You are here

MICRO-SPECTROSCOPY OF BIO-ASSEMBLIES AT THE SINGLE CELL LEVEL

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 ?m in the lateral and 3.6 ?m in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single live cells and bio-molecules with less than 10^9 molecules in the probe volume. Employing a multichannel detection system, the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. We also extend the spectral range from the visible range to the experimentally more challenging ultra-violet region where characteristic absorption bands of bio-molecules are observed. Exploiting the ultra-violet range, amino acids, nucleic acids solutions, and plant cells are investigated. We measure the spatially resolved absorption spectra at the nucleus of an onion cell and cytoplasm to probe DNA base-pair absorption. Small variations in our micro-absorption data are seen around 260 nm, possibly due to the abundance of DNA in the nucleus. This thesis contributes to the goal of spectroscopic identification of spatial heterogeneities at the single cell level and the label-free detection of proteins and nucleic acids.
Title: MICRO-SPECTROSCOPY OF BIO-ASSEMBLIES AT THE SINGLE CELL LEVEL.
33 views
10 downloads
Name(s): Kera, Jeslin, Author
Chakrabarti, Debopam, Committee Chair
Schulte, Alfons, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 ?m in the lateral and 3.6 ?m in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single live cells and bio-molecules with less than 10^9 molecules in the probe volume. Employing a multichannel detection system, the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. We also extend the spectral range from the visible range to the experimentally more challenging ultra-violet region where characteristic absorption bands of bio-molecules are observed. Exploiting the ultra-violet range, amino acids, nucleic acids solutions, and plant cells are investigated. We measure the spatially resolved absorption spectra at the nucleus of an onion cell and cytoplasm to probe DNA base-pair absorption. Small variations in our micro-absorption data are seen around 260 nm, possibly due to the abundance of DNA in the nucleus. This thesis contributes to the goal of spectroscopic identification of spatial heterogeneities at the single cell level and the label-free detection of proteins and nucleic acids.
Identifier: CFH2000356 (IID), ucf:45905 (fedora)
Note(s): 2017-12-01
B.S.
College of Medicine, Burnett School of Biomedical Sciences
Bachelors
This record was generated from author submitted information.
Subject(s): Spectroscopy
Confocal Microscope
Absorption and Transmission
Amino Acids
Nucleic Acids Nitrogen bases
Micro experiments
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH2000356
Restrictions on Access: public
Host Institution: UCF

In Collections