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ABSTRACT 

Although there has been progress in the area of Multivariate Statistical Process 

Control (MSPC), there are numerous limitations as well as unanswered questions with 

the current techniques.  MSPC charts plotting Hotelling’s 2T  require the normality 

assumption for the joint distribution among the process variables, which is not feasible in 

many industrial settings, hence the motivation to investigate nonparametric techniques 

for multivariate data in quality control.  In this research, the goal will be to create a 

systematic distribution-free approach by extending current developments and focusing on 

the dimensionality reduction using Principal Component Analysis.  The proposed 

technique is different from current approaches given that it creates a nonparametric 

control chart using robust simplicial depth ranks of the first and last set of principal 

components to improve signal detection in multivariate quality control with no 

distributional assumptions.  The proposed technique has the advantages of ease of use 

and robustness in MSPC for monitoring variability and correlation shifts.  By making the 

approach simple to use in an industrial setting, the probability of adoption is enhanced. 

Improved MSPC can result in a cost savings and improved quality. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

One of the tools that has been widely recognized in the Quality Control area is 

Shewhart’s Statistical Process Control Chart.  During the past eighty years, these control 

charts have been utilized and gained much popularity largely because of their simplicity 

and effectiveness.  Unfortunately, a significant limitation to these traditional control 

charts has been that these charts monitored processes that were determined by univariate 

data.  Hence, processes that are determined by multivariate data may not be monitored 

effectively by these traditional control charts.  Additionally, with the multivariate 

structure, the variables may be correlated.  These correlations may exist between the 

variables, known as inter-correlations, and/or within each variable over time, known as 

autocorrelation.  Given these additional considerations, there is a need for Multivariate 

Statistical Process Control (MSPC) techniques.  Currently, the MSPC technique that is 

applied and referenced significantly in the multivariate quality control literature is 

Hotelling’s 2T  statistic, developed by Harold Hotelling in the 1940’s.  We can utilize 
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current statistical software packages with the multivariate quality control option to 

construct MSPC control charts by computing and plotting 2T  values along with an Upper 

Control Limit (UCL) obtained from the critical value.  Details of this multivariate 

technique are provided in Chapter Two of this dissertation along with an overview of 

historical developments and limitations in multivariate quality control.  The Literature 

Review in Chapter Two will provide a historical background of Quality Control and SPC 

in order to give a perspective into the attempts by past researchers to address MSPC and 

why these attempts have generated more issues that need to be investigated.  Although 

the research in MSPC began in the 1940’s with Hotelling’s developments, much of the 

literature review in this paper covers publications from the late 1980’s to present since 

extensive research in MSPC is relatively new.  The techniques discussed have included 

nonparametric MSPC.  Although there are numerous papers in theoretical statistical 

multivariate analysis, those not cited specifically in this dissertation are not relevant to 

the scope of this research.  The authors from the publications which are not directly 

referenced in this dissertation have been included in the APPENDIX section. 
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1.2 Purpose 

Based on the previous research and current developments, there has been progress 

in the area of MSPC.  Unfortunately, there are numerous limitations as well as 

unanswered questions with the current techniques.  Hotelling’s approach requires the 

normality assumption for the joint distribution among the process variables, which is not 

feasible in many industrial settings.  The approaches by researchers from the 1950’s 

through the 1980’s have introduced nonparametric methods in multivariate analysis, but 

these techniques are either limited to bivariate data or are lacking the affine variant 

property.  In the 1990’s researchers began to explore new nonparametric techniques to 

monitor multivariate processes more effectively.  Many of these techniques are 

theoretical in nature and have not been fully applied to multivariate quality control. 

The motivation to investigate nonparametric techniques in multivariate quality 

control is that fewer restrictive assumptions of the process data are imposed.  In the 

quality control literature, Coleman (1997) states that the multivariate normality 

assumption for industrial data is unrealistic and that “distribution-free multivariate SPC is 

what we need.”  The nonparametric approach also tends to be less sensitive to outliers, 

hence more robust and prone to fewer false alarms.  Plotting a univariate chart 

(parametric and nonparametric) for each variable from multivariate data may not 

necessarily produce results as accurate as monitoring the multivariate distribution as a 

whole.  In multivariate processes, the multivariate decomposition into separate p 
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univariate processes generates a loss of power in those tests since this decomposition 

does not consider correlations between these variables.  (Fuchs and Kennet, 1998)  Since 

industries, such as the food and chemical industries among others, inherently deal with 

numerous variables which are highly correlated, there is a tremendous need for 

improvement in the area of MSPC to monitor processes more efficiently in the industrial 

setting.   (Elsayed, 2000)  Traditional techniques also tend to generate higher false alarms 

in the presence of autocorrelation which is common in industry.  In quality control, the 

demand for a new or “better” approach in industry is satisfied by establishing a technique 

that is easy to use and capable of detecting shifts in a process without producing high 

levels of false alarm rates.  (Stoumbos, et.al., 2000)   

Woodall (1999) has indicated there is a need for research and development of 

nonparametric techniques that will monitor multivariate data.  Due to the fact that 

univariate control charts for most of the twentieth century had been considered sufficient, 

the literature in the multivariate quality control area is not as abundant as the univariate 

quality control literature.  However, as the literature review in this paper will 

demonstrate, more recent publications, many from the 1990’s to the present, have 

stressed a strong need to develop a new approach in MSPC.  The research in this paper 

will explore nonparametric techniques including simplicial depths and Principal 

Component Analysis (PCA) to develop robust methods in order to lower false alarm rates 

while avoiding an increase in missed alarms in MSPC.   Since increases in false and 

missed alarms have a negative effect on quality with a serious economic impact, it is 

imperative to develop techniques aimed at minimizing false and missed alarms.  
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Applying the philosophy of Genichi Taguchi, when a process experiences shifts in the 

target value and increases in the variation there would be a “loss to society,” which as he 

described is a loss that would be incurred by someone – namely the person who owns the 

process and anyone who would be affected by set process. (Kolarik, 1995)  Losses in 

today’s struggling economic situation could even be catastrophic.   In the current 

economic and political situation that we are facing, it is imperative for improvement to be 

sought in industrial settings where correlations among variables and autocorrelations are 

possible. 

This research will address the needs in MSPC by analyzing the limitations of 

certain historical discoveries and by utilizing robust nonparametric techniques which can 

be applied to industrial settings.  Given the lack of a unified approach in non-normal 

multivariate quality, this research proposes a new systematic and efficient approach that 

will address non-normality in MSPC and lower false alarm rates.  This dissertation will 

be divided into the following chapters: Chapter Two – Literature Review [providing 

historical contributions and limitations in Quality Control and Multivariate Analysis], 

Chapter Three – Methodology [applying nonparametric techniques for MSPC], Chapter 

Four – Findings [how did the nonparametric techniques improve the false alarm rates in 

MSPC] and Chapter Five – Conclusion [expanding the findings to future research in this 

area]. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Background on Quality Control 

During the first to the middle part of the 20th century, the United States became 

the leader in mass production. Unfortunately, with a stronger focus on mass production, 

high quality standards were de-emphasized.   This was also the era when Japan was 

trying to recover from the second world war and began to develop goods that could be 

exported to eventually rebuild its economy.  At the time, Japan had the reputation for 

developing cheaper goods, therefore the Japanese knew that in order to successfully 

compete they would have to use a new approach that would place them in a competitive 

position.   It was during this era that terms such as Quality and Quality Control were 

being circulated amongst businesses.  While these Quality concepts were not considered 

essential in the United States given the strong lead it had at the time in the domestic and 

world economy, Japan on the other hand needed desperately to improve its image and 

establish a good reputation.  Using developments in Quality Control, the Japanese began 

to transform the ideologies in their business world, consequently establishing themselves 



  

7 

 

 

as strong competitors and eventually overtaking the market. 

In order to discuss quality we must first define it.  As referenced by Kolarik 

(1995) the following represent various definitions of quality:  

 

• “Characteristic that belongs to a thing’s basic nature” Webster’s dictionary  

• Two aspects of quality: objective and subjective.  The first defines quality “as an 

objective reality independent of the existence of man.”  The second defines 

quality “with what we think, feel, or sense…this subjective side of quality is 

closely linked to value.” Walter A.  Shewhart 

• “A fitness for use”  Joseph M. Juran    

• “The conformance to requirements”  Philip B. Crosby  

• An aim “at the needs of the consumer, rising and future” W. Edwards Deming 

• “The total composite product and service characteristics of marketing, 

engineering, manufacture and maintenance through which the product and service 

in use will meet the expectations of the customer.” Armand V. Feigenbaum  

• “The loss a product causes to society after being shipped, other than any losses 

caused by its intrinsic functions” Genichi Taguchi 

• “The totality of the features and characteristics of a product or service that bear on 

its ability to satisfy stated or implied needs”   ISO 9000  
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Some of the gurus of Quality Control: W. Edwards Deming, Joseph Juran, Kaoru 

Ishikawa, Philip B. Crosby, Genichi Taguchi and Walter Shewhart were among the 

greatest contributors to Japan’s improvements.  Philip B. Crosby stressed that prevention 

is the key to quality management.   With his “zero defects” concept, which he classified 

as an absolute of quality management, Crosby stressed the need for setting high standards 

and expectations to achieve quality.  Japanese corporations such as Toyota, Honda, and 

Toshiba among others applied this concept to ensure that goods were conforming to 

requirements and consequently consumer confidence.  

Kaoru Ishikawa’s developments such as the “Quality Circles” and the “Cause and 

Effect” diagrams, also known as Ishikawa or fish-bone diagrams, have provided the 

Japanese with tools that promote quality awareness by focusing on the causes and effect 

of a process.  Additionally, Ishikawa is one of the individuals responsible for introducing 

Shewhart’s control chart techniques to the Japanese.  

Walter Shewhart, who was an employee from the Bell Laboratories during the 

1920’s, has been considered a 20th century pioneer of quality given his significant 

contributions in the area of Statistical Process Control (SPC).  Shewhart’s contributions 

have included the concept of “assignable causes,” the concept of Type I and Type II 

errors, when conducting hypothesis testing, and the first control charts.  Shewhart 

developed the control chart as a tool to monitor product quality by detecting a shift in the 

target value as well as the presence of any variation in a given process.  Control charts 

have a center line, where the target value is located, and control limits above and below 

the center line (CL), namely the Upper Control Limit (UCL) and the Lower Control 
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Limit (LCL) which allow a process to be monitored. (See Figure 2.1a)  The process is 

monitored by detecting shifts.  Once these shifts have been detected and the process is 

brought to a state of “statistical control,” the next phase is to determine what possible 

factors may have contributed to these deviations and then proceed to improve the process.  

The tools that have been developed by Shewhart, Ishikawa, Deming, Juran, Crosby and 

Pareto are statistical tools used to monitor and control processes, a method known as 

Statistical Process Control (SPC).  The following represent various definitions and 

attributes of SPC:  

 

• The Statistical component (or statistics) is the science that collects, analyzes and 

interprets data.  Data points collected from samples are known as statistics.   The 

Process is a systematic series of events with inputs (or variables) and outputs (or 

effects).  Control is the application of statistical techniques in order to monitor 

and improve a process.    (American Society for Quality)  

• “Statistical methods for analyzing and controlling the variation of a process.” 

(DataMyte Corporation)  

• A collection of “production methods and management concepts and practices that 

can be used throughout an organization.” (Gerald Smith) 

• A technique that provides continuous improvement to a process.  

• A proactive approach that yields a consistently higher quality output. 

• A technique that reduces rework and fewer errors or false alarm rates 
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consequently less waste.  

• A system that promotes employee participation which leads to an increase in job 

satisfaction and performance. 

• A process that improves competitive position resulting in more jobs and an 

increase in profits.   

Table 2.1a illustrates the Type I and Type II errors and how they apply to Statistical 

Process Control. (Kolarik, 1995) 

 

 Table 2.1a SPC Proper Indicators and Erroneous Conclusions  

 In-Control 
 (Stable Process) 

Out-of-Control 
(Unstable Process) 

In-Control  Correct Conclusion  

Missed Alarm 

Fail to detect the unstable 

process (Type II error)  

Out-of-Control 

False Alarm 

Signal in a stable process 

(Type I error) 

Correct Conclusion 

 

 

Shewhart’s control charts are known as Statistical Process Control Charts.  During 

the past eighty years control charts have been extensively used in industry due to their 

simplicity and efficiency for monitoring processes.  Although there have been cases 
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where these charts have been misused by supervisors, as has been referenced in various 

case studies by DeVor, Chang and Sutherland (1992), their contributions and applications 

in numerous industrial settings have been extensive for decades. 

 

 

Figure 2.1a Shewhart Control Chart Zones for a 3 sigma X-bar chart.  (Shewhart, 1939) 

 

   

While these charts have been successfully applied to monitor processes in 

industry, they are limited to univariate data.  For MSPC, the power of univariate charts is 

CL 

LCL 

UCL 

Zone C 

Zone B 

Zone C 

Zone A 

Zone A 

Zone B 

CL σ3+  

CL  

CL σ2+  

CL σ1+  

CL σ1+  

CL σ2+  

CL σ3+  
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low, relative to a multivariate approach and may yield an increase in false alarms, 

whereby a system that was in a state of statistical control was deemed out of control.  The 

correlations that are possible among process variables must be considered when using 

multivariate control charts as is the case with Hotelling’s 2T  control chart.  

Unfortunately, given the restriction of multivariate normality, Hotelling’s 2T  control 

chart can also generate a higher incidence of false alarms for multivariate processes that 

are not multivariate normal. 

Another pioneer of Quality and Quality Management has been Dr. W. Edwards 

Deming, whose philosophy is the never–ending cycle of improvement, known as the 

Plan-Do-Check-Act (PDCA) cycle (see Figure 2.1b).  The significance of Deming’s 

contributions to the Japanese is evidenced by the establishment of The Deming Prize in 

Japan in 1951.  Deming was a strong advocate of control chart techniques because of 

their ability to monitor processes in order to correct and continuously improve the overall 

systems.  Applying the Deming PDCA Cycle, one must seek further improvement within 

SPC in order to efficiently detect target shifts and the presence of variation for 

multivariate processes.  
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Figure 2.1b Deming’s Plan-Do-Check-Act (PDCA) cycle (Kolarik, 1995) 

 

2.2 Technological Influences 

The phenomenon of the personal computer in the 1980’s has changed the way in 

which personal and industrial business is conducted.  In industrial and social 

environments the computer has introduced new venues of communication, namely the 

internet and e-mail transmission.   With information so accessible, data availability and 

Plan  

Do 

Act  

Check 
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industrial interaction have become instantaneous.  Businesses now have the ability of 

gathering and posting information at the click of a button.  Software packages such as 

Minitab, SAS, Statistica, Mathematica, Design Expert, SPSS and others are being utilized 

to monitor processes through quality tools that have been included within these software 

packages.  

With these computerized tools and the abundance of available data, additional 

factors or variables affecting individual processes have been discovered.  With more 

factors determining a process, the univariate, or single–variable, approach used in 

traditional statistical process control cannot effectively monitor a process.  These factors 

create a multivariate setting in which more than one variable will determine the outcome 

of a process.  When the number of variables in a process system increases, the presence 

of correlation is likely.  In addition to the possibility of correlations among variables, 

there exist correlations within the same variables over time, which is called 

autocorrelation.  In certain industries such as the chemical and food industries, in which 

outcomes are produced by numerous factors and their interactions, correlation is a 

common occurrence.  Such inter-correlations and/or autocorrelations could not be 

monitored by traditional control charts resulting in numerous false alarms and possible 

missed alarms for those processes. 

Additionally, with more factors affecting a process and the fact that small samples 

are gathered, the normality assumption may be less justifiable.  Therefore new and 

creative approaches need to be developed to monitor and improve multivariate processes 

that are free of the normality assumption.   During the past eighty years the “one size fits 
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all” univariate approach worked well, however, in many processes which are 

multivariate, the univariate approach on each single variable versus a multivariate 

approach yields a significant loss of power as demonstrated in the multivariate quality 

control literature (Fuchs and Kennet, 1998) as well as the theoretical multivariate 

literature (Rencher, 1995).  Unfortunately, the vast amount of work in multivariate 

quality control is based on the assumption that these processes are multivariate normal.  

As such, many publications in MSPC utilize Hotelling’s 2T  or modified forms proposed 

by Mason, Young and Tracy (1997), and Kourti and MaGregor (1995, 1996). Details of 

these MSPC approaches using 2T  as well as new approaches using nonparametric 

developments will be provided later in this chapter. 

According to Sprent (1989), nonparametric methods have played a central role in 

modern times, because modern channels of communication such as the internet provide 

an abundance of data with possibly no information as to the distribution of that data.  

Sprent further stresses how Wilcoxon and other researchers of nonparametric methods 

have determined that ranks could be utilized effectively with “little loss of information.”  

There have been limited efforts to utilize nonparametric techniques to address these 

MSPC situations; however, as the literature has suggested much research is needed in the 

area of nonparametric MSPC.  Additionally, these investigations have been more in the 

arena of multivariate statistical theory (see APPENDIX A) and not so much in 

multivariate quality control. 
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2.3 Historical Developments in Multivariate Quality Control 

One of the first researchers in the area of multivariate SPC was Hotelling (1947) 

whose research explored multivariate quality control.   Even before the advent of the 

modern day personal computer, Hotelling realized that a process was not always 

determined by univariate measures.  With such a discovery Hotelling developed the 2T  

statistic to address multivariate process data.  The concept behind the 2T  statistic was to 

develop a model that would test the hypothesis that a multivariate process is in a state of 

statistical control versus that the multivariate process is not in a state of statistical control.  

The 2T  statistic would monitor the multivariate structure of the process by observing the 

mean vector and variance-covariance matrix of the p number of variables that determine 

the multivariate process. 

Some recent articles have referred to affine invariance as a desirable characteristic 

for process measures.    An affine invariant statistic is a statistic which “is invariant under 

nonsingular linear transformations of the data” which include rotations, reflections, and 

rescaling. (Kapatou, 1996)  The benefit of the rotatability of the data is that it generates 

the same conclusions gathered from the original data or the principal components of the 

rotated data.  These principal components are those obtained from the original variables 

using a popular and well established technique from multivariate statistics known as 

Principal Component Analysis (PCA).  Additionally, with the affine invariance property, 

the statistic manages to maintain the same value under scaling changes.  Kapatou, (1996) 
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Johnson and Wichern (1982) have demonstrated that the 2T  statistic developed by 

Hotelling does display the affine invariance property.  The rotatability of the principal 

components is beneficial particularly in multivariate quality control.  Graphical 

representations of data generate quick information for industrial managers who may not 

understand the statistical aspects but can gather information from a graph.  With 

rotatability three dimensional graphs would provide consistency and not suffer from a 

loss of power.  

2.4 Multivariate Graphical Tools 

Graphical tools are also available measures in Multivariate Analysis.  Two, three 

and even four dimensional graphing schemes are easy to understand and are readily 

available in many software packages, which are most beneficial in industry.  One 

multivariate graph which is readily available in most statistical software packages is the 

scree graph which provides a visual test assessing the amount of principal components 

that should be retained when using Principal Component Analysis, a multivariate 

dimensional reduction scheme.  The Q–Q plot which is another simple graphical tool can 

be plotted easily to detect trends and assess normality as in the univariate case.  The Q–Q 

plot is also available in statistical software packages.  Additional graphical techniques are 

available in multivariate texts and some software packages however, their usage may not 
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be as reliable as the ones previously described given their subjectivity.  Table 2.4a 

contains a description of various multivariate graphical tools that are available.  (Rencher, 

1995) 

 

Table 2.4a  Multivariate Graphical Tools. 

Multivariate Graphical 

Analysis 
Descriptions of Each Graph 

Bivariate Scatter Plots Two dimensional graph with the plots of paired data 
points.  The data points are obtained from 2 variables.  

Trivariate Scatter Plots Three dimensional graph with the plots of data points in 
3-space.  The data points are obtained from 3 variables. 

Four Dimensional Plots 

Scatter plots graphed in 2 dimensions with pairs of 
variables within a larger pair. Each corner for the 
smaller right angle pair (i.e. the additional pair) would 
be the scatter for the outer 2 variables.   

Q–Q plots Graphs of quantiles used to assess normality and/or 
identify trends. 

Profiles Vertical bars with heights representing the values of the 
variables.  

Stars 

Rays from the center to the outside of a circle 
representing the values of the variables. These rays form 
a polygon. The center of the circle would be the minimal 
value.   

Glyphs Circles with fixed rays representing the values of the 
variables.    

Faces Depict each variable as a feature on a face (eyes, nose, 
mouth, etc.).  

Boxes Each variable is the dimension of a box. 

Scree Graphs Graphical technique to determine the principal 
components in Principal Component Analysis. 
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2.5 Principal Component Analysis 

Principal Component Analysis (PCA) is a popular multivariate analysis technique 

that is used to reduce the p-dimensionality of a multivariate process.  One benefit of this 

technique is that it is readily available in most software packages and is a well established 

technique in statistical multivariate analysis.  This section will provide insight into PCA 

as currently used in MSPC.   

We begin with a multivariate process having p process variables in which ix  

represents each [original] process observation vector with i = 1,…,n.  Let ii Axz = where 

A is an orthogonal matrix and IAA =′  then ( ) iiiiiiii xxAxAxAxAxzz ′=′′=′=′ .  

