “ 6,

B “ 0.5

While the Karate-Club graph and the Erdos-Renyi graph performed relatively close, we find

that the Watts-Strogatz Small World graph seems to outperform the other two by a factor

of 5 when the trivial vaccination strategy is performed. A further experiment confirms that

this discrepancy can be attributed to the average degree of the network. Because the degree

of all nodes in a Watts-Strogatz network (defined as k) are predefined and static, we can

compare how tuning the We ran the same simulation with the trivial vaccination policy on

three different Watts-Strogatz networks with varying k values.

Figure 4: Comparison of different k-values of
a Watts-Strogatz network of n=50

Figure 5: Comparison of different k-values of
a Watts-Strogatz network of n=100
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We can note a fairly clear drop in performance from the k “ 5 simulation to the k “ 10

simulation. This suggests that the average degree of the network is heavily influential on

the difficulty of optimally controlling an epidemic process. We can hypothesize that after

a certain average degree threshold is passed, it becomes impossible to vaccinate a network,

even with maximal investment. It is therefore imperative for experiments that a balance is

struck between the bounds of the infection, and the overall connectivity of the network.

5 Node Embedding and Clustering

While we have been able to formalize a model of the epidemic spread problem from which

baseline reinforcement learning algorithms can be applied, the action space of our model

grows linearly with the size of the network, as we assume the ability to manually tune each

infection and recovery rate at each node. We found that on sufficiently large networks (x

¿ 200), convergence on an optimal policy takes an non-feasible amount of time. This is be-

cause in artificial neural networks, the number of parameters to train increase exponentially

with the size of the output space. The difference can be compared to trying to learn to walk

by trial and error when there are 10 joins to consider vs 500 joints. Therefore, we must

reduce the action space of our model by choosing smaller clusters to act upon.

Instead of clustering according to inherent features of the network, it can often be more ef-

fective to use a learned embedding scheme to determine a more effective method of clustering

nodes. In order to best perform the clustering task, we turn to algorithms that can extract

hidden features from networks that aid in understanding what makes one node similar to

another.

Feature learning for words in some natural language has been a heavily explored field of

research for some time. word2vec [22] by utilizing one of two models: a continuous bag of

words (CBOW) or a skip-gram, coupled with traditional optimization techniques.
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Figure 6: A single word context CBOW. V denotes the size of the vocabulary, with xi P 0, 1
denoting the presence of a word in the input layer.

The goal of the CBOW is to maximize the conditional probability of observing the target

word WO given a set of words in similar context WI . uj represents the score that each word

in the vocabulary is given based on the hidden weights of the neural network. yj represents

the output for the jth word in the vocabulary.

max ppwO|wIq “ max yj˚ “ max logyj˚ “ uj˚ ´ log
V
ÿ

j1“1

exppuj1q ” ´E (14)

The skip-gram model is essentially the opposite of the CBOW model [14]. Instead of opti-

mizing to maximize the probability of observing the target word WO given the set of context

words WI , we instead optimize the network to maximize the probability of observing the

context words WO,1,WO,2...WO,C (with C being the number of context words sampled)

given the the target word WI . The loss function is therefore changed to the following

E “ ´ log PrpWO,1,WO,2...WO,C |WIq “ ´

C
ÿ

c“1

uj˚c
` C ˆ log

V
ÿ

j1“1

exppuj1q (15)

Both of these models are often used for the application of word2vec. word2vec has proven

to be an incredibly powerful tool in the realm of word classification tasks. It has shown to

beat previous cutting edge techniques in the fields of sentiment analysis [31], named entity
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recognition [25], and even musical analysis [8].

Due to the wide range of utilization for word12vec, the algorithm can just as easily be

extended for the purposes of graph embedding. In order to execute word2vec, a corpus of

”sentences” must be built for the algorithm to learn. The sentences can simply be a sequence

of nodes, with any given node in the graph appearing only once. Once an embedding of

the network has been established, a simple clustering algorithm such as k-means is used to

determine groups on which the reinforcement learning model is permitted to act upon.

For node2vec to build these sequences that are fed into word2vec, biased random walks are

used. Let ci be the ith step of a walk, with c1 “ u, where u is the source node []. First, we

generate a series of biases on each edge P E. This ensures that the resulting vectors are not

too normally distributed, as this prevents us from effectively clustering the network. One

simple way to produce these random walks would be to use difference of centrality, or just

randomly generate using a random distribution. We denote the bias from v to x as πvx. A

random constant chosen for each walk in the set of random walks used to produce variation

is denoted by Z.

Prpci “ x|ci´1 “ vq “

$

’

&

’

%

πxv

Z if pv, xq P E

0 otherwise
(16)

Using this model, we can produce a series of walks that serve as the ”corpus” for the

network we are trying to embed. Traditionally, node2vec utilizes the skip-gram word2vec

model, which performs better with a smaller corpus size as well as smaller corpus scope.

6 Results

We fine that baseline reinforcement learning models, particular Promixal Policy Optimiza-

tion, are effective at learning control of network epidemic processes. On most small to

medium sized networks, PPO is able to converge on a policy that successfully prevents an

epidemic from spreading beyond an arbitrary threshold ε, given reasonable bounds of the
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infection.

