You are here

INTERCONNECTION, INTERFACE AND INSTRUMENTATION FOR MICROMACHINED CHEMICAL SENSORS

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
In realizing a portable chemical analysis system, adequate partitioning of a reusable component and a disposable is required. For successful implementation of micromachined sensors in an instrument, reliable methods for interconnection and interface are in great demand between these two major parts. This thesis work investigates interconnection methods of micromachined chip devices, a hybrid fluidic interface system, and measurement circuitry for completing instrumentation. The interconnection method based on micromachining and injection molding techniques was developed and an interconnecting microfluidic package was designed, fabricated and tested. Alternatively, a plug-in type design for a large amount of sample flow was designed and demonstrated. For the hybrid interface, sequencing of the chemical analysis was examined and accordingly, syringe containers, a peristaltic pump and pinch valves were assembled to compose a reliable meso-scale fluidic control unit. A potentiostat circuit was modeled using a simulation tool. The simulated output showed its usability toward three-electrode electrochemical microsensors. Using separately fabricated microsensors, the final instrument with two different designs--flow-through and plug-in type was tested for chlorine detection in water samples. The chemical concentration of chlorine ions could be determined from linearly dependent current signals from the instrument.
Title: INTERCONNECTION, INTERFACE AND INSTRUMENTATION FOR MICROMACHINED CHEMICAL SENSORS.
33 views
14 downloads
Name(s): Palsandram, Naveenkumar, Author
Sundaram, Kalpathy, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In realizing a portable chemical analysis system, adequate partitioning of a reusable component and a disposable is required. For successful implementation of micromachined sensors in an instrument, reliable methods for interconnection and interface are in great demand between these two major parts. This thesis work investigates interconnection methods of micromachined chip devices, a hybrid fluidic interface system, and measurement circuitry for completing instrumentation. The interconnection method based on micromachining and injection molding techniques was developed and an interconnecting microfluidic package was designed, fabricated and tested. Alternatively, a plug-in type design for a large amount of sample flow was designed and demonstrated. For the hybrid interface, sequencing of the chemical analysis was examined and accordingly, syringe containers, a peristaltic pump and pinch valves were assembled to compose a reliable meso-scale fluidic control unit. A potentiostat circuit was modeled using a simulation tool. The simulated output showed its usability toward three-electrode electrochemical microsensors. Using separately fabricated microsensors, the final instrument with two different designs--flow-through and plug-in type was tested for chlorine detection in water samples. The chemical concentration of chlorine ions could be determined from linearly dependent current signals from the instrument.
Identifier: CFE0000673 (IID), ucf:46516 (fedora)
Note(s): 2005-08-01
M.S.E.E.
Engineering and Computer Science, Department of Electrical and Computer Engineering
Masters
This record was generated from author submitted information.
Subject(s): Interconnection
Hybrid fluidic system
Microfluidic package
Plug-in type package
Potentiostatic circuit
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000673
Restrictions on Access: campus 2010-01-31
Host Institution: UCF

In Collections