The ix ’s have been transformed to iz in which the axes are rotated, but with the same 

distance from the origin.  Each transformation iz is in fact a linear combination of the 

original variables.  The total number of principal components is the same as the original 

number of variables.  The new variables are the principal components Axz = and are not 

mutually correlated, therefore, the covariances are equal to 0.  The sample covariance 

matrix of z is 
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Given that Axz =  it follows that 
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AASS    with S being the 

sample covariance matrix of x.  S is diagonalized by the orthogonal matrix A that is the 

transpose of matrix C with columns representing the normalized eigenvectors of S.  Each 

ia  represents the ith normalized eigenvector of S. 
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Since Axz = , the principal components are: 

pp xaxaxa 1212111111 +++=′= Lxaz  

pp xaxaxa 2222121222 +++=′= Lxaz  
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SCCD  where D is the resulting diagonal matrix.  Thus, 

the eigenvalues zii s=λ  represent the variances of the principal components.  Since the 
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total number of principal components is the same as the original number of variables, the 

total variance of the principal components account for the total variance of the original 

variables.  Therefore, ∑
=

p

i
i

1
λ the total of the eigenvalues of all principal components 

equals the total variance.  From S which is the covariance matrix of x, we have the total 

sample variance is the trace ( ) ∑
=

=
p

i
iistr

1
S , the sum of the diagonal elements in the sample 

covariance matrix.  ( ) ∑∑
==

==∴
p

i
ii

p

i
i str

11
Sλ   The Proportion of Variance is the ratio of the 

sum of the eigenvalues with k principal components from a total of p principal 

components.  The analysis of eigenvalues, also known as the eigenanalysis, can be 

summarized by creating a table, such as Table 2.5a. 
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Table 2.5a Eigenvalues and Proportion of Variance 

Eigenvalue Proportion of Variance 
Cumulative Proportion of 

Variance 
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There are two approaches.  The first approach is to standardize the data by 

subtracting the mean and dividing by the standard deviation.  By standardizing the data, 

all variables have the same standard deviation, namely 1.  When using this approach the 

eigenvalue analysis is on the correlation, thus we analyze the R matrix.  Here we must 

specify the center and standardize the variables, which transforms the centroid of the 
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entire data set to 0.   If the variables are in different units then we must use the correlation 

matrix in order to standardize the variables.  The second approach is the eigenvalue 

analysis of the covariance matrix.  When using this approach without standardizing the 

data, we perform and analyze the S matrix. 

From the eigenanalysis, we move to retaining the principal components.   There 

are three methods for retaining principal components.  The first method is to retain those 

components accounting for a large cumulative proportion or percentage of variation.  

This approach can be used in either the eigenanalysis of the correlation matrix or the 

covariance matrix.   For our research, we will demonstrate what cumulative percentage of 

variation would be more robust for our unique distribution free MSPC approach utilizing 

PCA.  The second method for retaining principal components is applicable only to the 

eigenanalysis of the correlation matrix.  In this method, those components with 

eigenvalues below the average eigenvalue 
p

p

i
i∑

=1
λ

 will be excluded.  Since the total 

variance of the correlation matrix equals p and the determination in this method is based 

on the total variance equal to p components, eigenanalysis is conducted on the correlation 

matrix.  The third method is a graphical approach known as the scree graph analysis.  A 

scree graph is obtained by plotting each i against the eigenvalue iλ  in order to graphically 

compare large and small eigenvalues.  We retain the principal components with the 

eigenvalues that show a significant steep slope.  The cutoff will be the one with the last 

steepest slope. (see Figure 2.5a) 
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Figure 2.5a. A Sample Scree Graph of all 11 principal components when p =11. 

 

 

The purpose of the PCA approach is dimensionality reduction that will consider 

the contributions of all variables and by their principal components indicate which 

variables in fact represent the largest contribution.  The number of p principal 

components equals the total number of p variables.  However, the k principal components 

that are retained are those that account for the largest variability in the system.   One 

advantage of principal components is that they are mutually independent.  If the number 

of retained principal components equals the number of original process variables then 

dimensionality reduction is not possible.   But as the literature in quality suggests, 

These eigenvalues represent the principal 

components that will be retained. 



  

25 

 

 

although a process may be determined by a large number of variables, it is more likely 

that a subset of all variables will drive the process. (Zhang 2003) 

If two components account for the same variation then the data cloud is circular 

instead of elliptical.  If one accounts for higher variation then that elliptical cloud formed 

is parallel to the axis of the first component.  Since the first set of components account for 

a larger portion of the variability, the PCA axes are obtained from the first two or three 

components.  The method of constructing the first axis PCA1:  The line must go through 

the centroid with minimum squared distances from each point to the line.   The method of 

constructing the second axis PCA2:  The line also passes through the centroid, but must 

be orthogonal to PCA1 as such the components are uncorrelated.  In a three dimensional 

plot, PCA3 would also pass through the centroid and orthogonal to the first two 

components.  Figure 2.5b is a sample representing the elliptic region of a pair of 

transformed variables. 
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Figure 2.5b. The graph of the first two principal components. 

2.6 Construction of a Traditional Multivariate Control Chart  

 In this section we will discuss the control chart stopping rule in MSPC using the 

traditional 2T  approach.  Given that the focus of this research is in MSPC, we will limit 

our discussion in this section to the applications of the 2T  statistic in MSPC.  We begin 
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with the p process variables identified by the process owner along with the base data 

where the process was considered to be stable or in control.  The base data will be 

referred to as the historical data set (HDS) which will be used for monitoring new 

observations.  Next, one must determine the test statistic to be used.  Under the 

assumption that the process is multivariate normal, the Hotelling’s 2T statistic would be 

computed and plotted using the 2T  Control Chart.  This approach can be found in 

numerous publications by Mason and Young (2000, 2002, 2005) and Kourti and 

MacGregor (1995, 1996) in the multivariate quality literature.   2T  is a univariate 

measure representing the distances for multidimensional observation vectors.  Each   

observation vector 
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x  is the random vector of p variables with i = 1,…,n 

observations.  ( ) ( )xxSxx 1 −−= −2T  with Sx   and   representing the mean vector and 

covariance matrix estimators from a historical data set (HDS).  
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11UCL α   where ( )pnpF −,,α  represents 

the upper thα  quantile of ( )pnpF −, . (Chou, Mason and Young 2001)  Since 2T  is a square 

there are no negative values.  The minimum value is zero which is the ideal  2T  value.  

At zero, the observation vector ix is on target i.e. “located at the process center.” (Mason 
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and Young, 2000)  The following figures illustrate the 2T  Control Charts.  The first is a 

univariate control chart scheme for multivariate observations.  (see Figure 2.6a)   

 

 

Figure 2.6a  Univariate Control Chart scheme for Multivariate Observations 

 

Figures 2.6b and 2.6c are provided as a comparison of bivariate plots of two 

process variables and two principal components.  The elliptical control charts (Figures 

2.6b and 2.6c) illustrate the same elliptical UCL for bivariate data.  In both cases with p = 

2, we see that the UCL is the same for the two original process variables 1x  and 2x  as 

well the two principal components  1z  and 2z .  The same is true for multivariate cases 

beyond the bivariate when p > 2. 
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Figure 2.6b  Elliptical Control chart scheme for Multivariate Observations 

 

Figure 2.6c Elliptical Control Chart scheme of the first two principal components. 
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In trivariate cases, the graphs of the clouds would be represented using ellipsoid 

control limits.  However, in higher dimensionality such graphical schemes become very 

difficult to use and understand.  Multidimensional processes that can be monitored using 

univariate schemes are more desirable given the ease of use and interpretability.  Such is 

the case for the univariate scheme presented in the univariate 2T  control chart (Figure 

2.6a) as well as the univariate plots for multivariate observations proposed by Liu (1995).  

Details of the Liu control charts will be discussed in section 2.7. 

Kourti and MacGregor (1995, 1996) have illustrated how projection methods such 

as PCA can be used to improve signal detection in MSPC.  Their methodology is to 

perform PCA and then use a reduced 2T  scheme with k < p observation vectors.  The full 

p dimensional 2T  statistic can be described as follows with k < p principal components: 
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22  with 2

kT  denoting the reduced 2T  of k components 

 

Kourti and MacGregor (1996) compute the UCL based on 2
kT  with ( )kmk −,  

degrees of freedom.  The 2
kT  chart follows the same univariate scheme as the full p 

dimensional 2T  control chart with the focus on the k principal components that drive the 

process.  Additionally, Kourti and MacGregor (1996) suggest analyzing the remaining p 

– k discarded components with the use of the SPE (squared prediction error), based on the 

Q statistic by Jackson (1991), described as a “companion statistic” (Milectic, et.al., 2004) 
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to the 2
kT .  These variations of the full p dimensional 2T  statistic assume multivariate 

normality. 

The 2T  statistic is most beneficial in industry, given that this statistic is readily 

available in software packages and is well known.  Additionally, as we have illustrated, 

the 2T  statistic, in full as well as reduced form, can be plotted in a simple univariate 

chart as well as an elliptical chart (for two variables).  Unfortunately, in non-normal 

settings, the 2T  statistic suffers a loss of power.  Since the 2T  statistic requires the 

assumption that the distribution must be multivariate normal, Mason and Young (2002) 

suggest using the Kernel smoothing distribution function of 2T  for a multivariate non-

normal approximation of the 2T  distribution when the assumption of normality is 

rejected.   The kernel estimate or kernel distribution of 2T  is denoted by ( )tFK  where 

( ) ( )∑
− ⎭

⎬
⎫

⎩
⎨
⎧ −

=
1000

1

2

1000
1

j h
jTttFK ϕ ,  h is a two stage estimate of the bandwidth (Polansky, 

1997) and ϕ  represents the standard normal distribution function. 

The next step is the stopping rule or the signal.   Large values of 2T , those values 

beyond the Upper Control Limit, are signals indicating that the observation vector ix  is 

out-of-control.  If the observed UCL2 <T , the observation vector ix  is in control.  If the 

process is stopped then a diagnostic is needed to determine what process shift may have 

contributed most to the signal.   There are two ways of producing these signals: “moving 

a particular variable’s observed value beyond its operational range and/or contaminating 
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a linear relationship between two or more process variables.”  (Mason and Young, 2000)  

In order to determine the most likely cause(s) of this process degradation when the signal 

occurred, the process owner should be consulted at this stage in order to provide good 

insight into the process itself.  Now, we must take corrective measures to lower the 

variation and/or correlation effect that may have contributed to the signal and proceed to 

improve the process.  Using the Deming philosophy, the process resumes with new 

improvements and the continuous improvement cycle restarts.  

2.7 Nonparametric Multivariate Control Charts 

In the literature very little can be found with regards to nonparametric 

multivariate quality since the emphasis on such an approach is more recent.  Since the 

1950’s the developments in general nonparametric multivariate methods have been more 

prevalent. (See APPENDIX A)  Within the last decade nonparametric schemes have been 

proposed in MSPC by Hayter and Tsui (1994), Kapatou (1996), Liu (1995, 2003) and 

Zarate (2003).  Hayter and Tsui (1994) proposed the use of a location statistic called the 

M statistic to monitor process location, however this scheme fails to monitor correlations 

among multivariate components which is common in multivariate quality control.  

Kapatou (1996) on the other hand utilizes test statistics from theoretical multivariate 

analysis whereby vectors of multivariate locations are used to monitor shifts when small 
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samples are collected and normality cannot be satisfied.  Kapatou (1996) demonstrates 

how her method is more robust than Hotelling’s 2T  when non-normal multivariate 

samples are collected.  However, her calculations are quite difficult to compute and not 

readily available in statistical software packages. Additionally, Kapatou’s approach 

suffers from the lack of affine invariance, so rotatability, scaling and transformations 

using linear combinations could alter the results.  The aforementioned properties are 

affine invariant and essential for performing eigenvalue analysis and utilizing 

dimensionality reduction schemes such as Principal Component Analysis.  Given the lack 

of affine invariance in the Kapatou (1996) approach and the inability of the Hayter and 

Tsui (1994) approach to monitor correlations between the components, we will focus on 

the Liu (1995) approach based on data depth which displays the property of affine 

invariance.  We will now provide details of the Liu approach (1995) as well as an 

extension to the Liu developments proposed by Zarate (2003). 

The Liu (1995) nonparametric control charting scheme is based on ranking data 

depths of the multivariate observations of the p process variables and plotting these ranks 

using a univariate control chart scheme in order to easily detect multivariate process 

shifts visually.  Liu (1990) provides various definitions of data depths: Mahalanobis 

depth, Tukey’s depth, Majority (or Halfspace Depth) and Simplicial Depth.  Each data 

depth measure represents the geometrical notion of depth of a point within a data cloud.  

Liu (1995, 2003) states the Mahalanobis depth is the easiest to compute but is not robust 

given that this measure is computed using “nonrobust statistics: the sample mean and 
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sample dispersion.”  Liu (1995) uses simplicial depth which is a robust statistic for her 

proposed nonparametric data depth MSPC control charts. 

Liu (1990) defines simplicial depth relative to the probability that a point lies 

within a random simplex with vertices p + 1.  These p + 1 vertices are independent 

observations from the distribution F (not to be confused with the F-distribution).  Liu 

(1990) further indicates )(xDF  also denoted )(xD  represents the measure of depth of a 

point x with respect to the continuous distribution F.  For some given point x “in the p-

dimensional Euclidean space pR , simplicial depth is a measure of how central” x lies 

within a random sample { } p
nXX R⊂,,1 K .  (Stoumbos , et.al. 2001)  The empirical 

distribution of )(xDF  or )(xD  is denoted as )(xD
nF   or )(xDn .  The empirical 

distribution )(xDn   “gives rise to a natural ordering of the data points from the center 

outward.”  This ordering is an extension of the univariate sample median and L–statistics 

(linear combinations of order statistics) to the multivariate case, where both are affine 

invariant statistics.  The notion of simplicial data depth is a geometrically affine invariant 

measure whereby we use the concept of the depth of a point within a simplex.  (Liu, 

1990) 

Let { } p
nXX R⊂,,1 K  denote the set of n observations in p-dimensional space. 

 

For the univariate case where p = 1, the simplicial depth of a given point x represents 

the proportion of closed intervals that contain x, among all closed intervals formed by 
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pairs of points from { } 1
1 ,, R⊂nXX K .  Each closed interval represents the line segment 

ji XX  formed between each pair ji XX , . 

 

For the bivariate case where p = 2, the simplicial depth of a given point x represents the 

proportion of triangles that contain x, among all triangles formed by triple sets of points 

kji XXX ,,  from { } 2
1 ,, R⊂nXX K . 

 

For the trivariate case where p = 3, the simplicial depth of a given point x represents 

the proportion of tetrahedrons that contain x, among all tetrahedrons formed by quadruple 

sets of points { } 3
1 ,, R⊂nXX K . 

 

The following example for bivariate data is illustrated by Liu (1990) and is 

presented here in order to provide insight into simplicial data depth.  Let nXX ,,1 K  

represent a bivariate data with n observations.  Any three data points will form a closed 

triangle with vertices kji XXX ,,  denoted ( )kji XXX ,,Δ .  Then, there are  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
n

 number 

of triangles for n observations.  Define event A as the event where point x lies within a 

triangle ( )kji XXX ,,Δ  in other words A is defined as ( )kji XXXx ,,Δ∈ .  The indicator 

function indicates the probability that ( )kji XXXx ,,Δ∈  or the probability of event A 

denoted as )(AI .  The indicator function is represented as 
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( ) ( )( )
( )

⎪⎩

⎪
⎨
⎧ Δ∈

=Δ∈=
otherwise0

,, if1
,,

kji

kji

XXXx
XXXxIAI . 

The function ( )( )∑
≤<<≤

−

Δ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nkji
kjin XXXxI

n
xD

1

1

,,
3

)(  represents the proportion of 

triangles that contain point x.  Liu (1990) presents the following analogy, 

 “imagine placing a layer of clay with thickness 
1

3

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛n
 on the region 

corresponding to each triangle ( )kji XXX ,,Δ , one by one until all ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
n

 

triangles are exhausted.” 

 

The solid formed will represent the exact shape of )(xDn , therefore )(xDn  is the 

empirical distribution of )(xD  in which the iX ’s are i.i.d. (independently and identically 

distributed) with a common distribution F.   As x moves closer to the center of the 

distribution the value of )(xD  increases, while the value of )(xD  decreases as x moves 

away from the center. 

We define )(xD  where ( ) ( )( )321 ,, XXXxPxD F Δ∈=  as the simplicial depth of x 

with respect to F in 2R .  

 We define )(xDn  where ( )( )∑
≤<<≤

−

Δ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nkji
kjin XXXxI

n
xD

1

1

,,
3

)(  as the sample 

simplicial depth of x with respect to the data cloud nXX ,,1 K  in 2R .  
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In contrast, the simplicial depth for the univariate case 1R  from 2 observations is 

( ) ( )21 XXxPxD ∈=  with a cumulative density function F.  We have 

( ) ( ) ( )[ ]xFxFxD −= 12  when F is continuous.  The population median is defined as any 

point x which maximizes )(xD .  In the univariate case the maximum value of )(⋅D  is 0.5 

and decreases monotonically to 0 as x moves away from the center (median).  For the 

bivariate case )(⋅D  represents the bivariate simplicial median.  Liu (1990) uses population 

median notation μ  (not to be confused with the mean), and nμ̂  for sample bivariate 

median which represents the point that has the highest SD (simplicial depth).  If a 

maximum occurs at more than one point then nμ̂  would be obtained by calculating the 

average of those X’s.  The following is a heuristic for nμ̂  as sample median:  If )(⋅D  is 

continuous andμ maximizes it in 2R , then the point estimate forμ would be a point 0x  in 

the plane which maximizes )(⋅nD   Liu (1990) stipulates that if the F distribution “has a 

nonzero density in the neighborhood of μ , we would expect the data point 
0i

X  which 

maximizes )(⋅nD  among all the data points to be close to 0x  and, hence, toμ .” 

 

 

For the general multivariate case for all p > 1 

We define the simplicial depth of x with respect to a continuous distribution F 

(not the F-distribution) as ( ) ( ) [ ]( )11 ,, +∈== pFF XXsxPxDxD K  where [ ]11 ,, +pXXs K  

represents a p dimensional simplex with vertices 11 ,, +pXX K  which are random 
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observations from F.  The s for the univariate, bivariate and trivariate cases represents the 

line segment, triangle and tetrahedron, respectively.  This measure )(xDF  describes 

“how central the point x is within the distribution.”  (Liu, 1990) 

When the distribution is unknown, we use a reference sample nXX ,,1 K  to 

compute the sample simplicial depth.  The sample simplicial depth is 

[ ]( )∑
≤+<<≤

+

−

∈⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

npi
pn XXsxI

p

n
xD

11
11

1

,,
1

)(
K

K   in which mF  represents the empirical 

distribution of nXX ,,1 K  with ( )1+≥ pn  and ( )⋅I  is the indicator function 

[ ]( )
[ ]

⎪⎩

⎪
⎨
⎧ ∈

=∈
+

+
otherwise0

,, if1
,,

11

11

p

p

XXsx
XXsxI

K
K .  This measure )(xDn  determines 

“how central (or outward) the point x is within the data cloud” of nXX ,,1 K .  (Liu, 1990) 

In lower dimensionality where p = 1, 2 or 3 it is easy to verify graphically if point 

x lies inside the simplex which is a segment, a triangle or a tetrahedron, respectively.  

The space pR  has p-dimension denoted ( ) pp =Rdim  which means that there exist p 

linearly independent vectors. (Magaril–Il’yaev and Tikhomirov, 2003)  According to Liu 

(1990), in higher dimensionality, it is a straightforward verification that x lies inside the 

simplex [ ]11 ,, +pXXs K   which is accomplished by solving this system of linear 

equations consisting of p + 1 unknowns which are scalars: 
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112211 +++++= pp XXXx ααα L   (or expressed as ∑
+

=

=
1

1

p

i
ii Xx α ) 

1121 =+++ +pααα L   (or expressed as 1
1

1
=∑

+

=

p

i
iα ) 

 

Geometrically, the point x of the simplex is uniquely defined as the sum of the vertices 

for that simplex multiplied by a factor of iα , in other words as a linear combination of its 

vertices of that simplex.  These vertices 11 ,, +pXX K  define coordinates 11 ,, +pαα K  

which are called the barycentric coordinates of point x in the vector space.  We can define 

point x in the vector space: 

 

( ) 11221111 +++ +++=++ ppp XXXx ααααα LL  

 

 such that  1,,1     wheres' += pii Kα  are the barycentric coordinates of point x in the 

vector space with respect to these vertices 11 ,, +pXX K .  The coordinates of the vertices 

of a standard simplex with unit distance are ( )0,...,0,1 , ( )0,...,1,0 , ( )0,...,1,0,0 , . . . , 

( )1,...,0,0 .   In convex geometrical analysis it is illustrated that these barycentric 

coordinates are not unique such that for any nonzero constant c, the following points 

( )1121 ,,, ++ ppccc ααα K  are also coordinates of x.  This linear system of equations has a 

unique solution for a “nondegenerate” simplex and x lies within the simplex 
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[ ]11 ,, +pXXs K  if and only if all 1,,1     wheres' += pii Kα  are positive.  (Magaril–

Il’yaev and Tikhomirov, 2003) 

The following demonstrates the affine invariance of )(xDF .  If we let A represent 

a pp×  matrix and b a point in pR , from the linear system of equations above, we 

obtain ( )xDbAxD bA =+ )(, .  Let )(, yD bA  represent the probability that a point y in pR  

lies within the simplex with vertices 1,,1    where +=+ pibAX i K . Thus after the 

transformations the simplicial depth )(xDF  is affine invariant. (Liu, 1990) 

Liu (1990) demonstrates that if F is absolutely continuous when ∞→n , )(xDn  

“converges uniformly and strongly to ( ) )(xDxD F= .” Additionally, )(xDn  is affine 

invariant.  The affine invariance property ensures that Liu’s “control charts are coordinate 

free.” (Liu, 1995)  From an in-control reference sample or historical data set (HDS), 

simplicial depth from the data is utilized as a measure to monitor if that process data is in 

control. 

Liu (1995) also defines data depth for point x in the distribution F from the mean 

using Mahalanobis distance.  Liu indicates that aside from the simplicial depth, which 

defines depth using medians, data depth can also be defined as: 

 

( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ −′−+

=
−

FFF

F
xx

xMD
μΣμ 11

1  where FF Σμ    and   represent the mean 

and covariance matrix of the distribution.  
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( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ −′−+

=
− xSx xx

xMDn
11

1  where FF Sx    and   represent the sample mean 

and sample covariance matrix for the empirical distribution.   When the data depth is 

defined by the Mahalanobis distance, the depth of point x within the distribution is 

measured as the reciprocal of the quadratic distance to the mean.   