The following small Watts-Strogatz small world network was used for initial testing of mod-

els.

Figure 7: Networkx drawing of Watts-Strogatz small world network used for small scale testing,
with n “ 50, k “ 7, and p “ 0.2.

To verify the ability of the PPO model to learn a solution to the epidemic spread problem,

we first ran unclustered (with a action space equal to the number of nodes in the network)

for 7000 episodes. We observe clear evidence that proximal policy optimization can converge

on an efficient vaccination policy in a relatively short training time.
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Figure 8: The results of 7 hours of training of the PPO model with no clustering on the benchmark
Watts-Strogatz network of n = 50. The benchmark for the trivial policy is a reward of -340.

This model takes approximately 3 to 6 hour to train on a Nvdia GTX 1060 with PyTorch.

However, this relatively short training time grows exponentially as the size of the network

grows. This suggests that while the complex relationships between nodes in a larger network

can be learned, information embedded in the network becomes increasing noisy as its size

increases.

To compare the effectiveness of our clustering scheme on the ability of the model to learn,

we run the model on two different standardized Watts-Strogatz networks, one of n = 50 and

one of n = 100. The model for n = 50 ran for approximately 8 hours before converging,

while the model for n = 100 took approximately 3 hours to converge.
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Figure 9: Training results of a network of size
n=50. β̄ “ 0.25,

¯
β “ 0.04, δ̄ “ 0.25,

¯
δ “ 0.1,

κ “ 0.5, ω “ 6, B “ 0.5

Figure 10: Training results of a network of
size n=100. β̄ “ 0.265,

¯
β “ 0.085, δ̄ “ 0.275,

¯
δ “ 0.125, κ “ 0.5, ω “ 6, B “ 0.5

7 Conclusion

We can conclude on face that reinforcement learning, particularly proximal policy opti-

mization, is an effective means of solving the optimal control problem for network epidemic

processes. Additionally, we find that the use of clustering via a combination of node2vec for

embedding of nodes, as k-means to create clusters after an embedding has been performed

marginally decreases the time for the model to converge on a vaccination strategy capable

of preventing an outbreak scenario. We particularly observe that the benefit of cluster tar-

geting over targeted the entire network increases as the size of the network increases. This

can be easily explained by the fact that the number of weights in a densely connected neural

network decreases exponentially with reduction in the size of the network.

We can also note by the amount of hyperparmeter tuning in the simulation that must be

done to perform experiments that yield useful information that the model in it’s current

form may be difficult to apply to current favored real-world examples. Clearly, in real world

situations, one cannot modify the bounds of infection as well as bounds of vaccinations to

such a precise degree. It is also important to note that the model itself can be considered

problematic as those in charge of vaccination and health policy do not have the ability to

apply continuous amounts of vaccine or preventative medicine. Typically, set discrete doses

are allowed for any given corrective measure. Nonetheless, the results from our model show
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that reinforcement learning can be applied broadly to problems involving network epidemics.

8 Future Work

In particular, we would like to explore the how well the model scales, as many of the

networks tested for this work were relatively small. Unlike many reinforcement learning

environments, the action space of our SIS environment scales linearly as the complexity of

the network grows. We found that after a certain network size threshhold, usually after

n=300, the training time of the model became too large to be viable. In many experience

with extremely large networks (n ě 500), we found that even with clustering, the epidemic

simulations themselves would become quite CPU intensive. Interestingly, the training of the

neural networks themselves rarely presented a resource problem. Future iterations of the

epidemic simulation used ought to attempt to make use of parallel processing and the use

of multithreading.

Next, we would like to further explore and analyze the various hyperparameters of both the

epidemic model, as well as the reinforcement learning environment. For our experiments,

we found each different network required careful tuning of parameters related to the specific

epidemic. In particular, the simulation is quite sensitive to the careful tuning of β̄,
¯
β, δ̄,

and
¯
δ. In tuning these variables, we were looking for thresholds such that eliminating all

investment lead to near instant epidemic outbreak, while maximizing investment across all

nodes led to just barely barely surviving all timesteps. In future work, we would like to more

deeply analyze the relationship between these variables and the structure of the networks.

Finally, while it is clear that the reinforcement learning method is effective at learning a

policy and converging on an optimal solution, we would like to further explore how optimal

this policy is compared to other possible methods, such as targeting nodes in proportion

to their centrality, across multiple measures. Due to the nature of deep learning, the re-

inforcement learning model is effective at determining a locally optimal control policy, but

cannot guarantee a globally optimal policy. We suspect that much of what determines which
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local policy the model first converges on depends greatly on how rewarding each individual

timestep is, versus how rewarding less investment into vaccination is. Therefore, in future

work, we would seek to strike a more careful balance between these two reward structures to

ensure that the model does not overly prioritize one over the other. In many experiments,

when ω is set too low, we find that the model prioritizes cost savings, and rarely attempts

to control the outbreak. On the other hand, when omega is set too high, the model does

not attempt to optimize cost at all. Therefore, future work ought to focus on precisely

determining what these parameters are set to.
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vilnius, lithuania (2015), no. 109, Linköping University Electronic Press, pp. 239–243.
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