You are here
MONTE CARLO SIMULATION OF HOLE TRANSPORT AND TERAHERTZ AMPLIFICATION IN MULTILAYER DELTA DOPED SEMICONDUCTOR STRUCTURES
- Date Issued:
- 2005
- Abstract/Description:
- Monte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical or in-plane hole transport in the presence of a perpendicular in-plane magnetic field. Inversion population on intersubband transitions arises due to light hole accumulation in E B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77 K. Test structures grown by chemical vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions. The same device structure is considered in GaAs. The case of Si is much more complicated due to strong anisotropy of the valence band. The primary new result for Si is the first consideration of the anisotropy of optical phonon scattering for hot holes.
Title: | MONTE CARLO SIMULATION OF HOLE TRANSPORT AND TERAHERTZ AMPLIFICATION IN MULTILAYER DELTA DOPED SEMICONDUCTOR STRUCTURES. |
37 views
22 downloads |
---|---|---|
Name(s): |
Dolguikh, Maxim, Author Peale, Robert, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2005 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Monte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical or in-plane hole transport in the presence of a perpendicular in-plane magnetic field. Inversion population on intersubband transitions arises due to light hole accumulation in E B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77 K. Test structures grown by chemical vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions. The same device structure is considered in GaAs. The case of Si is much more complicated due to strong anisotropy of the valence band. The primary new result for Si is the first consideration of the anisotropy of optical phonon scattering for hot holes. | |
Identifier: | CFE0000863 (IID), ucf:46672 (fedora) | |
Note(s): |
2005-12-01 Ph.D. Arts and Sciences, Department of Physics Doctorate This record was generated from author submitted information. |
|
Subject(s): |
Monte Carlo simulation semiconductor laser terahertz far-infrared intersubband germanium silicon GaAs hole scattering phonon multilayer delta doped |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0000863 | |
Restrictions on Access: | public | |
Host Institution: | UCF |