Three charts have been proposed by Liu (1995): the r chart, Q chart [not to be 

confused with Quesenberry’s (1991, 1993) developments nor with the Q statistic from 

Jackson (1991)] and the s chart. These distribution free control charts are multivariate 

analogues to the X chart, X chart and CUSUM chart.  Liu (1995) describes her control 

chart scheme as follows, 

 “The main idea behind our control charts is to reduce each multivariate 

measurement to a univariate index – namely, its relative center-outward 

ranking by data depth.” 

 

In multivariate data analysis, elliptical and ellipsoid contours may be used to 

represent visually bivariate and trivariate data, respectively. However, in higher 

dimensionality, graphical analyses are not feasible, thus a graphical scheme to represent 

higher dimensionality is desirable, specifically in industrial applications.  Data depth is 

advantageous, since it visually represents depth when p is greater than or equal 2 while it 

can still be plotted as a univariate index.  Liu’s approach is to convert multivariate data to 
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univariate indices using the ranks of the simplicial data depths.  Since the control charts 

are based on ranking these depths with no distributional assumptions, this approach is 

nonparametric.  Liu’s approach is affine invariant which is critical for our proposed 

distribution free approach given that PCA will be a significant focus, whereby affine 

invariance will be needed for the transformations.  Given the ease of computation, Liu 

(2003) indicates that for near elliptical distributions, the Mahalanobis data depth measure 

may be used in her control chart scheme as did Zarate (2003), otherwise simplicial depth 

will “reflect more accurately the underlying probabilistic geometry” and no moment 

conditions are required. 

Liu’s (1995) description of the r-chart scheme begins with letting G denote the 

prescribed quality distribution with p process variables with nYY ,,1 K  random 

observations.  In other words for MSPC, nYY ,,1 K  will represent the reference in-control 

data set or HDS.  Collect a sample of new observations tXX ,,1 K , and assume that its 

distribution is called F (note: not the F-distribution).  To determine if the process has 

gone out of control, compare the sample of new observations tXX ,,1 K  ~ F against the 

reference sample nYY ,,1 K  ~ G. 

 

FGH =:0   with a false alarm rate of α  

:1H   There is a shift in location and/or scale increase from G to F. 
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Compute the ranks of the depths Y ~ G.  As the rank decreases, the more outlying 

is the point within that distribution. 

 

( ) ( ) ( ){ }GYyDYDPyr GGG ~≤=  

( )
( ) ( ){ }

n

njyDYDY
yr nn

n

GjGj
G

,...,1  ,# =≤
=  

 

The assumption is that distribution ( )XDG  is continuous and that ( )XrG  

converges to a uniform distribution ~U[0,1], as such the expected value is 0.5 which will 

serve as the CL (center line).  The uniform convergence is illustrated by Liu and Singh 

(1993). (See APPENDIX B)  A trend towards degradation occurs when the quality 

characteristics are not converging to the distribution, in other words when the value starts 

falling below the expected value of 0.5.  As such there is no UCL (Upper Control Limit) 

but only a LCL (Lower Control Limit).  Based on the uniform convergence that Liu 

stipulates for the ranks of the simplicial depths, the center line of the r-chart is 0.5.  The r 

chart values are obtained by plotting each rank ( )iG Xr  against time i and can be used to 

monitor both “location shifts and scale increases.”  The smaller the r value, the more 

outlying is the point from the data cloud which may signal a shift from the reference 

sample (HDS) distribution.  As a result of the uniform convergence of ( )XrG , Liu (1995) 

points out that α , which represents the false alarm rate, is the lower control limit (LCL) 

for this chart.  The process will be declared out-of-control when ( ) α<iG Xr , in other 
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words when the ranks are below the LCL which is α . Given this plotting scheme the 

chart is a univariate chart which is easy to read and interpret. 

Liu (1995) also proposes the nonparametric multivariate analogue to the 

univariate X  chart, which she calls the Q-chart.  This chart is also referenced in the 

literature as the SD or Simplicial Depth Chart.  (Stoumbos, et. al. 2001)   For consistency, 

throughout the rest of this paper we will identify this chart as the Q-chart so as to avoid 

any confusion with Liu’s r chart which is also based on simplicial depth.  Liu’s Q-chart 

represents the average relative ranks as:  

 

( ) ( ) ( ){ }FXGYXDYDPFGQ GG ~,~, ≤=  

  ( )[ ]XrE GF=  which is the expected (or average) value of the rank. 

 

( )
( )

c

Xr

FGQ

c

i
iG

c

∑
== 1,   or the empirical case ( )

( )

c

Xr

FGQ

c

i
iG

cn

n∑
== 1,  where c 

represents the number of c samples collected. 

 

The averages ( )i
cFGQ ,  or ( )i

cn FGQ ,  are plotted against c.  As with the r chart, 

the center line of 0.5 is used as a reference line to detect any trends towards quality 

degradation.  The lower control limit is 
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LCL = 
c

z
12
15.0 α−  for ( )i

cFGQ ,  or 

LCL = ⎟
⎠
⎞

⎜
⎝
⎛ +−

cn
z 11

12
15.0 α  for ( )i

cn FGQ ,  

 

Unfortunately, the issue of a reference sample size is unresolved.  (Stoumbos, et. 

al. 2001)  Liu (1990) claims that this control limit (either case) holds true if 5≥c , if not 

for c < 5, she recommends LCL is ( )
c

c c
1

!α .  Liu’s Control charts are beneficial in quality 

control given that the multivariate structure is reduced to univariate index, which is an 

easy to plot univariate control chart scheme.  Since they are based on the ranks of the data 

depth, there are no distributional assumptions or requirements of independence. 

Numerous recent MSPC developments by Dai, Zhou and Wang (2004), Zarate 

(2003) and Messaoud, Weihs and Hering (2004) utilize data depth to construct 

nonparametric multivariate control charts.  The control charts proposed by Dai, Zhou and 

Wang (2004) and Messaoud, Weihs and Hering (2004) are multivariate CUSUM and 

multivariate EWMA respectively, in which the observations are based on data depth 

measures of all the process variables as is the case with the Liu (1995) control charts.  

Zarate (2003) extended Liu’s work by utilizing PCA first to reduce the dimensionality 

and focus on the principal components that drove the process.  After reducing the 

dimensionality, Zarate proposed to compute the data depth ranks of the PCs and plot 

those ranks on the nonparametric r-chart which was presented by Liu (1995).  Zarate 
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computed the data depth ranks using the Mahalanobis data depth measure which is easier 

to compute.  Thus, the construction of Zarate’s control chart is based on the measure of 

depth by the mean versus Liu’s measure of depth by location or the median using 

simplices.  The Mahalanobis data depth is affine invariant which is necessary for PCA, 

but as Liu (2003) has indicated is a less robust measure of data depth.  Additionally, 

Rousseeuw and Leroy (1987, 1990) demonstrated that in the presence of more than one 

outlier, the Mahalanobis distances suffer from the “masking” effect. 

2.8 Summary 

Hotelling’s test statistic is the statistic referenced extensively in the multivariate 

quality literature.  The 2T  statistic is used in multivariate quality to establish the Upper 

Control Limit for the MSPC control chart.  Unfortunately, Hotelling’s approach has a 

significant limitation, in that the underlying assumption is that the distribution of the 

multivariate process must be normal.  Thus, if the distribution is multivariate non-normal, 

a multivariate control chart based on Hotelling’s 2T  would be less powerful and generate 

higher false alarms.  The following flowcharts are provided to illustrate the current 

normal MSPC approach using 2T .  The first, Figure 2.8a, is high level and illustrates 

how a practitioner would traditionally start approaching a multivariate SPC problem (by 

determining whether the data are normal or not).  Once the decision about normality is 
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made, a distinct path is chosen as demonstrated in Figure 2.8b.  Additionally Table 2.8a 

lists the advantages and disadvantages of the traditional 2T  approach in MSPC. 

 

  

 

Figure 2.8a Flowchart with the normality path versus the non-normality path. 

 

 

 

Current Parametric 2T  

Approach 

Alternate Nonparametric 

Approach 

Test for Multivariate Normality 

Normality Non-Normality 

Collect Data and Identify p Process Variables 
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Figure 2.8b Flowchart with the Traditional PCA MSPC Parametric Scheme based on 2T  

 

Current parametric 2T  Approach 

PCA used for Dimensionality Reduction 

• Eigenanalysis/Scree Graph 

• First k PCs retained 

Control Chart  

PCA is combined with reduced 2T of 

k components 

Identify Historical Data Set (HDS) 

and New Observations to test 

Stopping Rule defined from 2T  

Control Chart 

Process resumes 

MSPC Normality 

p process variables 

Correction: Parametric Approach 

• Identify the out of control 2T  

observation 

• Signal Decomposition may be 

applied 

• Variation and assignable causes 

are identified and corrected 
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Traditional 2T  Approach in Multivariate Quality Control 

 

Table 2.8a.  Traditional approach in MSPC 

Advantages Disadvantages 

• Well-known in the theoretical 
multivariate analysis area 

 
• Well-known in the multivariate 

quality area; used in industry 
 

• Affine-invariant statistic 
 

• Can be plotted in univariate style 
which is easy to visualize and 
understand 

 
• PCA is used to reduce 

dimensionality and control charts of 
the components based on the 2T  
can be constructed 

 
• Signals are detected from the 

control charts.  Assignable causes 
are identified via a decomposition 
of 2T  

 
• Stepwise decomposition to detect 

and “correct” the signal 
 

• Readily available in most statistical 
software packages 

• Limited to Multivariate Normal 
distribution 

 
• Assumes independence 

 
• Autocorrelation not allowed 

 
• Loss of power in the presence of 

multivariate non-normality 
 

• Higher incidence of false alarms in 
non-normal MSPC 

 
• False alarms are costly in industry 

 
• Distribution-free property of PCA 

is not utilized 
 

• When PCA is based on  Traditional 
2T  the approach will be dependent 

on multivariate normality 
 

• Adaptations of 2T  to detect 
assignable causes depend on 
normality 
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In recent publications, it has been the position of various authors such as Coleman 

(1997), Nester (1996) and Box and Luceño (1997) that normality cannot exist in practice.  

These authors stress that recent developments on multivariate control charts still have a 

“potential drawback” due to the fact “that they are based on the assumption of 

multivariate normal process data.”  Coleman (1997) strongly believes that in industry the 

normality assumption is unbelievable, therefore as he has stated “distribution free 

multivariate SPC is what we need” to remove the normality assumption required in 

current methods.  Given the successful applications throughout the years of control charts 

assuming normality, we cannot dismiss normality altogether.  We do need to recognize 

how infeasible it is in certain industries with multivariate processes, in which correlations 

between variables and/or autocorrelations exist as indicated by these authors.   Also, in 

the past there was not such an abundance of available data as there is today with the 

advent of on-line data which generate more process variables yet with small samples, and 

as indicated by Kapatou (1996), in quality control it is realistic to deal with small 

samples.  The significance of these authors’ contention with normality is the unrealistic 

assumption that these industrial processes with multiple variables can be classified as 

normal.  As indicated by various researchers, the old fashioned approach served its 

purpose well and will continue to do so in certain industrial situations, however limiting 

ourselves to just these methods would allow high levels of false or missed alarms to 

occur in those industrial settings that are determined by non-normal multivariate data. 

As Elsayed (2000) suggested, there is a tremendous need for improvement in the 

area of SPC in industries such as the food, chemical, automotive and manufacturing 



  

51 

 

 

industries, given that these industries inherently deal with numerous variables which are 

highly correlated.   An industrial process could easily consist of a substantial number of 

variables where inter-correlations and autocorrelations are quite common, compounded 

with possible non-normality.  Therefore, current parametric techniques in MSPC would 

be inappropriate and ineffective in such non-normal, correlated processes.   Utilizing 

MSPC techniques that assume multivariate normality on a non-normal multivariate 

process would generate false alarms, yielding unnecessary corrections of a process which 

are costly, or missed alarms which in some of the aforementioned processes could be 

hazardous.  (Mason and Young, 2002) 

Stoumbos, et.al. (2001) also stress that there is a strong need to find simple and 

efficient schemes in quality control that will detect shifts without producing high levels 

of false alarm rates.  Stoumbos, et.al.’s  paper(2001), along with Elsayed (2000), have 

also stressed that the abundance of available data no longer support these assumptions of 

normality and independence.  Multivariate data that is non-normal and highly correlated 

requires a distribution free approach that will dismiss the normality requirement as well 

as promote a stronger detection of a correlation shift that might lead to the overall quality 

loss in the system.  The need to research new and efficient processes has generated some 

development in nonparametric SPC but with limitations.  According to Stoumbos, et.al. 

(2001), there are many “unresolved issues” with some current approaches to 

nonparametric control charting. 

One of these recent developments has been the Hayter and Tsui (1994) proposal 

called the M procedure, which is a nonparametric scheme.  The limitation to this M 
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procedure is that it ignores correlation among multivariate components.  The literature in 

multivariate quality control emphasizes that all, if not most, of the p process variables in 

industrial settings are correlated.  As such this procedure will not monitor effectively the 

intercorrelation of multivariate factors in the food and chemical industries among others. 

Kapatou (1996) has developed nonparametric multivariate charts that are quite 

robust, but as Stoumbos, et. al. (2001) indicated Kapatou’s multivariate charts require 

estimation of nuisance parameters related to process covariance structure.  Additionally, 

Kapatou’s nonparametric control charts are based on multivariate test statistics which are 

not affine invariant.  The lack of rotatability implies that charts based on non-affine 

invariant statistics are powerful at detecting shifts in some directions while not in others, 

which is further compounded in situations with higher dimensionality.  Additionally, with 

the lack of affine invariance, dimensionality reduction is more challenging.  As such the 

PCA technique which uses scaling and rotatability to reduce dimensionality in 

multivariate data could not be applied.  The Liu approach is significant given its robust 

distribution free approach in MSPC along with its ease of use.  Given the univariate 

scheme that is used for plotting them, Liu’s charts are easy to plot and implement in an 

industrial setting.  Liu’s nonparametric approach (1995) of using simplicial depth based 

on multivariate generalizations of univariate Shewhart control charts still has unresolved 

the issue of reference sample size requirement.  (Stoumbos, et. al., 2001)  Additionally, 

Liu’s control charts, along with the nonparametric multivariate CUSUM and multivariate 

EWMA control charts proposed by Dai, Zhou and Wang (2004) and Messaoud, Weihs 

and Hering (2004), respectively, are based on full dimensionality, and in the multivariate 



  

53 

 

 

quality control literature, Zhang (2003) and Zarate (2003) pointed out that typically a 

process is driven mostly by a subset of all process variables.  Also, since Liu’s charts are 

based on the p dimensionality, as p and/or n, the reference sample size, increase, the 

computation of the simplicial depth is more challenging and time consuming.  

Given the simplicity of the univariate scheme used for plotting the Liu charts and 

the well established dimensionality reduction scheme of PCA, Zarate (2003) extended 

Liu’s work by performing PCA prior to computing the ranks for the r chart.  As such the 

ranks that were plotted by Zarate were the data depth ranks of the principal components 

that drive the process versus the ranks of all process variables.  The limitation to Zarate’s 

approach is that her data depth ranks were computed using the Mahalanobis data depth 

which is known to be non-robust as indicated by Liu (2003) and Rousseeuw (1990).  

Given the non-robustness of this approach, the incidence of false alarms may be higher.  

Overcorrection is a serious problem since it leads to waste which is costly, and lost 

signals are also extremely costly in terms of hazardous risks.  In areas such as the 

automotive industry and manufacturing among others, a robust approach can 

tremendously impact and reduce the current waste and inefficiencies caused by false 

alarms that currently plague these industries.  Additionally, higher incidence of missed 

alarms can prove to be even more costly and dangerous.  The aforementioned 

nonparametric developments as well as their advantages and limitations are listed in 

Table 2.8b. 
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Nonparametric Developments in Multivariate Quality Control 

Table 2.8b  Developments in Nonparametric MSPC 

Control Chart Advantages Disadvantages 
M nonparametric 

control scheme 
Hayter and Tsui 

 

 
Monitors process-
location parameter 

 
Ignores correlation among 
multivariate components 

Vector of 
Winsorized Ranks 

control chart 
Kapatou 

 

 
Utilizes developments 
from the theoretical 
multivariate analysis area 
 
Robust process in the 
non-normal multivariate 
quality area 

 
Multivariate Winsorized 
Rank Statistics used are not 
affine-invariant statistics 
 
PCA cannot be applied to 
non-affine invariant 
statistics 
 
Correlation shifts are not 
detected 
 
Not readily available in 
software packages 

Simplicial Data 
Depth control 

charts 
 

r, Q and s-charts 
 Liu 

 
  
Nonparametric MCUSUM 

Dai, Zhou and Wang 
 
 
Nonparametric MEWMA 

Messaoud, Weihs and 
Hering 

 
Reduces each 
multivariate 
measurement to a 
univariate ranking index 
 
Easy to visualize 
 
Simplicial depth is robust 
and affine invariant 
 
Simultaneously detects 
changes in process 
location and/or scale. 

 
Reference sample size 
requirement is unresolved 
 
Full dimensionality 
 
Correlation shifts are not 
detected 
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PCA Mahalanobis 
Data Depth r-charts  

Zarate 
 
 
 

 
Reduces each 
multivariate 
measurement to a 
univariate ranking index 
 
Focuses on principal 
components that drive 
the process 
 
Easy to visualize 
 
Simultaneously detects 
changes in process 
location and/or scale. 

 
Reference sample size 
requirement is unresolved 
 
Mahalanobis data depth is 
non-robust 
 
Correlation shifts are not 
detected 
 
 

 
 

 

In the quality literature numerous advances in nonparametric univariate SPC have 

been cited by Chakrati, et.al. (2001). However, limited research has been conducted on 

developing multivariate nonparametric control chart as indicated by experts such as 

Elsayed, Woodall, Stoumbos, Liu, Jones, Reynolds, Kapatou and more recently Zarate in 

the MSPC literature.  Given the increasing demand to develop distribution free 

techniques for MSPC and the limitations of previous attempts, multivariate 

nonparametric approaches need to be further researched. 
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CHAPTER THREE: METHODOLOGY 

3.1 Overall Proposed Plan in MSPC 

The goal will be to create a systematic distribution-free approach by extending 

current developments and focusing on dimensionality reduction using PCA.  In 

multivariate quality control PCA has gained much attention and acceptance in industrial 

applications within the last decade as suggested by numerous researchers in MSPC such 

as Kourti and MacGregor (1995, 1996, 2005), Kourti (2003), Zarate (2003) and Milectic 

(2004).  We propose to use PCA which is distribution free in nature to reduce 

dimensionality by using those principal components that drive the process.  The proposed 

technique is different from current approaches in that it creates a robust affine invariant 

distribution free approach to improve signal detection for both outliers and shifts in 

correlation in multivariate quality control.  The notion of simplicial data depth will be 

applied to the principal components and the ranks of these depths will be plotted in a 

univariate graphing scheme as proposed by Liu (1995). 

For our control chart, simplicial depth is more logical approach given its 
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robustness versus the mean which is more sensitive to outliers.  The proposed technique 

is easy to use and robust to outliers.  Additionally, our scheme is different given that our 

approach will focus specifically on the set of components that drive the process and 

define the correlation structure versus current data depth control charts developed by Liu 

(1995) Dai, Zhou and Wang (2004) and Messaoud, Weihs and Hering (2004) which are 

based on all of the multivariate process variables.  Our control charts for both the first 

and last PCs will monitor signals that may be attributed to shifts in the variability and 

correlation structure, respectively.  Our proposed PCA Simplicial Depth r chart is 

significantly different from the reduced dimensionality data depth scheme developed by 

Zarate (2003).  Our simplicial depth approach is robust, while the Mahalanobis depth 

approach used by Zarate is non-robust.  Also, we propose a correlation monitoring 

scheme whereas Zarate did not monitor correlation shifts.  Table 3.1a illustrates the 

significant differences between our PCA Simplicial Depth r chart versus current data 

depth control charts. 
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Table 3.1a  Competing Nonparametric MSPC Data Depth r charts 

Liu 
Simplicial Depth 
r Control Chart 

Zarate 
PCA-Mahalanobis Depth 

r Control Chart 

Proposed 
PCA-Simplicial Depth r 

Control Chart 
Full Dimensionality  Reduced Dimensionality 

 
Apply PCA 

Determine the k principal 
components that account for 
variability (at most 85%) 

Reduced Dimensionality 
 

Apply PCA 
Determine the k principal 
components that account for 
variability (at most 60%) 

AND 
 last PC(s) which may 
account for correlation 
structure (at most 0.009) 

Computes the simplicial 
data depths of each 
multivariate observation 
using full dimensionality 

Computes the Mahalanobis 
data depths of each 
multivariate observation 
from the first set of  PCs 
that contribute to the 
variability 

Computes the simplicial 
data depths of each 
multivariate observation 
from the first set of  PCs 
that contribute to the 
variability 

AND 
the last PC(s) to account 
for correlation 

Computes the ranks of the 
simplicial data depths of 
the observations 

Computes the ranks of the 
Mahalanobis data depths 
from the first PC(s) 
 

Computes the ranks of the 
simplicial data depths from 

the first PC(s) 
AND 

the last PC(s) 
 

Plots the ranks of each 
observation in a univariate 
scheme 

Plots the ranks of each PC 
in a univariate scheme 

Plots the ranks of each PC 
in a univariate scheme 

LCL is α  
No UCL 
CL is 0.5 (reference line) 

LCL is α  
No UCL 
CL is 0. 5 (reference line) 

LCL is α  
No UCL 
CL is 0. 5 (reference line) 

 



  

59 

 

 

Our goal is that our proposed nonparametric scheme is robust, and consequently 

there is a single path for all MSPC applications as demonstrated in Figure 3.1a.  Another 

goal is adaptability of future nonparametric developments from the multivariate 

theoretical statistical area. 

 

 

 

Figure 3.1a Flowchart with the single path implies no distribution is assumed. 

 

PCA and Simplicial Data Depth Ranks 

Nonparametric Approach 

Collect Data and Identify p Process Variables 

r charts 
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3.2 Distribution Free Techniques for Problem Correction 

Although there are statistically sound nonparametric techniques that have been 

developed, there is no multivariate nonparametric integrated approach from start to 

finish.  We apply or adapt proven theoretical multivariate statistical techniques along 

with established quality techniques to improve the signal identification in multivariate 

quality control in non-normal processes.  A different adaptation of PCA, which is a 

distribution free dimensionality reduction scheme for multivariate data, along with the 

robust and geometrically affine invariant simplicial data depth measure will be a major 

component of our research.  We need no distributional or independence assumption as 

illustrated in Figure 3.1a in the previous section. 

PCA has been well received in multivariate industrial applications such as the 

manufacturing, automotive, chemical and food industries.  (Kourti and MacGregor, 

2005).  PCA is referenced in the multivariate quality literature in conjunction with the 2T  

test statistic which assumes multivariate normality.  Kourti and MacGregor (1995, 2005) 

have indicated that along with dimensionality reduction, PCA can in fact be used to 

provide diagnostics on how to remedy the process.  Unfortunately, their projection 

methods which include PCA are based on adaptations of the 2T  test statistic.  We utilize 

these two distribution free techniques together in a univariate r chart scheme, which is 

different from the full p dimensional r chart proposed by Liu (1995) and the PCA-

Mahalanobis r chart proposed by Zarate (2003).  The ease of use and graphical 
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interpretation as well as the availability of PCA transformations in statistical software 

make this adaptation readily available to any industrial setting.   

Simplicial depth, which is a theoretically sound distribution free measure from 

topology (Munkres, 1975) and convex geometry (Magaril–Il’yaev and Tikhomirov, 

2003) (Andersson, et.al., 2004) has been utilized by Liu (1995) in MSPC.  In Chapter 2, 

we described Liu’s (1990) definition of data depth.  The application of data depth in 

multivariate data is to measure the depth of a point within a data cloud.  The measure 

represents the number of simplices that contain that specific observation.  As we 

illustrated in Chapter 2, simplicial depth is easy to understand and in low dimensionality 

is easy to visualize.  In Chapter 2, we provided the mathematical definition and formulas 

for simplicial depth.  In this section, we provide a graphical representation of the 

univariate (p = 1) and bivariate (p = 2) cases as an illustration of the computations that 

are used in Chapter 4.  The n observations must be at least p + 1 with each simplex 

defined by p + 1 endpoints.  

For p = 1, the simplex p + 1 = 2 would be a line segment with 2≥n .  The 

simplicial depth of a point x would be the proportion of segments that contain x. 
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)(  where I represents the indicator function which is the 

number of segments that contain x. 
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For our illustration, we will let n = 4, and the points will be A, B, C and X.   The 

number of the possible segments formed would be 6
2

4

2
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛n
, and the segments 

would be formed by AX, BX, CX, AB, BC and AC.   

 

A                 B  X    C  

 

Figure 3.2a Simplicies for p = 1 

 

 

We see that point X is contained within 2 segments, AC and BC.  Therefore, the 

simplicial depth of X is 333.0
6
2
≈ .  Point B is also contained within 2 segments, AX and 

AC.  Therefore, the simplicial depth of B is also 333.0
6
2
≈ .   Points A and C are not 

within any of the segments, therefore the simplicial depths for those two observations are 

0
6
0
= . 

For p = 2, the simplex p + 1 = 2 would be a triangle with 3≥n .  The simplicial 

depth of a point x would be the proportion of triangles that contain x.  The number of the 

possible triangles formed if n = 4 would be 4
3

4

3
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
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⎟
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⎞

⎜
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⎝

⎛n
, and the triangles would be 



  

63 

 

 

formed by AXB, ABX, ABC and ACX. 

 

 

     A 

    

   X       

 

          B           C 

Figure 3.2b Simplicies for p = 2 

 

 

In this case the three outer points, A, B and C, are not contained within any triangle, 

therefore those 3 simplicial depths are zero.  Point X lies within 1 triangle ABC.  

Therefore the simplicial depth of X is 25.0
4
1
= . 

From the three dimensional case when p = 3, each simplex would be a 

tetrahedron.  Beyond p = 3, it is difficult to visualize the simplicial depth, however, since 

the depth measure is univariate, it is easy to plot.  In MSPC, Liu’s control charts plot the 

ranks of the simplicial depths which are univariate and easy to visualize. From the two 

previous examples, we see that when a point is located within the center of the simplices 

of the data cloud, its depth will be higher.  We see that location is a distribution free 

measure.  When applying this concept to MSPC, Liu (1995) identified a “deep point” as 
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more in control.  This implies that a higher value is better so there is no upper control 

limit when using a data depth control chart scheme.  The out of control observation will 

have a small or zero simplicial depth. 

We use simplicial data depth and PCA, which are both distribution free and affine 

invariant, to detect the out of control signal(s).  Additionally, we investigate if the first 

few principal components and the last component(s) along with eigenvalue analysis can 

be used for signal detection and provide insight into both the variability and correlation 

structure.  Since, the first few components account for the majority of the variability, 

additional analysis of the last few principal components is conducted to gain insight into 

the correlation structure.  (Dunteman, 1989)  We provide the cumulative percentages of 

variation from the eigenanalysis and determine which initial set of PCs will provide the 

best insight into the variability shift.  These comparisons illustrate which set of PCs may 

be desirable based on the sample sizes of the HDS and the corresponding alpha values.  

The proposed technique is better based on its ease of use and its robustness to outliers in 

MSPC.   
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3.3 Proposed PCA-Simplical Data Depth r-chart 

We propose computing the ranks of the data depths of the PCs using the robust 

simplicial data depth measures described in Section 3.2.  As such, our proposed control 

chart is a PCA-Simplicial Depth r chart which will focus on the principal components 

that drive the process, and compute robust ranks of those components.  These ranks will 

be plotted using the Liu (1995) and Zarate (2003) univariate style plot for ease of use, but 

we believe that our approach is better given that the focus will be on the principal 

components of the process, and the ranks used will be computed from robust measures.  

As previously stated, a significant difference between our approach and the Zarate (2003) 

control chart scheme will be in our use of the last PC(s) to identify any process 

degradation that may have been caused by a shift in the correlation of the process 

variables. (See Table 3.1a) 

In the literature, we also illustrated that current developments in MSPC utilize 

PCA to reduce dimensionality and proceed to construct a control chart with a parametric 

approach, namely the 2T  or adaptations of the 2T .  The nonparametric approach that is 

proposed will focus more heavily on PCA and on the robust simplicial data depth 

measure in a completely different manner than the current literature suggests.  One of the 

challenges of multivariate SPC is that there are two ways of producing signals: “moving a 

particular variable’s observed value beyond its operational range and/or contaminating a 

linear relationship between two or more process variables.”  (Mason and Young, 2000)  
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This statement in the literature has motivated us to develop a monitoring scheme that may 

be used to identify both variability and correlation shifts in multivariate processes.  Our 

robust nonparametric scheme will improve signal detection when there has been process 

degradation due to a variability and/or correlation shift in MSPC.  Once the process has 

been stopped and the signal has been identified, our distribution free control charts will 

provide the user a diagnosis of the problem along with corrective measures in order to 

subsequently restart the process.   

Rencher (1995) points out that PCA can be applied to any distribution of the 

original process variables.  Zarate (2003) used PCA for her distribution free approach 

which utilizes ranks of data depth measures for monitoring the variability, whereas our 

PCA data depth scheme will utilize the robust simplicial data depth measure and plot a 

PCA-Simplicial Depth r chart of both the first set of PCs to monitor variability shifts and 

the last PC(s) as well in order to monitor correlation shifts.  Kourti and MacGregor 

(1995, 1996, 2005) have indicated how projection methods, which utilize PCA for 

diagnostics in multivariate quality control, are becoming widely used in industrial 

applications, however their work with PCA continues to use an adaptation of the 2T  

statistic.  The current PCA approach in multivariate quality is to utilize PCA with the 2T  

statistic or some adapted form of the 2T  statistic.  Additionally, Mason and Young 

(1997, 2002) whose contributions to MSPC have been extensive within the last decade, 

focus on using PCA for their decomposition of the 2T  statistic.  PCA based control 

charting is gaining significant attention in MSPC (Kourti and MacGregor 1995, 1996, 
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2005) (Kourti, 2003) (Milectic, 2004).  As Milectic, et. al. (2004) demonstrated when 

utilizing MSPC in their study, their challenge has been “to develop a monitoring scheme 

that would alarm reliably” and would be easy to present to the process operator.  Our 

nonparametric scheme is not based on the 2T  statistic, since we utilize the distribution 

free property of PCA along with simplicial data depth throughout MSPC to avoid the 

pitfalls of current normality dependent schemes when the distribution is unknown or 

when autocorrelation is present.  Figure 3.3a illustrates our distribution free MSPC 

approach from start to finish.  
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Figure 3.3a Flowchart with the Proposed Nonparametric MSPC Scheme 

Proposed Nonparametric Approach  
MSPC - No Assumed Distribution 

p process variables 

Identify Historical Data Set (HDS) 

and New Observations to test 

PCA for Dimensionality Reduction: 

• Eigenanalysis 

• First k PCs retained -at most 60% 

total variation 

• Last PC(s) retained – at most 0.009 

total variation 

Process resumes 

Correction: Distribution-free Approach 

• Point that generated the signal is 

identified on the PCA-Simplicial 

Depth r Chart of the First PCs 

• Point that generated the signal is 

identified on the PCA-Simplicial 

Depth r Chart of the Last PCs  

• Assignable causes (Variability 

and/or Correlation) are identified 

and corrected 

Stopping Rule is α  

Compute the Ranks of the 

Simplicial Data Depths of the 

retained first and last PCs 

Using the Ranks of the PCs create 2 of 

Liu’s r charts 

 (one each for the first and last PCs) 
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We begin by collecting the HDS (Historical Data Set) with all process variables 

identified.  We let G denote the prescribed quality distribution with p process variables 

with nYY ,,1 K  random observations, and perform PCA on the HDS.  An eigenvalue 

analysis is done to identify the pk <  principal components that seem to drive the process 

variability and correlation, respectively.  We use a cutoff of 60% cumulative variation for 

the initial PCs and at most 0.009 for the final PCs that will be retained.  We calculate the 

simplicial data depths of the retained initial and final PCs.  Next, new observations 

tXX ,,1 K  are collected.  We denote the distribution of the sample as F (note: not the F-

distribution) similar to Liu (1995).  We standardize the new observations, and from the 

eigenvectors of the HDS, we compute the PC score of each new observation.  We 

compute the simplicial depths of the retained PCs of the new observations based on the 

retained PCs from the HDS.  This is followed by the calculations of the ranks of the 

simplicial depths of these new observations.  To determine if the process has gone out of 

control we will compare the simplicial depths of the PCs of our test sample tXX ,,1 K  ~ 

F against the simplicial depths of the PCs of our reference sample or HDS nYY ,,1 K  ~ G.  

The ranks of the simplicial depths of the retained first and last PCs of the new 

observations are computed as follows: 

  ( )
( ) ( ){ }

n

njXDYDY
Xr

iGjGj
inG

nn
,...,1  ,# =≤

=  

The ranks of the simplicial depths of the first and last PCs of the new observations are 

plotted on each of two r charts, each chart following the univariate scheme presented by 
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Liu (1995).  The higher ranks indicate that the observation is deeper within the data 

cloud.  According to Liu (1995), 0.5 may be considered a centerline to identify any trends 

toward process degradation.   The only control limit is the lower control limit, LCL, and 

is identified as α .  Figure 3.3b represents the univariate graphing scheme presented by 

Liu (1995) which will be used for our PCA-Simplicial Depth r chart whereby the ranks of 

the first and last PCs from the test observations are plotted against the observations. 

  

 

 

Figure 3.3b  Liu r chart (1995) 
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As the rank decreases, the more outlying is the point within that distribution.  

Thus, any point lying below the LCL indicates that the observation is an out of control 

point.  For the r chart utilizing the first PC(s) we test:   

 

FGH =:0  with a false alarm rate of α  

:1H  There is a shift in variability from G to F. 

 

While for the r chart utilizing the last PC(s), we test: 

FGH =:0  with a false alarm rate of α  

:1H  There is a shift in correlation from G to F. 

 

 

In our findings in Chapter 4, we provide comparisons on the effect of choosing 

different Lower Control Limits determined by either 05.0=α  or 10.0=α , with various 

sample sizes.  We also discuss the effect of changing the rules governing the retention of 

PCs. 
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CHAPTER FOUR: CASE STUDIES AND RESULTS 

4.1 MSPC Data Sets 

The case studies are based on the following real multivariate data sets from 

various industries which have been made available to us directly from a company or 

which are discussed in the literature.  The data set titled “Industrial” is made available to 

us by a former Ph.D. student now working at a company, which will be generically 

described due to a non-disclosure agreement.  The historical data sets are provided as a 

basis to identify when the process was in a state of statistical control.  Additionally, new 

observations are given to identify when the process was deemed out of control.  The 

following data sets gathered from the multivariate quality literature will be analyzed 

using our proposed nonparametric scheme by plotting PCA-Simplicial Depth r charts: 

Steam Turbine Data (Mason and Young, 2002), Fruit Juice Data (Fuchs and Kennet, 

1998), Industrial Data (former Ph.D. student), Aluminum Pin Data (Fuchs and Kennet, 

1998), Automotive Data (Wade and Woodall, 1993), Electrolyzer Data (Mason and 

Young, 2002) and Mechanical Part Data (Fuchs and Kennet, 1998).  Additionally, we 
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have gathered a bivariate data set from the literature which simulates two of the process 

variables from the Mechanical Part Data with a random error point identified by Fuchs 

and Kennet (1998), which will be utilized to test the robustness of our proposed 

nonparametric scheme in the presence of an outlier that has not been the result of process 

degradation. 

For each data analysis we are including the original observations, both the HDS 

and the new points, along with the eigenanalysis to provide the cumulative percentage of 

variation for the PCs from the HDS.  The logic behind using PCA is to lower 

dimensionality and focus on the components that drive the highest variability shift.  If too 

many of the first PCs are selected, a larger cumulative percentage of variability is 

included, possibly generating too many false alarms.  Given that the last PCs account for 

a very small percentage of variation, we will also analyze the last PC(s) for insight into 

the correlation structure.   

Using the data subsequent to the HDS very conservatively, we held out any point 

which looked even close to being out of control.  We then took the remaining points and 

added them to the HDS in bunches in order to study the effect of sample size of the HDS 

on the robustness of the results.  We are providing summary tables at the end of each data 

analysis in order to display the effect of sample size on the first and last set of PCs and 

the corresponding alpha level.  For consistency and ease of understanding, we will follow 

the same format of tables and figures for all data analyses. 

By analyzing case studies from various industries, we were able to develop 

heuristics that will generate robust results when utilizing our PCA Simplicial Depth r 



  

74 

 

 

chart.  These rules include the suggested total percentage of variability to be considered 

when selecting which PCs to retain.  From the eigenanalysis of each data set, we 

investigated various scenarios by adjusting the maximum cumulative percentage of 

variability used as the cutoff for retaining PCs.  The different scenarios provided insight 

into the effect of number of PCs retained, α , and sample size.  Our findings indicated 

that to avoid false alarms and neutralize the effect of autocorrelation, the first set of PCs 

should account for a maximum of 60% cumulative variability when using the PCA 

Simplicial Depth r chart for monitoring the variability of the process.  For the final PCs, 

we find that selecting the last PC or the last PCs that account for a maximum 0.009 

cumulative variability provide robust results for monitoring correlations.  A point that 

was identified as out of control from the first PCs but not the last could be indicative of a 

shift in variability.  The control chart of the last PC identified points that could represent 

correlation shifts.  A point the signaled on both the first PC control chart and the last PC 

control chart may indicate that the signal was a result of a shift in both variability and 

correlation.  Given the nature of the bivariate case and based on our findings, the 

recommendation that we can provide for a bivariate process is to chart the PCA 

Simplicial Depth r chart of the first and the last PC.  At the end of the chapter these 

recommendations are given along with a complete summary of all data analyses complied 

into two tables, one with the first PC(s) and the other with last PC, in order to provide 

insight into our findings. 
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4.2 Steam Turbine Data Set 

The first data set with 6 process variables consists of 44 observations with the first 

28 representing the Historical Data Set (HDS) (Mason and Young, 2002) of a Steam 

Turbine process.  Table 4.2a is a list of the 28 observations from the Steam Turbine data 

set that were identified as the Historical Data Set for this process which is comprised of 6 

process variables namely, Fuel, Steam Flow, Steam Temperature, Megawatts, Cooling 

Temperature and Pressure.   (Mason and Young, 2002)  The eigenanalysis in Table 4.2b 

illustrates the cumulative proportion of variation of the PCs from the HDS.  The 16 new 

observations that will be utilized for process monitoring based on the HDS are listed in 

Table 4.2c, followed by the control charts of the ranks of the Simplicial Depths of the 

first and last PCs of the new observations.  For Table 4.2c, the first column represents the 

observation number from the set of new observations, while each letter in the second 

column will be used to name each point to further identify that specific outlying 

observation when additional runs with a different sample size for the Historical Data Set 

are used for our proposed control charts. 
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Historical Data Set (HDS) Original 28 observations 

Table 4.2a Historical Data Set of the Steam Turbine Data with n = 28 

Obs Fuel Steam Flow Steam Temp MegaWatts Cool 
Temp 

Pressure 

1 232666 178753 850 20.53 54.1 29.2 
2 237813 177645 847 20.55 54.2 29.2 
3 240825 177817 848 20.55 54 29.2 
4 240244 178839 850 20.57 53.9 29.1 
5 239042 177817 849 20.57 53.9 29.2 
6 239436 177903 850 20.59 54 29.1 
7 234428 177903 848 20.57 53.9 29.2 
8 232319 177990 848 20.55 53.7 29.1 
9 233370 177903 848 20.48 53.6 29.1 
10 237221 178076 850 20.49 53.9 29.1 
11 238416 177817 848 20.55 53.9 29.1 
12 235607 177817 848 20.55 53.8 29.1 
13 241423 177903 847 20.55 53.7 29.1 
14 233353 177731 849 20.53 53.6 29.1 
15 231324 178753 846 20.64 53.9 29.1 
16 243930 187378 844 21.67 53.9 29.1 
17 252550 187287 843 21.65 54.2 29.1 
18 251166 187745 842 21.67 53.7 29.1 
19 252597 188770 841 21.78 53.4 29.1 
20 243360 179868 842 20.66 53.7 29.1 
21 238771 181389 843 20.81 53.9 29.1 
22 239777 181411 841 20.88 54 29.1 
23 219664 167330 850 19.08 54.1 29.2 
24 228634 176137 846 20.64 54 29.2 
25 231514 176029 843 20.24 53.8 29.2 
26 235024 176115 846 20.22 53.6 29.2 
27 239413 176115 845 20.31 53.7 29.2 
28 228795 176201 847 20.24 54.3 29.2 
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Eigenanalysis of the Steam Turbine Correlation Matrix with n=28 

Table 4.2b  The Eigenanalysis of the HDS with n = 28 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.6939 1.0004 0.7241 0.4045 0.1647 0.0125 
Proportion 0.616 0.167 0.121 0.067 0.027 0.002 
Cumulative 0.616 0.782 0.903 0.970 0.998 1.000 
 

 

 

 

16 NEW OBSERVATIONS for n=28 

 

Table 4.2c The 16 NEW observations for n = 28 

Obs Name Fuel SteamFlow SteamTemp MegaWatts CoolTemp Pressure
1 A1 234953 181678 843 20.84 54.5 29 
2 A2 247080 189354 844 20.86 54.4 28.9 
3 A3 238323 184419 845 21.1 54.5 28.9 
4 A4 248801 189169 843 22.18 54.5 28.9 
5 A5 246525 185511 842 21.21 54.6 28.9 
6 A6 233215 180409 845 20.75 54.5 29 
7 A7 233955 181323 842 20.82 54.6 29 
8 A8 238693 181346 844 20.92 54.8 29 
9 A9 248048 185307 844 21.15 54.6 29 
10 A10 233074 181411 844 20.93 54.5 29 
11 A11 242833 186216 844 21.59 54.4 29 
12 A12 243950 182147 844 21.37 54.2 29 
13 A13 238739 183349 844 21.01 54.3 29 
14 A14 251963 188012 850 21.68 54.4 29 
15 A15 240058 183372 846 21.15 54.2 29 
16 A16 235376 182436 844 20.99 54.3 29 
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PCA Simplicial Depth r chart for the first PC of the 16 NEW 

observations for n=28 (α  = 0.05 and 0.10) 
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Figure 4.2a  PCA Simplicial Depth r chart using the first PC for n = 28. 

 

Using the HDS of n = 28, the following points from the 16 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Point A4  

At α  = 0.10:  Points A4 and A6 

PCA Simplicial Depth r chart for the last PC of the 16 NEW 
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observations for n=28 (α = 0.05 and 0.10) 
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Figure 4.2b  PCA Simplicial Depth r chart using the last PC for n = 28. 

 

Using the HDS of n = 28, the following points from the 16 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Point A2 

At α  = 0.10:  Points A2 and A12 

Points A2, A3, A4, A6, A7, A8, A9, A12, A15 and A16 are out of control under 

various scenarios.  [Some scenarios included more PCs than shown here in generating 
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possible false alarms.]  We removed all of these points, because we believe that some of 

these may be some false alarms.  Since observations A1, A5, A10, A11, A13 and A14 are 

always in control, we will now augment the original HDS using these points in order to 

determine if the results of the PCA Simplicial Depth r-chart are significantly affected by 

changes in sample size.  Table 4.2d represents the extended HDS with the six additional 

in control points included followed by the eigenanalysis in Table 4.2e.  The 10 out of 

control points that were removed are listed in Table 4.2f. 

 

 

Steam Turbine Data – Extended Historical Data Set (HDS) with n=34  

(28 plus 6 identified as in-control from the control charts with n=28) 

 

Table 4.2d Extended Historical Data Set of the Steam Turbine Data with n = 34. 

Obs  Fuel Steam Flow Steam Temp MegaWatts Cool Temp Pressure 
1 232666 178753 850 20.53 54.1 29.2 
2 237813 177645 847 20.55 54.2 29.2 
3 240825 177817 848 20.55 54 29.2 
4 240244 178839 850 20.57 53.9 29.1 
5 239042 177817 849 20.57 53.9 29.2 
6 239436 177903 850 20.59 54 29.1 
7 234428 177903 848 20.57 53.9 29.2 
8 232319 177990 848 20.55 53.7 29.1 
9 233370 177903 848 20.48 53.6 29.1 
10 237221 178076 850 20.49 53.9 29.1 
11 238416 177817 848 20.55 53.9 29.1 
12 235607 177817 848 20.55 53.8 29.1 
13 241423 177903 847 20.55 53.7 29.1 
14 233353 177731 849 20.53 53.6 29.1 
15 231324 178753 846 20.64 53.9 29.1 
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16 243930 187378 844 21.67 53.9 29.1 
17 252550 187287 843 21.65 54.2 29.1 
18 251166 187745 842 21.67 53.7 29.1 
19 252597 188770 841 21.78 53.4 29.1 
20 243360 179868 842 20.66 53.7 29.1 
21 238771 181389 843 20.81 53.9 29.1 
22 239777 181411 841 20.88 54 29.1 
23 219664 167330 850 19.08 54.1 29.2 
24 228634 176137 846 20.64 54 29.2 
25 231514 176029 843 20.24 53.8 29.2 
26 235024 176115 846 20.22 53.6 29.2 
27 239413 176115 845 20.31 53.7 29.2 
28 228795 176201 847 20.24 54.3 29.2 
29 234953 181678 843 20.84 54.5 29 
30 246525 185511 842 21.21 54.6 28.9 
31 233074 181411 844 20.93 54.5 29 
32 242833 186216 844 21.59 54.4 29 
33 238739 183349 844 21.01 54.3 29 
34 251963 188012 850 21.68 54.4 29 

 

 

 

Eigenanalysis of the Steam Turbine Correlation Matrix with n=34 

Table 4.2e  The Eigenanalysis of the extended HDS with n = 34. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.5924 1.1941 0.6726 0.3755 0.1545 0.0109 
Proportion 0.599 0.199 0.112 0.063 0.026 0.002 
Cumulative 0.599 0.798 0.910 0.972 0.998 1.000 
 

 

     

10 NEW OBSERVATIONS for n=34 
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Table 4.2f The 10 NEW observations for n = 34 

Obs Name Fuel SteamFlow SteamTemp MegaWatts CoolTemp Pressure
1 A2 247080 189354 844 20.86 54.4 28.9 
2 A3 238323 184419 845 21.1 54.5 28.9 
3 A4 248801 189169 843 22.18 54.5 28.9 
4 A6 233215 180409 845 20.75 54.5 29 
5 A7 233955 181323 842 20.82 54.6 29 
6 A8 238693 181346 844 20.92 54.8 29 
7 A9 248048 185307 844 21.15 54.6 29 
8 A12 243950 182147 844 21.37 54.2 29 
9 A15 240058 183372 846 21.15 54.2 29 
10 A16 235376 182436 844 20.99 54.3 29 
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PCA Simplicial Depth r chart for the first PC of the 10 NEW 

observations for n=34 (α  = 0.05 and 0.10) 
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Figure 4.2c  PCA Simplicial Depth r chart using the first PC n = 34. 

 

Using the HDS of n = 34, the following points from the 10 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points A4 and A6 

At α  = 0.10:  Points A4 and A6 
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PCA Simplicial Depth r chart for the last PC of the 10 NEW 

observations for n=28 (α = 0.05 and 0.10) 
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Figure 4.2d PCA Simplicial Depth r chart using the last PC for n = 34. 

 

Using the HDS of n = 34, the following points from the 10 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Point A2 

At α  = 0.10:  Points A2 and A12 
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Table 4.2g summarizes the points that were identified as out of control from our 

proposed PCA Simplicial Depth r charts with the first and last PCs selected for α  = 0.05 

and 0.10. 

 

Steam Turbine Summary Table 

Table 4.2g   16 NEW points with the out of control observations labeled X(n=28) and 
Y(n=34).  
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

A1      
A2  X Y   X Y 
A3      
A4 X Y   X Y  
A5      
A6 Y   X Y  
A7      
A8      
A9      
A10      
A11      
A12     X Y 
A13      
A14      
A15      
A16      

4.3 Fruit Juice Data Set 

Our second data set with 11 process variables consists of 69 observations with the 
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first 36 observations representing the HDS.  This is from Fuchs and Kennet (1998) and is 

a fruit juice process made up of 11 amino acids namely, Lysine (LYS), Arginine (ARG), 

Aspartic Acid (ASP), Serine (SER), Glutamine Acid (GLU), Proline (PRO), Glycine 

(GLY), Alanine (ALA) Valine (VAL), Phenyl Alanine (PHA) and Gamma-amino Acid 

Butric Acid (GABA).   Table 4.3a lists the 36 observations of the HDS. 

 

 

Historical Data Set (HDS) Original 36 observations 

 

Table 4.3a Historical Data Set of the Fruit Juice Data with n = 36 

Obs  LYS ARG  ASP SER GLU PRO GLY ALA VAL PHA GABA 
1 0.48 5.81 2.12 4.68 0.78 12.41 0.31 0.96 0.18 0.2 4.73 
2 0.47 5.25 2.75 4.42 0.88 14.72 0.3 1.04 0.19 0.22 3.96 
3 0.42 4.98 2.79 3.85 0.75 12.13 0.32 0.99 0.15 0.2 3.94 
4 0.35 4.79 2.79 3.39 0.81 12.77 0.25 0.75 0.16 0.15 3.69 
5 0.43 4.92 2.88 3.53 0.78 13.11 0.25 0.91 0.16 0.15 4.23 
6 0.4 5.61 2.26 3.39 0.69 12.69 0.2 1.06 0.16 0.18 3.76 
7 0.35 4.54 2.96 3.89 0.88 14.01 0.24 0.86 0.16 0.12 3.92 
8 0.34 3.82 2.86 3.63 0.86 15.73 0.22 1.34 0.14 0.12 2.88 
9 0.27 3.42 2.27 4.81 0.9 8.99 0.23 1.43 0.1 0.1 2.68 
10 0.39 3.6 2.99 5.03 0.92 13.71 0.28 1.99 0.13 0.1 2.88 
11 0.37 3.39 2.78 5.96 0.84 12.92 0.24 1.76 0.12 0.14 3.01 
12 0.26 2.72 3.82 6.03 1.17 7.18 0.15 1.3 0.11 0.07 3.4 
13 0.24 3.13 3.35 5.76 0.96 6.75 0.21 1.14 0.11 0.08 2.43 
14 0.2 2.15 3.28 5.8 1.04 5.34 0.22 1.06 0.12 0.08 2.41 
15 0.26 2.89 3.67 6.34 1.22 5.87 0.18 1.1 0.14 0.12 2.4 
16 0.52 5.53 2.97 3.37 0.78 10.74 0.24 0.96 0.1 0.16 3.4 
17 0.42 5.07 3.06 4.32 0.91 15.37 0.47 1.32 0.16 0.2 3.63 
18 0.45 5.46 3.06 4.68 0.84 16.52 0.39 1.35 0.14 0.18 3.89 
19 0.47 5.79 2.91 4.44 0.8 16.21 0.35 1.2 0.2 0.18 4.52 
20 0.44 2.52 2.4 4.09 0.72 12.81 0.28 0.86 0.18 0.23 4.43 
21 0.48 5.14 2.66 4.04 0.94 16.77 0.33 0.97 0.22 0.23 4.9 
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22 0.49 4.77 2.42 5.92 1 15.62 0.34 1.93 0.5 0.15 4.05 
23 0.37 4.35 3.04 5.07 0.87 15.81 0.31 2.08 0.19 0.1 4.17 
24 0.36 4.01 2.37 3.93 0.76 11.28 0.22 0.75 0.12 0.12 3.27 
25 0.46 4.26 2.51 7.29 1.07 18.57 0.37 2.67 0.19 0.1 2.95 
26 0.34 3.46 2.2 3.8 0.93 11.73 0.26 1.4 0.18 0.1 3.06 
27 0.34 4.13 2.72 6.01 0.95 13.96 0.34 2.3 0.1 0.08 3.06 
28 0.31 3.7 2.77 5.29 0.85 10.8 0.22 1.68 0.1 0.01 2.61 
29 0.3 3.18 2.54 5.04 0.95 11.25 0.21 1.84 0.1 0.01 2.48 
30 0.3 3.57 2.45 5.7 1.06 12.28 0.26 1.53 0.1 0.1 2.46 
31 0.3 3.31 2.53 5.21 0.88 9.1 0.23 1.37 0.08 0.01 2.55 
32 0.3 3.13 2.82 5.85 1 10.31 0.21 1.55 0.1 0.08 2.69 
33 0.33 3.1 3.01 7.15 1.04 12.71 0.23 1.79 0.09 0.1 3.52 
34 0.32 3.84 3.79 6.08 1.01 10.13 0.18 1.3 0.09 0.01 3.67 
35 0.3 3.75 2.83 6.24 0.71 6.2 0.16 1.2 0.05 0.08 3.01 
36 0.26 3.34 3.46 7.01 1.02 6.68 0.2 1.52 0.1 0.08 2.18 

 

 

Eigenanalysis of the Fruit Juice Correlation Matrix with n=36 

Table 4.3b The Eigenanalysis of the HDS with n = 36 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 5.4394 2.1033 1.1141 0.6935 0.4324 0.3652 0.2942 0.2148 
Proportion 0.494 0.191 0.101 0.063 0.039 0.033 0.027 0.020 
Cumulative 0.494 0.686 0.787 0.850 0.889 0.923 0.949 0.969 
 

 PC9 PC10 PC11 
Eigenvalue 0.1748 0.1025 0.0658 
Proportion 0.016 0.009 0.006 
Cumulative 0.985 0.994 1.000 

 

33 NEW OBSERVATIONS for n=36 

 

Table 4.3c The 33 NEW observations for n = 33 
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Obs  Name 
of 

point 

LYS ARG  ASP SER GLU PRO GLY ALA VAL PHA GABA 

1 B1 0.43 5.84 2.84 3.54 0.8 11.9 0.3 0.86 0.2 0.18 3.88 
2 B2 0.5 4.61 2.08 5.7 0.71 18.46 0.42 1.91 0.18 0.18 6.14 
3 B3 0.51 6.19 3.55 4.29 1.16 19.01 0.4 1.2 0.15 0.18 4.72 
4 B4 0.43 5.44 2.71 4.38 0.79 13.59 0.35 1.23 0.14 0.2 4.08 
5 B5 0.38 5.22 2.54 3.97 0.73 14.47 0.3 0.98 0.15 0.2 4.18 
6 B6 0.5 5.19 3.13 4.32 0.9 16.74 0.34 1.09 0.2 0.22 4.85 
7 B7 0.4 4.68 2.38 3.47 0.68 12.01 0.26 0.92 0.16 0.18 3.95 
8 B8 0.43 4.99 2.03 3.52 0.63 9.84 0.24 0.71 0.19 0.2 4.06 
9 B9 0.41 5.33 2.64 4.22 0.81 13.66 0.3 0.86 0.17 0.22 4.52 
10 B10 0.45 5.42 2.96 4.8 0.91 15.73 0.3 1.09 0.19 0.2 3.8 
11 B11 0.36 4.83 2.72 3.32 0.75 12.28 0.23 0.71 0.13 0.12 3.63 
12 B12 0.4 4.34 1.92 4.57 0.74 11.13 0.28 1.63 0.14 0.1 3.34 
13 B13 0.36 4.41 2.88 3.76 0.89 14.32 0.25 0.89 0.14 0.12 3.35 
14 B14 0.3 4.14 2.5 5.26 0.86 15.48 0.35 2.34 0.21 0.12 3.02 
15 B15 0.38 3.91 2.32 5.14 0.82 14.27 0.29 1.87 0.22 0.1 3.98 
16 B16 0.42 3.9 2.45 5.26 0.94 18.14 0.29 2.03 0.16 0.12 3.65 
17 B17 0.31 3.56 2.61 5.4 0.97 12.29 0.22 1.59 0.08 0.1 2.82 
18 B18 0.32 4.18 3.76 5.53 0.98 10.81 0.22 1.32 0.1 0.14 2.91 
19 B19 0.32 3.05 3.24 6.87 1.43 13.01 0.24 1.81 0.1 0.1 2.91 
20 B20 0.23 3.13 3.43 6.3 1.15 10.67 0.26 1.67 0.12 0.16 2.86 
21 B21 0.24 2.85 3.18 4.64 0.86 6.91 0.21 1.08 0.01 0.12 2.75 
22 B22 0.36 4.31 2.25 3.15 0.65 11.32 0.22 0.83 0.19 0.2 3.66 
23 B23 0.35 4.62 2.4 2.94 0.71 10.18 0.19 0.89 0.19 0.2 3.01 
24 B24 0.39 4.51 2.82 4 0.87 13.76 0.27 0.88 0.17 0.12 3.56 
25 B25 0.41 4.12 2.38 5.14 0.83 11.36 0.26 1.71 0.16 0.08 3.65 
26 B26 0.33 3.6 2.36 5.07 0.94 13.93 0.3 1.62 0.1 0.08 3.51 
27 B27 0.43 4.11 2.22 6.86 1.12 14.35 0.27 1.68 0.1 0.12 3.96 
28 B28 0.31 3.7 2.77 5.44 1.02 12.68 0.32 1.75 0.1 0.1 3.47 
29 B29 0.36 3.64 2.21 6.56 1.02 15.53 0.39 1.96 0.1 0.1 3.07 
30 B30 0.27 3.25 2.82 4.92 0.91 8.43 0.2 1.53 0.1 0.01 2.32 
31 B31 0.28 2.91 3.21 6.41 1.35 9.42 0.22 1.8 0.12 0.01 2.85 
32 B32 0.3 3.64 2.73 5.76 0.73 5.55 0.2 0.94 0.05 0.05 3.14 
33 B33 0.28 2.68 3.61 6.38 1.06 6.94 0.22 1.22 0.11 0.11 2.71 
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PCA Simplicial Depth r chart for the first PC of the 33 NEW 

observations for n=36 (α  = 0.05 and 0.10) 

 

Index

R
A

NK
S 

of
 F

ir
st

 1
 P

C

3330272421181512963

1.0

0.8

0.6

0.4

0.2

0.0
0.05
0.10B33

B32

B31

B30

B29

B28

B27

B26

B25
B24

B23
B22

B21
B20

B19

B18
B17

B16
B15

B14B13

B12

B11

B10

B9
B8

B7

B6

B5
B4

B3

B2

B1

PCA Simplicial Depth r chart

 

Figure 4.3a  PCA Simplicial Depth r chart using the first PC for n=36  

 

Using the HDS of n = 36, the following points from the 33 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points B2 and B31 

At α  = 0.10:  Points B2, B31 and B33 
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PCA Simplicial Depth r chart for the last PC of the 33 NEW 

observations for n=36 (α = 0.05 and 0.10) 
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Figure 4.3b  PCA Simplicial Depth r chart using the last PC for n = 36 

 

Using the HDS of n = 36, the following points from the 33 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  No Points 

At α  = 0.10:  Points B14 and B24 

The control charts generated a signal for the following 8 points: B1, B2, B3, B8, 
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B14, B24, B31 and B33 for various scenarios.  [Some scenarios included more PCs than 

shown here in generating possible false alarms.]  From the remaining 25 points that were 

determined to be in-control, we will initially select a subset of 11 and augment the HDS 

to 47 followed by an additional augmentation to 61 from the rest of the in-control points, 

in order to determine the sensitivity the control chart has with respect to sample size.  The 

following are the 25 in-control points:  B4, B5, B6, B7, B9, B10, B11, B12, B13, B15, 

B16, B17, B18, B19, B20, B21, B22, B23, B25, B26, B27, B28, B29, B30 and B32.  

From the list, we will choose every other point until we acquire 11 points.  The 11 in-

control points that will be included in the extended HDS with n = 47 are:  B5, B7, B10, 

B12, B15, B17, B19, B21, B23, B26, B28.  For the extended HDS with n = 61, we will 

include those 11 points in addition to the remaining 14 in-control points namely, B4, B6, 

B9, B11, B13, B16, B18, B20, B22, B25, B27, B29, B30 and B32.  Table 4.3d illustrates 

the 8 observations that were identified as out of control with n = 36 and will be further 

monitored using the extended HDS.   

 

 

 

 

 

 

 



  

92 

 

 

8 OBSERVATIONS out of 33 that were identified as out of 

control from various PCA Simplicial Depth r-charts for n=36. 

Table 4.3d   The 8 NEW points for Extended HDS with n = 47 and with n = 61. 

Obs  Name 
of 

point 

LYS ARG  ASP SER GLU PRO GLY ALA VAL PHA GABA 

1 B1 0.43 5.84 2.84 3.54 0.8 11.9 0.3 0.86 0.2 0.18 3.88 
2 B2 0.5 4.61 2.08 5.7 0.71 18.46 0.42 1.91 0.18 0.18 6.14 
3 B3 0.51 6.19 3.55 4.29 1.16 19.01 0.4 1.2 0.15 0.18 4.72 
4 B8 0.43 4.99 2.03 3.52 0.63 9.84 0.24 0.71 0.19 0.2 4.06 
5 B14 0.3 4.14 2.5 5.26 0.86 15.48 0.35 2.34 0.21 0.12 3.02 
6 B24 0.39 4.51 2.82 4 0.87 13.76 0.27 0.88 0.17 0.12 3.56 
7 B31 0.28 2.91 3.21 6.41 1.35 9.42 0.22 1.8 0.12 0.01 2.85 
8 B33 0.28 2.68 3.61 6.38 1.06 6.94 0.22 1.22 0.11 0.11 2.71 

 

 

Since some of these signals may have been false positives, we will monitor these 

8 observations using the augmented HDS for n = 47 and n = 61.  The data analyses of the 

8 observations with the extended HDS for n = 47 and n = 61 are illustrated by the 

following tables and figures. 
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Fruit Juice Data – Extended Historical Data Set (HDS) with n=47  

(36 plus 11 identified as in-control from the control charts with n=36) 

 

Table 4.3e Extended Historical Data Set of the Fruit Juice Data with n = 47. 

Obs  LYS ARG  ASP SER GLU PRO GLY ALA VAL PHA GABA 
1 0.48 5.81 2.12 4.68 0.78 12.41 0.31 0.96 0.18 0.2 4.73 
2 0.47 5.25 2.75 4.42 0.88 14.72 0.3 1.04 0.19 0.22 3.96 
3 0.42 4.98 2.79 3.85 0.75 12.13 0.32 0.99 0.15 0.2 3.94 
4 0.35 4.79 2.79 3.39 0.81 12.77 0.25 0.75 0.16 0.15 3.69 
5 0.43 4.92 2.88 3.53 0.78 13.11 0.25 0.91 0.16 0.15 4.23 
6 0.4 5.61 2.26 3.39 0.69 12.69 0.2 1.06 0.16 0.18 3.76 
7 0.35 4.54 2.96 3.89 0.88 14.01 0.24 0.86 0.16 0.12 3.92 
8 0.34 3.82 2.86 3.63 0.86 15.73 0.22 1.34 0.14 0.12 2.88 
9 0.27 3.42 2.27 4.81 0.9 8.99 0.23 1.43 0.1 0.1 2.68 
10 0.39 3.6 2.99 5.03 0.92 13.71 0.28 1.99 0.13 0.1 2.88 
11 0.37 3.39 2.78 5.96 0.84 12.92 0.24 1.76 0.12 0.14 3.01 
12 0.26 2.72 3.82 6.03 1.17 7.18 0.15 1.3 0.11 0.07 3.4 
13 0.24 3.13 3.35 5.76 0.96 6.75 0.21 1.14 0.11 0.08 2.43 
14 0.2 2.15 3.28 5.8 1.04 5.34 0.22 1.06 0.12 0.08 2.41 
15 0.26 2.89 3.67 6.34 1.22 5.87 0.18 1.1 0.14 0.12 2.4 
16 0.52 5.53 2.97 3.37 0.78 10.74 0.24 0.96 0.1 0.16 3.4 
17 0.42 5.07 3.06 4.32 0.91 15.37 0.47 1.32 0.16 0.2 3.63 
18 0.45 5.46 3.06 4.68 0.84 16.52 0.39 1.35 0.14 0.18 3.89 
19 0.47 5.79 2.91 4.44 0.8 16.21 0.35 1.2 0.2 0.18 4.52 
20 0.44 2.52 2.4 4.09 0.72 12.81 0.28 0.86 0.18 0.23 4.43 
21 0.48 5.14 2.66 4.04 0.94 16.77 0.33 0.97 0.22 0.23 4.9 
22 0.49 4.77 2.42 5.92 1 15.62 0.34 1.93 0.5 0.15 4.05 
23 0.37 4.35 3.04 5.07 0.87 15.81 0.31 2.08 0.19 0.1 4.17 
24 0.36 4.01 2.37 3.93 0.76 11.28 0.22 0.75 0.12 0.12 3.27 
25 0.46 4.26 2.51 7.29 1.07 18.57 0.37 2.67 0.19 0.1 2.95 
26 0.34 3.46 2.2 3.8 0.93 11.73 0.26 1.4 0.18 0.1 3.06 
27 0.34 4.13 2.72 6.01 0.95 13.96 0.34 2.3 0.1 0.08 3.06 
28 0.31 3.7 2.77 5.29 0.85 10.8 0.22 1.68 0.1 0.01 2.61 
29 0.3 3.18 2.54 5.04 0.95 11.25 0.21 1.84 0.1 0.01 2.48 
30 0.3 3.57 2.45 5.7 1.06 12.28 0.26 1.53 0.1 0.1 2.46 
31 0.3 3.31 2.53 5.21 0.88 9.1 0.23 1.37 0.08 0.01 2.55 
32 0.3 3.13 2.82 5.85 1 10.31 0.21 1.55 0.1 0.08 2.69 
33 0.33 3.1 3.01 7.15 1.04 12.71 0.23 1.79 0.09 0.1 3.52 
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34 0.32 3.84 3.79 6.08 1.01 10.13 0.18 1.3 0.09 0.01 3.67 
35 0.3 3.75 2.83 6.24 0.71 6.2 0.16 1.2 0.05 0.08 3.01 
36 0.26 3.34 3.46 7.01 1.02 6.68 0.2 1.52 0.1 0.08 2.18 
37 0.38 5.22 2.54 3.97 0.73 14.47 0.3 0.98 0.15 0.2 4.18 
38 0.4 4.68 2.38 3.47 0.68 12.01 0.26 0.92 0.16 0.18 3.95 
39 0.45 5.42 2.96 4.8 0.91 15.73 0.3 1.09 0.19 0.2 3.8 
40 0.4 4.34 1.92 4.57 0.74 11.13 0.28 1.63 0.14 0.1 3.34 
41 0.38 3.91 2.32 5.14 0.82 14.27 0.29 1.87 0.22 0.1 3.98 
42 0.31 3.56 2.61 5.4 0.97 12.29 0.22 1.59 0.08 0.1 2.82 
43 0.32 3.05 3.24 6.87 1.43 13.01 0.24 1.81 0.1 0.1 2.91 
44 0.24 2.85 3.18 4.64 0.86 6.91 0.21 1.08 0.01 0.12 2.75 
45 0.35 4.62 2.4 2.94 0.71 10.18 0.19 0.89 0.19 0.2 3.01 
46 0.33 3.6 2.36 5.07 0.94 13.93 0.3 1.62 0.1 0.08 3.51 
47 0.31 3.7 2.77 5.44 1.02 12.68 0.32 1.75 0.1 0.1 3.47 

 

 

 

 

Eigenanalysis of the Correlation Matrix with n = 47 

Table 4.3f  The Eigenanalysis of the extended HDS with n = 47. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 5.3553 2.2153 1.1227 0.6386 0.4160 0.3133 0.3028 0.2598 
Proportion 0.487 0.201 0.102 0.058 0.038 0.028 0.028 0.024 
Cumulative 0.487 0.688 0.790 0.848 0.886 0.915 0.942 0.966 
 

 PC9 PC10 PC11 
Eigenvalue 0.1868 0.1173 0.0722 
Proportion 0.017 0.011 0.007 
Cumulative 0.983 0.993 1.000 
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PCA Simplicial Depth r chart for the first PC of the 8 NEW 

observations for n=47 (α  = 0.05 and 0.10) 
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Figure 4.3c  PCA Simplicial Depth r chart using the first PC for n=47. 

 

Using the HDS of n = 47, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points B2 and B31 

At α  = 0.10:  Points B2 and B31 
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PCA Simplicial Depth r chart for the last PC of the 8 NEW observations 

for n=47 (α = 0.05 and 0.10) 
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Figure 4.3d  PCA Simplicial Depth r chart using the last PC for n = 47. 

 

Using the HDS of n = 47, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points B24 and B31 

At α  = 0.10:  Points B24 and B31 

 



  

97 

 

 

Fruit Juice Data – Extended Historical Data Set (HDS) with n=61 

(36 plus 25 identified as in-control from the control charts with n=36) 

Table 4.3g Extended Historical Data Set of the Fruit Juice Data with n = 61. 

Obs  LYS ARG  ASP SER GLU PRO GLY ALA VAL PHA GABA 
1 0.48 5.81 2.12 4.68 0.78 12.41 0.31 0.96 0.18 0.2 4.73 
2 0.47 5.25 2.75 4.42 0.88 14.72 0.3 1.04 0.19 0.22 3.96 
3 0.42 4.98 2.79 3.85 0.75 12.13 0.32 0.99 0.15 0.2 3.94 
4 0.35 4.79 2.79 3.39 0.81 12.77 0.25 0.75 0.16 0.15 3.69 
5 0.43 4.92 2.88 3.53 0.78 13.11 0.25 0.91 0.16 0.15 4.23 
6 0.4 5.61 2.26 3.39 0.69 12.69 0.2 1.06 0.16 0.18 3.76 
7 0.35 4.54 2.96 3.89 0.88 14.01 0.24 0.86 0.16 0.12 3.92 
8 0.34 3.82 2.86 3.63 0.86 15.73 0.22 1.34 0.14 0.12 2.88 
9 0.27 3.42 2.27 4.81 0.9 8.99 0.23 1.43 0.1 0.1 2.68 
10 0.39 3.6 2.99 5.03 0.92 13.71 0.28 1.99 0.13 0.1 2.88 
11 0.37 3.39 2.78 5.96 0.84 12.92 0.24 1.76 0.12 0.14 3.01 
12 0.26 2.72 3.82 6.03 1.17 7.18 0.15 1.3 0.11 0.07 3.4 
13 0.24 3.13 3.35 5.76 0.96 6.75 0.21 1.14 0.11 0.08 2.43 
14 0.2 2.15 3.28 5.8 1.04 5.34 0.22 1.06 0.12 0.08 2.41 
15 0.26 2.89 3.67 6.34 1.22 5.87 0.18 1.1 0.14 0.12 2.4 
16 0.52 5.53 2.97 3.37 0.78 10.74 0.24 0.96 0.1 0.16 3.4 
17 0.42 5.07 3.06 4.32 0.91 15.37 0.47 1.32 0.16 0.2 3.63 
18 0.45 5.46 3.06 4.68 0.84 16.52 0.39 1.35 0.14 0.18 3.89 
19 0.47 5.79 2.91 4.44 0.8 16.21 0.35 1.2 0.2 0.18 4.52 
20 0.44 2.52 2.4 4.09 0.72 12.81 0.28 0.86 0.18 0.23 4.43 
21 0.48 5.14 2.66 4.04 0.94 16.77 0.33 0.97 0.22 0.23 4.9 
22 0.49 4.77 2.42 5.92 1 15.62 0.34 1.93 0.5 0.15 4.05 
23 0.37 4.35 3.04 5.07 0.87 15.81 0.31 2.08 0.19 0.1 4.17 
24 0.36 4.01 2.37 3.93 0.76 11.28 0.22 0.75 0.12 0.12 3.27 
25 0.46 4.26 2.51 7.29 1.07 18.57 0.37 2.67 0.19 0.1 2.95 
26 0.34 3.46 2.2 3.8 0.93 11.73 0.26 1.4 0.18 0.1 3.06 
27 0.34 4.13 2.72 6.01 0.95 13.96 0.34 2.3 0.1 0.08 3.06 
28 0.31 3.7 2.77 5.29 0.85 10.8 0.22 1.68 0.1 0.01 2.61 
29 0.3 3.18 2.54 5.04 0.95 11.25 0.21 1.84 0.1 0.01 2.48 
30 0.3 3.57 2.45 5.7 1.06 12.28 0.26 1.53 0.1 0.1 2.46 
31 0.3 3.31 2.53 5.21 0.88 9.1 0.23 1.37 0.08 0.01 2.55 
32 0.3 3.13 2.82 5.85 1 10.31 0.21 1.55 0.1 0.08 2.69 
33 0.33 3.1 3.01 7.15 1.04 12.71 0.23 1.79 0.09 0.1 3.52 
34 0.32 3.84 3.79 6.08 1.01 10.13 0.18 1.3 0.09 0.01 3.67 
35 0.3 3.75 2.83 6.24 0.71 6.2 0.16 1.2 0.05 0.08 3.01 
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36 0.26 3.34 3.46 7.01 1.02 6.68 0.2 1.52 0.1 0.08 2.18 
37 0.38 5.22 2.54 3.97 0.73 14.47 0.3 0.98 0.15 0.2 4.18 
38 0.4 4.68 2.38 3.47 0.68 12.01 0.26 0.92 0.16 0.18 3.95 
39 0.45 5.42 2.96 4.8 0.91 15.73 0.3 1.09 0.19 0.2 3.8 
40 0.4 4.34 1.92 4.57 0.74 11.13 0.28 1.63 0.14 0.1 3.34 
41 0.38 3.91 2.32 5.14 0.82 14.27 0.29 1.87 0.22 0.1 3.98 
42 0.31 3.56 2.61 5.4 0.97 12.29 0.22 1.59 0.08 0.1 2.82 
43 0.32 3.05 3.24 6.87 1.43 13.01 0.24 1.81 0.1 0.1 2.91 
44 0.24 2.85 3.18 4.64 0.86 6.91 0.21 1.08 0.01 0.12 2.75 
45 0.35 4.62 2.4 2.94 0.71 10.18 0.19 0.89 0.19 0.2 3.01 
46 0.33 3.6 2.36 5.07 0.94 13.93 0.3 1.62 0.1 0.08 3.51 
47 0.31 3.7 2.77 5.44 1.02 12.68 0.32 1.75 0.1 0.1 3.47 
48 0.43 5.44 2.71 4.38 0.79 13.59 0.35 1.23 0.14 0.2 4.08 
49 0.5 5.19 3.13 4.32 0.9 16.74 0.34 1.09 0.2 0.22 4.85 
50 0.41 5.33 2.64 4.22 0.81 13.66 0.3 0.86 0.17 0.22 4.52 
51 0.36 4.83 2.72 3.32 0.75 12.28 0.23 0.71 0.13 0.12 3.63 
52 0.36 4.41 2.88 3.76 0.89 14.32 0.25 0.89 0.14 0.12 3.35 
53 0.42 3.9 2.45 5.26 0.94 18.14 0.29 2.03 0.16 0.12 3.65 
54 0.32 4.18 3.76 5.53 0.98 10.81 0.22 1.32 0.1 0.14 2.91 
55 0.23 3.13 3.43 6.3 1.15 10.67 0.26 1.67 0.12 0.16 2.86 
56 0.36 4.31 2.25 3.15 0.65 11.32 0.22 0.83 0.19 0.2 3.66 
57 0.41 4.12 2.38 5.14 0.83 11.36 0.26 1.71 0.16 0.08 3.65 
58 0.43 4.11 2.22 6.86 1.12 14.35 0.27 1.68 0.1 0.12 3.96 
59 0.36 3.64 2.21 6.56 1.02 15.53 0.39 1.96 0.1 0.1 3.07 
60 0.27 3.25 2.82 4.92 0.91 8.43 0.2 1.53 0.1 0.01 2.32 
61 0.3 3.64 2.73 5.76 0.73 5.55 0.2 0.94 0.05 0.05 3.14 

 
Eigenanalysis of the Correlation Matrix with n = 61 

Table 4.3h  The Eigenanalysis of the extended HDS with n = 61. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 5.2257 2.3095 1.1446 0.6261 0.4072 0.3620 0.2981 0.2419 
Proportion 0.475 0.210 0.104 0.057 0.037 0.033 0.027 0.022 
Cumulative 0.475 0.685 0.789 0.846 0.883 0.916 0.943 0.965 
 

 PC9 PC10 PC11 
Eigenvalue 0.1907 0.1225 0.0717 
Proportion 0.017 0.011 0.007 
Cumulative 0.982 0.993 1.000 
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PCA Simplicial Depth r chart for the first PC of the 8 NEW 

observations for n=61 (α  = 0.05 and 0.10) 
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Figure 4.3e  PCA Simplicial Depth r chart using the first PC for n=61. 

 

Using the HDS of n = 61, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points B2 and B31 

At α  = 0.10:  Points B2 and B31 

 



  

100 

 

 

PCA Simplicial Depth r chart for the last PC of the 8 NEW  

observations for n=61 (α = 0.05 and 0.10) 
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Figure 4.3f  PCA Simplicial Depth r chart using the last PC for n = 61. 

 

Using the HDS of n = 61, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points B24 

At α  = 0.10:  Points B24 and B31 
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Fruit Juice Summary Table 

Table 4.3i  33 NEW points with the out of control observations labeled X(n=36), Y(n=47) 
and Z(n=61). 
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

B1      
B2 X Y Z   X Y Z  
B3      
B4      
B5      
B6      
B7      
B8      
B9      
B10      
B11      
B12      
B13      
B14     X 
B15      
B16      
B17      
B18      
B19      
B20      
B21      
B22      
B23      
B24  Y Z   X Y Z 
B25      
B26      
B27      
B28      
B29      
B30      
B31 X Y Z Y   X Y Z Y Z 
B32      
B33    X  
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4.4 Industrial Data Set 

Our third data set with 8 process variables consists of 68 observations with the 

first 7 observations representing the HDS.  As previously mentioned, this data will be 

generically described due to a non-disclosure agreement as the Industrial Data Set with 

process variables A, B, C, D, E, F, G and H.   Table 4.4a lists the 7 in control 

observations that will be used for the HDS. 

 

 

Historical Data Set (HDS) Original 7 observations 

 

Table 4.4a Historical Data Set of the Industrial Data with n = 7. 

Obs  A B C D E F G H 
1 7.613700 0.084000 7.618567 0.090533 0.035167 10.776467 0.018233 0.019233
2 7.615567 0.063000 7.618767 0.069733 0.031700 10.798833 0.019067 0.021533
3 7.616800 0.057433 7.618600 0.082867 0.044667 10.798133 0.019567 0.019333
4 7.617167 0.081600 7.619433 0.080100 0.024033 10.773800 0.018533 0.017533
5 7.616633 0.050733 7.619333 0.081267 0.031400 10.786900 0.019200 0.020967
6 7.617433 0.036033 7.613933 0.057700 0.015133 10.773467 0.017400 0.018167
7 7.617300 0.058567 7.618700 0.089433 0.037467 10.779933 0.016867 0.018467
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61 NEW OBSERVATIONS for n=7 

Table 4.4b The 61 NEW observations for n = 7 

Obs  A B C D E F G H 
1 7.622800 0.034933 7.619233 0.043767 0.015967 10.773633 0.016167 0.016967
2 7.620267 0.067133 7.611900 0.063000 0.048633 10.735267 0.020967 0.019600
3 7.620967 0.090533 7.614500 0.095833 0.053167 10.765933 0.019400 0.020133
4 7.619400 0.052767 7.607233 0.067767 0.031933 10.702067 0.019967 0.020700
5 7.617867 0.075567 7.609533 0.033467 0.051167 10.715400 0.019667 0.020767
6 7.618633 0.092600 7.614867 0.111133 0.057233 10.709800 0.018200 0.019667
7 7.614633 0.071733 7.608867 0.055933 0.018400 10.719700 0.019767 0.020167
8 7.617933 0.086933 7.607833 0.076200 0.023567 10.688367 0.019667 0.021233
9 7.616167 0.107667 7.611533 0.074700 0.027200 10.709867 0.021367 0.021167
10 7.612300 0.096167 7.614900 0.069367 0.027467 10.697233 0.019667 0.020433
11 7.613400 0.089067 7.618333 0.108433 0.050333 10.694833 0.020233 0.021167
12 7.614133 0.100833 7.618367 0.097367 0.044067 10.697700 0.018933 0.021133
13 7.620733 0.067367 7.616600 0.076267 0.032000 10.713433 0.022167 0.019200
14 7.621767 0.066400 7.619533 0.084300 0.045633 10.744067 0.019933 0.020933
15 7.619567 0.104600 7.617633 0.073300 0.051300 10.712967 0.020700 0.020867
16 7.618900 0.042300 7.613600 0.052267 0.018333 10.721133 0.020667 0.021000
17 7.615733 0.027967 7.618533 0.035233 0.025667 10.678367 0.020467 0.020433
18 7.619467 0.057033 7.615967 0.036267 0.023433 10.736900 0.019967 0.020733
19 7.618967 0.087500 7.613500 0.056767 0.036300 10.728433 0.019300 0.017900
20 7.618867 0.052933 7.618900 0.065267 0.022967 10.713033 0.018400 0.019033
21 7.617233 0.095967 7.623567 0.098000 0.046000 10.697333 0.016800 0.015367
22 7.617200 0.072933 7.613000 0.071967 0.016567 10.687100 0.018233 0.016833
23 7.613233 0.087067 7.618033 0.075367 0.046200 10.724900 0.017867 0.019033
24 7.619700 0.078700 7.615533 0.048800 0.055667 10.732933 0.018067 0.020367
25 7.616400 0.065100 7.616600 0.076733 0.036233 10.708367 0.018400 0.019900
26 7.622567 0.098667 7.622233 0.102000 0.057333 10.736000 0.020433 0.019800
27 7.627033 0.068000 7.619200 0.070467 0.047467 10.758900 0.016733 0.019400
28 7.628033 0.056167 7.621900 0.111667 0.033467 10.781667 0.019167 0.020300
29 7.628300 0.113400 7.619467 0.074900 0.045733 10.785067 0.019933 0.019833
30 7.626333 0.091500 7.619333 0.060533 0.038667 10.803600 0.021767 0.017433
31 7.624533 0.039567 7.620700 0.071600 0.030000 10.758900 0.019000 0.021333
32 7.626367 0.051067 7.621167 0.048167 0.013933 10.705267 0.018867 0.021933
33 7.627567 0.087333 7.620400 0.081333 0.040233 10.742500 0.018433 0.021600
34 7.621300 0.077567 7.621600 0.110000 0.039833 10.742167 0.018267 0.021133
35 7.619533 0.090667 7.620333 0.068700 0.027033 10.803533 0.018600 0.019100
36 7.619533 0.102233 7.621233 0.117433 0.027067 10.736667 0.019133 0.019500
37 7.618733 0.112133 7.617400 0.093633 0.022500 10.748600 0.019233 0.018200
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38 7.621567 0.083733 7.616400 0.100900 0.038100 10.785900 0.018267 0.020533
39 7.622233 0.064000 7.619567 0.071600 0.040833 10.728300 0.019267 0.018800
40 7.624467 0.069900 7.613433 0.052800 0.044367 10.721600 0.019333 0.020800
41 7.618267 0.092100 7.615733 0.047600 0.045500 10.710833 0.019367 0.016100
42 7.619567 0.139700 7.608900 0.028933 0.068167 10.722467 0.019967 0.019333
43 7.622600 0.071900 7.613867 0.045567 0.049767 10.721467 0.020433 0.019333
44 7.619500 0.111467 7.615967 0.081667 0.045053 10.748267 0.020167 0.017567
45 7.615967 0.095867 7.614267 0.117333 0.041933 10.701933 0.021233 0.019600
46 7.620767 0.097867 7.618233 0.100867 0.039400 10.748567 0.020367 0.020233
47 7.617967 0.091400 7.615800 0.114400 0.030633 10.729867 0.020633 0.019433
48 7.617200 0.072900 7.613967 0.096100 0.068700 10.746967 0.019600 0.018333
49 7.619733 0.063000 7.614100 0.105967 0.048900 10.769400 0.020467 0.018533
50 7.619100 0.072700 7.616800 0.097000 0.035367 10.761533 0.018267 0.016767
51 7.622067 0.047033 7.620067 0.110567 0.052467 10.734700 0.018167 0.016233
52 7.623500 0.104867 7.621467 0.100533 0.030400 10.700100 0.018333 0.018033
53 7.617533 0.100433 7.618833 0.082033 0.035933 10.704533 0.016933 0.017533
54 7.617933 0.098200 7.617767 0.091200 0.032267 10.723000 0.019133 0.020800
55 7.615267 0.106500 7.612700 0.113633 0.040500 10.703900 0.016400 0.014433
56 7.618400 0.088967 7.613533 0.063767 0.040567 10.687200 0.017433 0.017700
57 7.622200 0.098033 7.617700 0.094033 0.020433 10.687600 0.020300 0.019300
58 7.620300 0.129400 7.620533 0.106667 0.024033 10.684333 0.019700 0.019333
59 7.619367 0.118567 7.614933 0.103247 0.026133 10.682700 0.019900 0.019533
60 7.624167 0.113600 7.615867 0.051700 0.040300 10.858100 0.019767 0.020433
61 7.617533 0.133567 7.613300 0.095200 0.029667 10.677167 0.020233 0.019167

 

 

When applying PCA, we find that A and C are singular as such, we will remove 

them from the analysis.  In the literature when using PCA in multivariate quality it is 

stated that the variable(s) causing the singularity need to be removed in order to proceed.  

(Mason and Young 2002)  The process variables that will be analyzed are B, D, E, F, G 

and H.  From this point on, any reference to the process variables of the HDS and the new 

observations will be solely towards these six that are in the analysis which we will 

identify as X1, X2, X3, X4, X5 and X6. 
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Historical Data Set (HDS) Original 7 observations with 6 process 

variables 

 

Table 4.4c Historical Data Set with the six variables of the Industrial Data with n = 7. 

 Obs X1 X2 X3 X4 X5 X6 
1 0.084000 0.090533 0.035167 10.776467 0.018233 0.019233 
2 0.063000 0.069733 0.031700 10.798833 0.019067 0.021533 
3 0.057433 0.082867 0.044667 10.798133 0.019567 0.019333 
4 0.081600 0.080100 0.024033 10.773800 0.018533 0.017533 
5 0.050733 0.081267 0.031400 10.786900 0.019200 0.020967 
6 0.036033 0.057700 0.015133 10.773467 0.017400 0.018167 
7 0.058567 0.089433 0.037467 10.779933 0.016867 0.018467 

 

 

 

 

Eigenanalysis of the Industrial Correlation Matrix with n=7 

Table 4.4d  The Eigenanalysis of the HDS with n = 7 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 2.7983 1.9425 0.7109 0.3590 0.1773 0.0120 
Proportion 0.466 0.324 0.118 0.060 0.030 0.002 
Cumulative 0.466 0.790 0.909 0.968 0.998 1.000 
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61 NEW OBSERVATIONS for n=7 

Table 4.4e The 61 NEW observations for n = 7 

Obs 
Name 

of each 
point 

X1 X2 X3 X4 X5 X6 

1 C1 0.034933 0.043767 0.015967 10.773633 0.016167 0.016967
2 C2 0.067133 0.063000 0.048633 10.735267 0.020967 0.019600
3 C3 0.090533 0.095833 0.053167 10.765933 0.019400 0.020133
4 C4 0.052767 0.067767 0.031933 10.702067 0.019967 0.020700
5 C5 0.075567 0.033467 0.051167 10.715400 0.019667 0.020767
6 C6 0.092600 0.111133 0.057233 10.709800 0.018200 0.019667
7 C7 0.071733 0.055933 0.018400 10.719700 0.019767 0.020167
8 C8 0.086933 0.076200 0.023567 10.688367 0.019667 0.021233
9 C9 0.107667 0.074700 0.027200 10.709867 0.021367 0.021167
10 C10 0.096167 0.069367 0.027467 10.697233 0.019667 0.020433
11 C11 0.089067 0.108433 0.050333 10.694833 0.020233 0.021167
12 C12 0.100833 0.097367 0.044067 10.697700 0.018933 0.021133
13 C13 0.067367 0.076267 0.032000 10.713433 0.022167 0.019200
14 C14 0.066400 0.084300 0.045633 10.744067 0.019933 0.020933
15 C15 0.104600 0.073300 0.051300 10.712967 0.020700 0.020867
16 C16 0.042300 0.052267 0.018333 10.721133 0.020667 0.021000
17 C17 0.027967 0.035233 0.025667 10.678367 0.020467 0.020433
18 C18 0.057033 0.036267 0.023433 10.736900 0.019967 0.020733
19 C19 0.087500 0.056767 0.036300 10.728433 0.019300 0.017900
20 C20 0.052933 0.065267 0.022967 10.713033 0.018400 0.019033
21 C21 0.095967 0.098000 0.046000 10.697333 0.016800 0.015367
22 C22 0.072933 0.071967 0.016567 10.687100 0.018233 0.016833
23 C23 0.087067 0.075367 0.046200 10.724900 0.017867 0.019033
24 C24 0.078700 0.048800 0.055667 10.732933 0.018067 0.020367
25 C25 0.065100 0.076733 0.036233 10.708367 0.018400 0.019900
26 C26 0.098667 0.102000 0.057333 10.736000 0.020433 0.019800
27 C27 0.068000 0.070467 0.047467 10.758900 0.016733 0.019400
28 C28 0.056167 0.111667 0.033467 10.781667 0.019167 0.020300
29 C29 0.113400 0.074900 0.045733 10.785067 0.019933 0.019833
30 C30 0.091500 0.060533 0.038667 10.803600 0.021767 0.017433
31 C31 0.039567 0.071600 0.030000 10.758900 0.019000 0.021333
32 C32 0.051067 0.048167 0.013933 10.705267 0.018867 0.021933
33 C33 0.087333 0.081333 0.040233 10.742500 0.018433 0.021600
34 C34 0.077567 0.110000 0.039833 10.742167 0.018267 0.021133
35 C35 0.090667 0.068700 0.027033 10.803533 0.018600 0.019100
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36 C36 0.102233 0.117433 0.027067 10.736667 0.019133 0.019500
37 C37 0.112133 0.093633 0.022500 10.748600 0.019233 0.018200
38 C38 0.083733 0.100900 0.038100 10.785900 0.018267 0.020533
39 C39 0.064000 0.071600 0.040833 10.728300 0.019267 0.018800
40 C40 0.069900 0.052800 0.044367 10.721600 0.019333 0.020800
41 C41 0.092100 0.047600 0.045500 10.710833 0.019367 0.016100
42 C42 0.139700 0.028933 0.068167 10.722467 0.019967 0.019333
43 C43 0.071900 0.045567 0.049767 10.721467 0.020433 0.019333
44 C44 0.111467 0.081667 0.045053 10.748267 0.020167 0.017567
45 C45 0.095867 0.117333 0.041933 10.701933 0.021233 0.019600
46 C46 0.097867 0.100867 0.039400 10.748567 0.020367 0.020233
47 C47 0.091400 0.114400 0.030633 10.729867 0.020633 0.019433
48 C48 0.072900 0.096100 0.068700 10.746967 0.019600 0.018333
49 C49 0.063000 0.105967 0.048900 10.769400 0.020467 0.018533
50 C50 0.072700 0.097000 0.035367 10.761533 0.018267 0.016767
51 C51 0.047033 0.110567 0.052467 10.734700 0.018167 0.016233
52 C52 0.104867 0.100533 0.030400 10.700100 0.018333 0.018033
53 C53 0.100433 0.082033 0.035933 10.704533 0.016933 0.017533
54 C54 0.098200 0.091200 0.032267 10.723000 0.019133 0.020800
55 C55 0.106500 0.113633 0.040500 10.703900 0.016400 0.014433
56 C56 0.088967 0.063767 0.040567 10.687200 0.017433 0.017700
57 C57 0.098033 0.094033 0.020433 10.687600 0.020300 0.019300
58 C58 0.129400 0.106667 0.024033 10.684333 0.019700 0.019333
59 C59 0.118567 0.103247 0.026133 10.682700 0.019900 0.019533
60 C60 0.113600 0.051700 0.040300 10.858100 0.019767 0.020433
61 C61 0.133567 0.095200 0.029667 10.677167 0.020233 0.019167
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PCA Simplicial Depth r chart for the first PC of the 61 NEW 

observations for n=7 (α  = 0.05 and 0.10) 
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Figure 4.4a  PCA Simplicial Depth r chart using the first PC n = 7. 

 

Using the HDS of n = 7, the following points from the 61 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05: No Points 

At α  = 0.10: No Points 
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PCA Simplicial Depth r chart for the last PC of the 61 NEW 

observations for n=7 (α = 0.05 and 0.10) 
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Figure 4.4b  PCA Simplicial Depth r chart using the last PC for n = 7. 

 

For the HDS of n = 7, the following points from the 61 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: No Points 

At α  = 0.10: No Points 

Since there were no signals from any of the charts, yet we know a priori that at 
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some point the process was out of control, we will augment the HDS by selecting 20 

points from the 61 by picking every third point starting with C3.  To determine if this set 

is “good” we will now run the original HDS of n = 7 against these 20:  C3, C6, C9, C12, 

C15, C18, C21, C24, C27, C30, C33, C36, C39, C42, C45, C48, C51, C54, C57, C60 

which are listed in Table 4.4f.  Any points identified from this subset as out of control 

will be discarded, and we will run more points until we find 20 in control points.  The 20 

that we find in control will be used to augment the HDS from 7 to 27.  
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20 OBSERVATIONS out of 61 that were selected by choosing 

every third point for n=7. 

 

Table 4.4f   The 20 NEW points for HDS with n = 7. 

Obs 
Name 

of each 
point 

X1 X2 X3 X4 X5 X6 

1 C3 0.090533 0.095833 0.053167 10.765933 0.019400 0.020133
2 C6 0.092600 0.111133 0.057233 10.709800 0.018200 0.019667
3 C9 0.107667 0.074700 0.027200 10.709867 0.021367 0.021167
4 C12 0.100833 0.097367 0.044067 10.697700 0.018933 0.021133
5 C15 0.104600 0.073300 0.051300 10.712967 0.020700 0.020867
6 C18 0.057033 0.036267 0.023433 10.736900 0.019967 0.020733
7 C21 0.095967 0.098000 0.046000 10.697333 0.016800 0.015367
8 C24 0.078700 0.048800 0.055667 10.732933 0.018067 0.020367
9 C27 0.068000 0.070467 0.047467 10.758900 0.016733 0.019400
10 C30 0.091500 0.060533 0.038667 10.803600 0.021767 0.017433
11 C33 0.087333 0.081333 0.040233 10.742500 0.018433 0.021600
12 C36 0.102233 0.117433 0.027067 10.736667 0.019133 0.019500
13 C39 0.064000 0.071600 0.040833 10.728300 0.019267 0.018800
14 C42 0.139700 0.028933 0.068167 10.722467 0.019967 0.019333
15 C45 0.095867 0.117333 0.041933 10.701933 0.021233 0.019600
16 C48 0.072900 0.096100 0.068700 10.746967 0.019600 0.018333
17 C51 0.047033 0.110567 0.052467 10.734700 0.018167 0.016233
18 C54 0.098200 0.091200 0.032267 10.723000 0.019133 0.020800
19 C57 0.098033 0.094033 0.020433 10.687600 0.020300 0.019300
20 C60 0.113600 0.051700 0.040300 10.858100 0.019767 0.020433
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PCA Simplicial Depth r chart for the first PC of the 20 NEW 

observations for n=7 (α  = 0.05 and 0.10) 

 

Index

R
A

NK
S 

of
 F

ir
st

 1
 P

C

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0
0.05
0.10

C60C57

C54

C51

C48

C45

C42

C39

C36

C33

C30

C27

C24

C21C18

C15C12

C9C6

C3

PCA Simplicial Depth r chart

 

Figure 4.4c  PCA Simplicial Depth r chart using the first PC for n=7. 

 

Using the HDS of n = 7, the following points from the 20 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05: No Points 

At α  = 0.10: No Points 
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PCA Simplicial Depth r chart for the last PC of the 20 NEW 

observations for n=7 (α  = 0.05 and 0.10) 
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Figure 4.4d  PCA Simplicial Depth r chart using the last PC for n=7. 

 

For the HDS of n = 7, the following points from the 20 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: No Points 

At α  = 0.10: No Points 

Since there were no out of control points from these 20 points, we will augment 
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the HDS by including these 20 points in order to identify the signal(s) that is/are missed 

as a result of the small HDS that was made available to us.  (see Table 4.4g) 

 

Industrial Data – Extended Historical Data Set (HDS) with n=27 (7 plus 

20 identified as in-control from the control charts with n=7) 

Table 4.4g Extended Historical Data Set of the Industrial Data with n = 27. 

Obs X1 X2 X3 X4 X5 X6 
1 0.084000 0.090533 0.035167 10.776467 0.018233 0.019233 
2 0.063000 0.069733 0.031700 10.798833 0.019067 0.021533 
3 0.057433 0.082867 0.044667 10.798133 0.019567 0.019333 
4 0.081600 0.080100 0.024033 10.773800 0.018533 0.017533 
5 0.050733 0.081267 0.031400 10.786900 0.019200 0.020967 
6 0.036033 0.057700 0.015133 10.773467 0.017400 0.018167 
7 0.058567 0.089433 0.037467 10.779933 0.016867 0.018467 
8 0.090533 0.095833 0.053167 10.765933 0.019400 0.020133 
9 0.092600 0.111133 0.057233 10.709800 0.018200 0.019667 
10 0.107667 0.074700 0.027200 10.709867 0.021367 0.021167 
11 0.100833 0.097367 0.044067 10.697700 0.018933 0.021133 
12 0.104600 0.073300 0.051300 10.712967 0.020700 0.020867 
13 0.057033 0.036267 0.023433 10.736900 0.019967 0.020733 
14 0.095967 0.098000 0.046000 10.697333 0.016800 0.015367 
15 0.078700 0.048800 0.055667 10.732933 0.018067 0.020367 
16 0.068000 0.070467 0.047467 10.758900 0.016733 0.019400 
17 0.091500 0.060533 0.038667 10.803600 0.021767 0.017433 
18 0.087333 0.081333 0.040233 10.742500 0.018433 0.021600 
19 0.102233 0.117433 0.027067 10.736667 0.019133 0.019500 
20 0.064000 0.071600 0.040833 10.728300 0.019267 0.018800 
21 0.139700 0.028933 0.068167 10.722467 0.019967 0.019333 
22 0.095867 0.117333 0.041933 10.701933 0.021233 0.019600 
23 0.072900 0.096100 0.068700 10.746967 0.019600 0.018333 
24 0.047033 0.110567 0.052467 10.734700 0.018167 0.016233 
25 0.098200 0.091200 0.032267 10.723000 0.019133 0.020800 
26 0.098033 0.094033 0.020433 10.687600 0.020300 0.019300 
27 0.113600 0.051700 0.040300 10.858100 0.019767 0.020433 

Eigenanalysis of the Industrial Correlation Matrix with n=27 
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Table 4.4h  The Eigenanalysis of the extended HDS with n = 27. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 1.7478 1.5328 1.0189 0.6808 0.5871 0.4324 
Proportion 0.291 0.255 0.170 0.113 0.098 0.072 
Cumulative 0.291 0.547 0.717 0.830 0.928 1.000 
 

 

 

 

41 NEW OBSERVATIONS for n=27 

Table 4.4i The 41 NEW observations for n = 27 

Obs Name of 
each point X1 X2 X3 X4 X5 X6 

1 C1 0.034933 0.043767 0.015967 10.773633 0.016167 0.016967
2 C2 0.067133 0.063000 0.048633 10.735267 0.020967 0.019600
3 C4 0.052767 0.067767 0.031933 10.702067 0.019967 0.020700
4 C5 0.075567 0.033467 0.051167 10.715400 0.019667 0.020767
5 C7 0.071733 0.055933 0.018400 10.719700 0.019767 0.020167
6 C8 0.086933 0.076200 0.023567 10.688367 0.019667 0.021233
7 C10 0.096167 0.069367 0.027467 10.697233 0.019667 0.020433
8 C11 0.089067 0.108433 0.050333 10.694833 0.020233 0.021167
9 C13 0.067367 0.076267 0.032000 10.713433 0.022167 0.019200
10 C14 0.066400 0.084300 0.045633 10.744067 0.019933 0.020933
11 C16 0.042300 0.052267 0.018333 10.721133 0.020667 0.021000
12 C17 0.027967 0.035233 0.025667 10.678367 0.020467 0.020433
13 C19 0.087500 0.056767 0.036300 10.728433 0.019300 0.017900
14 C20 0.052933 0.065267 0.022967 10.713033 0.018400 0.019033
15 C22 0.072933 0.071967 0.016567 10.687100 0.018233 0.016833
16 C23 0.087067 0.075367 0.046200 10.724900 0.017867 0.019033
17 C25 0.065100 0.076733 0.036233 10.708367 0.018400 0.019900
18 C26 0.098667 0.102000 0.057333 10.736000 0.020433 0.019800
19 C28 0.056167 0.111667 0.033467 10.781667 0.019167 0.020300
20 C29 0.113400 0.074900 0.045733 10.785067 0.019933 0.019833
21 C31 0.039567 0.071600 0.030000 10.758900 0.019000 0.021333
22 C32 0.051067 0.048167 0.013933 10.705267 0.018867 0.021933
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23 C34 0.077567 0.110000 0.039833 10.742167 0.018267 0.021133
24 C35 0.090667 0.068700 0.027033 10.803533 0.018600 0.019100
25 C37 0.112133 0.093633 0.022500 10.748600 0.019233 0.018200
26 C38 0.083733 0.100900 0.038100 10.785900 0.018267 0.020533
27 C40 0.069900 0.052800 0.044367 10.721600 0.019333 0.020800
28 C41 0.092100 0.047600 0.045500 10.710833 0.019367 0.016100
29 C43 0.071900 0.045567 0.049767 10.721467 0.020433 0.019333
30 C44 0.111467 0.081667 0.045053 10.748267 0.020167 0.017567
31 C46 0.097867 0.100867 0.039400 10.748567 0.020367 0.020233
32 C47 0.091400 0.114400 0.030633 10.729867 0.020633 0.019433
33 C49 0.063000 0.105967 0.048900 10.769400 0.020467 0.018533
34 C50 0.072700 0.097000 0.035367 10.761533 0.018267 0.016767
35 C52 0.104867 0.100533 0.030400 10.700100 0.018333 0.018033
36 C53 0.100433 0.082033 0.035933 10.704533 0.016933 0.017533
37 C55 0.106500 0.113633 0.040500 10.703900 0.016400 0.014433
38 C56 0.088967 0.063767 0.040567 10.687200 0.017433 0.017700
39 C58 0.129400 0.106667 0.024033 10.684333 0.019700 0.019333
40 C59 0.118567 0.103247 0.026133 10.682700 0.019900 0.019533
41 C61 0.133567 0.095200 0.029667 10.677167 0.020233 0.019167
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PCA Simplicial Depth r chart for the first 2 PCs of the 41 NEW 

observations for n=27 (α  = 0.05 and 0.10) 
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Figure 4.4e  PCA Simplicial Depth r chart using the first 2 PCs for n=27. 

 

Using the HDS of n = 27, the following points from the 41 new observations were 

identified as out of control by the control chart when selecting the first 2 PCs: 

At α  = 0.05: No Points 

At α  = 0.10: Points C1, C5 and C16 
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PCA Simplicial Depth r chart for the last PC of the 41 NEW 

observations for n=27 (α  = 0.05 and 0.10) 

 

Index

R
A

NK
S 

of
 L

as
t 

1 
PC

403632282420161284

1.0

0.8

0.6

0.4

0.2

0.0
0.05
0.10

C61

C59

C58

C56

C55

C53

C52

C50

C49

C47

C46

C44

C43

C41

C40

C38

C37

C35

C34C32

C31

C29

C28
C26

C25

C23

C22

C20

C19

C17

C16

C14

C13

C11

C10

C8

C7

C5

C4C2

C1

PCA Simplicial Depth r chart

 

Figure 4.4f  PCA Simplicial Depth r chart using the last PC for n=27. 

 

Using the HDS of n = 27, the following points from the 41 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: Point C17 

At α  =  0.10: Points C13, C17, C37 and C55 

From the 29 points that have been identified as in control from the control charts, 
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we will choose the first 20 and augment the HDS to 47.  [Some scenarios included more 

PCs than shown here in generating possible false alarms.]  These 20 points are C2, C4, 

C7, C8, C10, C11, C14, C19, C20, C23, C25, C26, C28, C29, C31, C32, C34, C35, C40 

and C41.  Table 4.4j illustrates the extended HDS with n = 47 with these additional 20 

points. 

 

Industrial Data – Extended Historical Data Set (HDS) with n=47 (27 

plus 20 identified as in-control from the control charts with n=27) 

 

Table 4.4j Extended Historical Data Set of the Industrial Data with n = 47. 

Obs X1 X2 X3 X4 X5 X6 
1 0.084000 0.090533 0.035167 10.776467 0.018233 0.019233 
2 0.063000 0.069733 0.031700 10.798833 0.019067 0.021533 
3 0.057433 0.082867 0.044667 10.798133 0.019567 0.019333 
4 0.081600 0.080100 0.024033 10.773800 0.018533 0.017533 
5 0.050733 0.081267 0.031400 10.786900 0.019200 0.020967 
6 0.036033 0.057700 0.015133 10.773467 0.017400 0.018167 
7 0.058567 0.089433 0.037467 10.779933 0.016867 0.018467 
8 0.090533 0.095833 0.053167 10.765933 0.019400 0.020133 
9 0.092600 0.111133 0.057233 10.709800 0.018200 0.019667 
10 0.107667 0.074700 0.027200 10.709867 0.021367 0.021167 
11 0.100833 0.097367 0.044067 10.697700 0.018933 0.021133 
12 0.104600 0.073300 0.051300 10.712967 0.020700 0.020867 
13 0.057033 0.036267 0.023433 10.736900 0.019967 0.020733 
14 0.095967 0.098000 0.046000 10.697333 0.016800 0.015367 
15 0.078700 0.048800 0.055667 10.732933 0.018067 0.020367 
16 0.068000 0.070467 0.047467 10.758900 0.016733 0.019400 
17 0.091500 0.060533 0.038667 10.803600 0.021767 0.017433 
18 0.087333 0.081333 0.040233 10.742500 0.018433 0.021600 
19 0.102233 0.117433 0.027067 10.736667 0.019133 0.019500 
20 0.064000 0.071600 0.040833 10.728300 0.019267 0.018800 
21 0.139700 0.028933 0.068167 10.722467 0.019967 0.019333 
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22 0.095867 0.117333 0.041933 10.701933 0.021233 0.019600 
23 0.072900 0.096100 0.068700 10.746967 0.019600 0.018333 
24 0.047033 0.110567 0.052467 10.734700 0.018167 0.016233 
25 0.098200 0.091200 0.032267 10.723000 0.019133 0.020800 
26 0.098033 0.094033 0.020433 10.687600 0.020300 0.019300 
27 0.113600 0.051700 0.040300 10.858100 0.019767 0.020433 
28 0.067133 0.063000 0.048633 10.735267 0.020967 0.019600 
29 0.052767 0.067767 0.031933 10.702067 0.019967 0.020700 
30 0.071733 0.055933 0.018400 10.719700 0.019767 0.020167 
31 0.086933 0.076200 0.023567 10.688367 0.019667 0.021233 
32 0.096167 0.069367 0.027467 10.697233 0.019667 0.020433 
33 0.089067 0.108433 0.050333 10.694833 0.020233 0.021167 
34 0.066400 0.084300 0.045633 10.744067 0.019933 0.020933 
35 0.087500 0.056767 0.036300 10.728433 0.019300 0.017900 
36 0.052933 0.065267 0.022967 10.713033 0.018400 0.019033 
37 0.087067 0.075367 0.046200 10.724900 0.017867 0.019033 
38 0.065100 0.076733 0.036233 10.708367 0.018400 0.019900 
39 0.098667 0.102000 0.057333 10.736000 0.020433 0.019800 
40 0.056167 0.111667 0.033467 10.781667 0.019167 0.020300 
41 0.113400 0.074900 0.045733 10.785067 0.019933 0.019833 
42 0.039567 0.071600 0.030000 10.758900 0.019000 0.021333 
43 0.051067 0.048167 0.013933 10.705267 0.018867 0.021933 
44 0.077567 0.110000 0.039833 10.742167 0.018267 0.021133 
45 0.090667 0.068700 0.027033 10.803533 0.018600 0.019100 
46 0.069900 0.052800 0.044367 10.721600 0.019333 0.020800 
47 0.092100 0.047600 0.045500 10.710833 0.019367 0.016100 

 

 

 

Eigenanalysis of the Industrial Correlation Matrix with n=47 

Table 4.4k  The Eigenanalysis of the extended HDS with n = 47. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 1.5768 1.3874 1.0484 0.8645 0.6095 0.5134 
Proportion 0.263 0.231 0.175 0.144 0.102 0.086 
Cumulative 0.263 0.494 0.669 0.813 0.914 1.000 

12 NEW OBSERVATIONS for n=47 
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Table 4.4l The 12 NEW observations for n = 47 

Obs Name of 
each point X1 X2 X3 X4 X5 X6 

1 C1 0.034933 0.043767 0.015967 10.773633 0.016167 0.016967
2 C5 0.075567 0.033467 0.051167 10.715400 0.019667 0.020767
3 C13 0.067367 0.076267 0.032000 10.713433 0.022167 0.019200
4 C16 0.042300 0.052267 0.018333 10.721133 0.020667 0.021000
5 C17 0.027967 0.035233 0.025667 10.678367 0.020467 0.020433
6 C22 0.072933 0.071967 0.016567 10.687100 0.018233 0.016833
7 C37 0.112133 0.093633 0.022500 10.748600 0.019233 0.018200
8 C38 0.083733 0.100900 0.038100 10.785900 0.018267 0.020533
9 C49 0.063000 0.105967 0.048900 10.769400 0.020467 0.018533
10 C55 0.106500 0.113633 0.040500 10.703900 0.016400 0.014433
11 C58 0.129400 0.106667 0.024033 10.684333 0.019700 0.019333
12 C61 0.133567 0.095200 0.029667 10.677167 0.020233 0.019167
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PCA Simplicial Depth r chart for the first 2 PCs of the 12 NEW 

observations for n=47 (α  = 0.05 and 0.10) 
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Figure 4.4g  PCA Simplicial Depth r chart using the first 2 PCs for n=47. 

 

Using the HDS of n = 47, the following points from the 12 new observations were 

identified as out of control by the control chart when selecting the first 2 PCs: 

At α  = 0.05: Points C1, C16, C55 and C61 

At α  = 0.10: Points C1, C16, C55 and C61 
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PCA Simplicial Depth r chart for the last PC of the 12 NEW 

observations for n=47 (α  = 0.05 and 0.10) 
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Figure 4.4h  PCA Simplicial Depth r chart using the last PC for n=47. 

 

For the HDS of n = 47, the following points from the 12 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: Points C17 and C58 

At α  = 0.10: Points C17 and C58 

As we can see in this case study, like in the others, as n increases we begin to 
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detect signals.  The final PC generates signals with one point specifically signaling 

consistently at alpha of 0.05.   At alpha of 0.10, point C55 signals at the last PC along 

with the first PC.  Given the low percentage variability accounted by the first PC, it is 

possible that this correlation shift detected by the last PCs could have resulted in a small 

variability shift at that point as well.  It is interesting to find that the signals are detected 

with small alpha including C1 and C61 in the first PCs, which may be indicative of a 

variability shift, and C17 in the last PC, possibly due to a correlation shift.  This 

discovery is most beneficial in MSPC given that with a fairly small sample size for the 

HDS, we may be able to detect both a shift in variability and a correlation using our 

proposed control chart scheme for the first PCs and last PCs, respectively.  In real MSPC 

data, such as this one, we may not have the availability of large historical base data sets, 

and we can see that if the HDS is too small, as would be expected, we cannot detect out 

of control points. 
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Industrial Data Summary Table 

 

Table 4.4m  61 NEW points with the out of control observations labeled X(n=7), Y(n=27) 

and Z(n=47). 

 05.0=α   10.0=α  
Name of 

point 
First 
2 PCs 

Last 
PC 

 First 
2 PCs 

Last 
PC 

C1 Z   Y Z  
C2      
C3      
C4      
C5    Y  
C6      
C7      
C8      
C9      
C10      
C11      
C12      
C13     Y 
C14      
C15      
C16 Z   Y Z  
C17  Y Z   Y Z 
C18      
C19      
C20      
C21      
C22      
C23      
C24      
C25      
C26      
C27      
C28      
C29      
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C30      
C31      
C32      
C33      
C34      
C35      
C36      
C37     Y 
C38      
C39      
C40      
C41      
C42      
C43      
C44      
C45      
C46      
C47      
C48      
C49      
C50      
C51      
C52      
C53      
C54      
C55 Z   Z Y 
C56      
C57      
C58  Z   Z 
C59      
C60      
C61 Z   Z  
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4.5 Aluminum Pin Data Set 

Our next data set with 6 process variables consists of 70 observations with the 

first 30 observations representing the HDS.  The 6 process variables are Diameter 1, 

Diameter 2, Diameter 3, Diameter 4, Length 1 and Length 1.  Table 4.5a lists the 30 in 

control observations that will be used for the HDS. 

 

Historical Data Set (HDS) Original 30 observations 

 

Table 4.5a Historical Data Set of the Aluminum Pin Data with n = 30. 

Obs  Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2 
1 9.99 9.97 9.96 14.97 49.89 60.02 
2 9.96 9.96 9.95 14.94 49.84 60.02 
3 9.97 9.96 9.95 14.95 49.85 60 
4 10 9.99 9.99 14.99 49.89 60.06 
5 10 9.99 9.99 14.99 49.91 60.09 
6 9.99 9.99 9.98 14.99 49.91 60.08 
7 10 9.99 9.99 14.98 49.91 60.08 
8 10 9.99 9.99 14.99 49.89 60.09 
9 9.96 9.95 9.95 14.95 50 60.15 
10 9.99 9.98 9.98 14.99 49.86 60.06 
11 10 9.99 9.98 14.99 49.94 60.08 
12 10 9.99 9.99 14.99 49.92 60.05 
13 9.97 9.96 9.96 14.96 49.9 60.02 
14 9.97 9.96 9.96 14.96 49.91 60.02 
15 9.97 9.97 9.96 14.97 49.9 60.01 
16 9.97 9.97 9.96 14.97 49.89 60.04 
17 9.98 9.97 9.96 14.96 50.01 60.13 
18 9.98 9.97 9.97 14.96 49.93 60.06 
19 9.98 9.98 9.97 14.98 49.93 60.02 
20 9.98 9.97 9.97 14.97 49.94 60.06 
21 9.98 9.97 9.97 14.97 49.93 60.06 
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22 9.98 9.97 9.97 14.97 49.91 60.02 
23 9.98 9.97 9.96 14.98 49.92 60.06 
24 10 9.99 9.98 14.98 49.88 60 
25 9.99 9.99 9.99 14.98 49.91 60.04 
26 10 9.99 9.99 14.99 49.85 60.01 
27 10 10 9.99 14.99 49.91 60.05 
28 10 9.99 9.99 15 49.92 60.04 
29 10 9.99 9.99 14.99 49.89 60.01 
30 10 10 9.99 14.99 49.88 60 

 

 

 

Eigenanalysis of the Aluminum Pin Correlation Matrix with n=30 

Table 4.5b  The Eigenanalysis of the HDS with n = 30 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.7746 1.6948 0.2694 0.1282 0.0755 0.0574 
Proportion 0.629 0.282 0.045 0.021 0.013 0.010 
Cumulative 0.629 0.912 0.956 0.978 0.990 1.000 
 

 

 

40 NEW OBSERVATIONS for n=30 

 

Table 4.5c The 40 NEW observations for n = 30 

Obs  Name Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2
1 D1 10 9.99 9.99 14.99 49.92 60.03 
2 D2 10 9.99 9.99 15 49.93 60.03 
3 D3 10 10 9.99 14.99 49.91 60.02 
4 D4 10 9.99 9.99 14.99 49.92 60.02 
5 D5 10 9.99 9.99 14.99 49.92 60 
6 D6 10 10 9.99 15 49.94 60.05 
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7 D7 10 9.99 9.99 15 49.89 59.98 
8 D8 10 10 9.99 14.99 49.93 60.01 
9 D9 10 10 9.99 14.99 49.94 60.02 
10 D10 10 10 9.99 15 49.86 59.96 
11 D11 10 9.99 9.99 14.99 49.9 59.97 
12 D12 10 10 10 14.99 49.92 60 
13 D13 10 10 9.99 14.98 49.91 60 
14 D14 10 10 10 15 49.93 59.98 
15 D15 10 9.99 9.98 14.98 49.9 59.99 
16 D16 9.99 9.99 9.99 14.99 49.88 59.98 
17 D17 10.01 10.01 10.01 15.01 49.87 59.97 
18 D18 10 10 9.99 14.99 49.81 59.91 
19 D19 10.01 10 10 15.01 50.07 60.13 
20 D20 10.01 10 10 15 49.93 60 
21 D21 10 10 10 14.99 49.9 59.96 
22 D22 10.01 10.01 10.01 15 49.85 59.93 
23 D23 10 9.99 9.99 15 49.83 59.98 
24 D24 10.01 10.01 10 14.99 49.9 59.98 
25 D25 10.01 10.01 10 15 49.87 59.96 
26 D26 10 9.99 9.99 15 49.87 60.02 
27 D27 9.99 9.99 9.99 14.98 49.92 60.03 
28 D28 9.99 9.98 9.98 14.99 49.93 60.03 
29 D29 9.99 9.99 9.98 14.99 49.89 60.01 
30 D30 10 10 9.99 14.99 49.89 60.01 
31 D31 9.99 9.99 9.99 15 50.04 60.15 
32 D32 10 10 10 14.99 49.84 60.03 
33 D33 10 10 9.99 14.99 49.89 60.01 
34 D34 10 9.99 9.99 15 49.88 60.01 
35 D35 10 10 9.99 14.99 49.9 60.04 
36 D36 9.9 9.89 9.91 14.88 49.99 60.14 
37 D37 10 9.99 9.99 15 49.91 60.04 
38 D38 9.99 9.99 9.99 14.98 49.92 60.04 
39 D39 10.01 10.01 10 15 49.88 60 
40 D40 10 9.99 9.99 14.99 49.95 60.01 
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PCA Simplicial Depth r chart for the first PC of the 40 NEW 

observations for n=30 (α  = 0.05 and 0.10) 
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Figure 4.5a  PCA Simplicial Depth r chart using the first PC n = 30. 

 

Using the HDS of n = 30, the following points from the 40 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points D17 and D36 

At α  = 0.10:  Points D17, D22, D28 and D36 

 



  

131 

 

 

PCA Simplicial Depth r chart for the last PC of the 40 NEW 

observations for n=30 (α = 0.05 and 0.10) 
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Figure 4.5b  PCA Simplicial Depth r chart using the last PC for n = 30. 

 

Using the HDS of n = 30, the following points from the 40 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Point D36 

At α  = 0.10:  Points D6, D7, D35 and D36 
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7 OBSERVATIONS out of 40 that were identified as out of 

control from various PCA Simplicial Depth r-charts for n=30. 

 

Table 4.5d   The 7 NEW points for Extended HDS with n = 40, n = 50 and n = 63. 

Obs  Name Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2
1 D6 10 10 9.99 15 49.94 60.05 
2 D7 10 9.99 9.99 15 49.89 59.98 
3 D17 10.01 10.01 10.01 15.01 49.87 59.97 
4 D22 10.01 10.01 10.01 15 49.85 59.93 
5 D28 9.99 9.98 9.98 14.99 49.93 60.03 
6 D35 10 10 9.99 14.99 49.9 60.04 
7 D36 9.9 9.89 9.91 14.88 49.99 60.14 

 

The table above illustrates the seven points D6, D7, D17, D22, D28, D35 and 36 

from the 40 new observations that were identified as out of control from the control 

charts of various scenarios with the HDS of n = 30. (see Table 4.5d)   From the remaining 

33 points that were identified as in control, we will choose every third point to get an 

initial extra 10 points to augment the HDS.  The 10 additional points are: D3, D8, D11, 

D14, D18, D21, D25, D29, D32 and D37.  An additional set of 10 will be added to 

augment the HDS to n = 50.  These additional 10 points are selected by choosing every 

other point of those in control that were left: D2, D5, D10, D13, D16, D20, D24, D27, 

D31 and D34.  The remaining 13 points: D1, D4, D9, D12, D15, D19, D23, D26, D30, 

D33, D38, D39 and D40 will be added to augment the HDS to n = 63.  Tables 4.5e, 4.5g 

and 4.5i illustrate the extended HDS for n = 40, n = 50 and n = 63. 
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Aluminum Pin Data – Extended Historical Data Set (HDS) with n=40 

(30 plus 10 identified as in-control from the control charts with n=30) 

 

Table 4.5e Extended Historical Data Set of the Aluminum Pin Data with n = 40. 

Obs  Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2 
1 9.99 9.97 9.96 14.97 49.89 60.02 
2 9.96 9.96 9.95 14.94 49.84 60.02 
3 9.97 9.96 9.95 14.95 49.85 60 
4 10 9.99 9.99 14.99 49.89 60.06 
5 10 9.99 9.99 14.99 49.91 60.09 
6 9.99 9.99 9.98 14.99 49.91 60.08 
7 10 9.99 9.99 14.98 49.91 60.08 
8 10 9.99 9.99 14.99 49.89 60.09 
9 9.96 9.95 9.95 14.95 50 60.15 
10 9.99 9.98 9.98 14.99 49.86 60.06 
11 10 9.99 9.98 14.99 49.94 60.08 
12 10 9.99 9.99 14.99 49.92 60.05 
13 9.97 9.96 9.96 14.96 49.9 60.02 
14 9.97 9.96 9.96 14.96 49.91 60.02 
15 9.97 9.97 9.96 14.97 49.9 60.01 
16 9.97 9.97 9.96 14.97 49.89 60.04 
17 9.98 9.97 9.96 14.96 50.01 60.13 
18 9.98 9.97 9.97 14.96 49.93 60.06 
19 9.98 9.98 9.97 14.98 49.93 60.02 
20 9.98 9.97 9.97 14.97 49.94 60.06 
21 9.98 9.97 9.97 14.97 49.93 60.06 
22 9.98 9.97 9.97 14.97 49.91 60.02 
23 9.98 9.97 9.96 14.98 49.92 60.06 
24 10 9.99 9.98 14.98 49.88 60 
25 9.99 9.99 9.99 14.98 49.91 60.04 
26 10 9.99 9.99 14.99 49.85 60.01 
27 10 10 9.99 14.99 49.91 60.05 
28 10 9.99 9.99 15 49.92 60.04 
29 10 9.99 9.99 14.99 49.89 60.01 
30 10 10 9.99 14.99 49.88 60 
31 10 10 9.99 14.99 49.91 60.02 
32 10 10 9.99 14.99 49.93 60.01 
33 10 9.99 9.99 14.99 49.9 59.97 
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34 10 10 10 15 49.93 59.98 
35 10 10 9.99 14.99 49.81 59.91 
36 10 10 10 14.99 49.9 59.96 
37 10.01 10.01 10 15 49.87 59.96 
38 9.99 9.99 9.98 14.99 49.89 60.01 
39 10 10 10 14.99 49.84 60.03 
40 10 9.99 9.99 15 49.91 60.04 

 

 

 

Eigenanalysis of the Aluminum Pin Correlation Matrix with n = 40 

Table 4.5f  The Eigenanalysis of the extended HDS with n = 40. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 4.0045 1.4095 0.3478 0.1180 0.0698 0.0504 
Proportion 0.667 0.235 0.058 0.020 0.012 0.008 
Cumulative 0.667 0.902 0.960 0.980 0.992 1.000 
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PCA Simplicial Depth r chart for the first PC of the 7 NEW 

observations for n=40 (α  = 0.05 and 0.10) 
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Figure 4.5c  PCA Simplicial Depth r chart using the first PC n = 40. 

 

Using the HDS of n = 40, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Point D36 

At α  = 0.10:  Points D22 and D36 
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PCA Simplicial Depth r chart for the last PC of the 7 NEW  

observations for n=40 (α  = 0.05 and 0.10) 
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Figure 4.5d  PCA Simplicial Depth r chart using the last PC for n = 40. 

 

Using the HDS of n = 40, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: Points D6 and D36 

At α  = 0.10: Points D6 and D36 
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Aluminum Pin Data – Extended Historical Data Set (HDS) with n=50 

(30 plus 20 identified as in-control from the control charts with n=30) 

 

Table 4.5g Extended Historical Data Set of the Aluminum Pin Data with n = 50. 

Obs  Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2 
1 9.99 9.97 9.96 14.97 49.89 60.02 
2 9.96 9.96 9.95 14.94 49.84 60.02 
3 9.97 9.96 9.95 14.95 49.85 60 
4 10 9.99 9.99 14.99 49.89 60.06 
5 10 9.99 9.99 14.99 49.91 60.09 
6 9.99 9.99 9.98 14.99 49.91 60.08 
7 10 9.99 9.99 14.98 49.91 60.08 
8 10 9.99 9.99 14.99 49.89 60.09 
9 9.96 9.95 9.95 14.95 50 60.15 
10 9.99 9.98 9.98 14.99 49.86 60.06 
11 10 9.99 9.98 14.99 49.94 60.08 
12 10 9.99 9.99 14.99 49.92 60.05 
13 9.97 9.96 9.96 14.96 49.9 60.02 
14 9.97 9.96 9.96 14.96 49.91 60.02 
15 9.97 9.97 9.96 14.97 49.9 60.01 
16 9.97 9.97 9.96 14.97 49.89 60.04 
17 9.98 9.97 9.96 14.96 50.01 60.13 
18 9.98 9.97 9.97 14.96 49.93 60.06 
19 9.98 9.98 9.97 14.98 49.93 60.02 
20 9.98 9.97 9.97 14.97 49.94 60.06 
21 9.98 9.97 9.97 14.97 49.93 60.06 
22 9.98 9.97 9.97 14.97 49.91 60.02 
23 9.98 9.97 9.96 14.98 49.92 60.06 
24 10 9.99 9.98 14.98 49.88 60 
25 9.99 9.99 9.99 14.98 49.91 60.04 
26 10 9.99 9.99 14.99 49.85 60.01 
27 10 10 9.99 14.99 49.91 60.05 
28 10 9.99 9.99 15 49.92 60.04 
29 10 9.99 9.99 14.99 49.89 60.01 
30 10 10 9.99 14.99 49.88 60 
31 10 10 9.99 14.99 49.91 60.02 
32 10 10 9.99 14.99 49.93 60.01 
33 10 9.99 9.99 14.99 49.9 59.97 
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34 10 10 10 15 49.93 59.98 
35 10 10 9.99 14.99 49.81 59.91 
36 10 10 10 14.99 49.9 59.96 
37 10.01 10.01 10 15 49.87 59.96 
38 9.99 9.99 9.98 14.99 49.89 60.01 
39 10 10 10 14.99 49.84 60.03 
40 10 9.99 9.99 15 49.91 60.04 
41 10 9.99 9.99 15 49.93 60.03 
42 10 9.99 9.99 14.99 49.92 60 
43 10 10 9.99 15 49.86 59.96 
44 10 10 9.99 14.98 49.91 60 
45 9.99 9.99 9.99 14.99 49.88 59.98 
46 10.01 10 10 15 49.93 60 
47 10.01 10.01 10 14.99 49.9 59.98 
48 9.99 9.99 9.99 14.98 49.92 60.03 
49 9.99 9.99 9.99 15 50.04 60.15 
50 10 9.99 9.99 15 49.88 60.01 

 

 

 

 

Eigenanalysis of the Aluminum Pin Correlation Matrix with n = 50 

Table 4.5h  The Eigenanalysis of the extended HDS with n = 50. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.9183 1.5037 0.2970 0.1512 0.0778 0.0521 
Proportion 0.653 0.251 0.049 0.025 0.013 0.009 
Cumulative 0.653 0.904 0.953 0.978 0.991 1.000 
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PCA Simplicial Depth r chart for the first PC of the 7 NEW 

observations for n=50 (α  = 0.05 and 0.10) 
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Figure 4.5e  PCA Simplicial Depth r chart using the first PC n = 50. 

 

Using the HDS of n = 50, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05: Points D17 

At α  = 0.10: Points D17 and D36 
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PCA Simplicial Depth r chart for the last PC of the 7 NEW  

observations for n=50 (α  = 0.05 and 0.10) 
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Figure 4.5f  PCA Simplicial Depth r chart using the last PC for n = 50. 

 

Using the HDS of n = 50, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: Points D6 

At α  = 0.10: Points D6 and D36 
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Aluminum Pin Data – Extended Historical Data Set (HDS) with n=63 

(30 plus 33 identified as in-control from the control charts with n=30) 

 

Table 4.5i Extended Historical Data Set of the Aluminum Pin Data with n = 63. 

Obs  Diameter1 Diameter2 Diameter3 Diameter4 Length1 Length2 
1 9.99 9.97 9.96 14.97 49.89 60.02 
2 9.96 9.96 9.95 14.94 49.84 60.02 
3 9.97 9.96 9.95 14.95 49.85 60 
4 10 9.99 9.99 14.99 49.89 60.06 
5 10 9.99 9.99 14.99 49.91 60.09 
6 9.99 9.99 9.98 14.99 49.91 60.08 
7 10 9.99 9.99 14.98 49.91 60.08 
8 10 9.99 9.99 14.99 49.89 60.09 
9 9.96 9.95 9.95 14.95 50 60.15 
10 9.99 9.98 9.98 14.99 49.86 60.06 
11 10 9.99 9.98 14.99 49.94 60.08 
12 10 9.99 9.99 14.99 49.92 60.05 
13 9.97 9.96 9.96 14.96 49.9 60.02 
14 9.97 9.96 9.96 14.96 49.91 60.02 
15 9.97 9.97 9.96 14.97 49.9 60.01 
16 9.97 9.97 9.96 14.97 49.89 60.04 
17 9.98 9.97 9.96 14.96 50.01 60.13 
18 9.98 9.97 9.97 14.96 49.93 60.06 
19 9.98 9.98 9.97 14.98 49.93 60.02 
20 9.98 9.97 9.97 14.97 49.94 60.06 
21 9.98 9.97 9.97 14.97 49.93 60.06 
22 9.98 9.97 9.97 14.97 49.91 60.02 
23 9.98 9.97 9.96 14.98 49.92 60.06 
24 10 9.99 9.98 14.98 49.88 60 
25 9.99 9.99 9.99 14.98 49.91 60.04 
26 10 9.99 9.99 14.99 49.85 60.01 
27 10 10 9.99 14.99 49.91 60.05 
28 10 9.99 9.99 15 49.92 60.04 
29 10 9.99 9.99 14.99 49.89 60.01 
30 10 10 9.99 14.99 49.88 60 
31 10 10 9.99 14.99 49.91 60.02 
32 10 10 9.99 14.99 49.93 60.01 
33 10 9.99 9.99 14.99 49.9 59.97 



  

142 

 

 

34 10 10 10 15 49.93 59.98 
35 10 10 9.99 14.99 49.81 59.91 
36 10 10 10 14.99 49.9 59.96 
37 10.01 10.01 10 15 49.87 59.96 
38 9.99 9.99 9.98 14.99 49.89 60.01 
39 10 10 10 14.99 49.84 60.03 
40 10 9.99 9.99 15 49.91 60.04 
41 10 9.99 9.99 15 49.93 60.03 
42 10 9.99 9.99 14.99 49.92 60 
43 10 10 9.99 15 49.86 59.96 
44 10 10 9.99 14.98 49.91 60 
45 9.99 9.99 9.99 14.99 49.88 59.98 
46 10.01 10 10 15 49.93 60 
47 10.01 10.01 10 14.99 49.9 59.98 
48 9.99 9.99 9.99 14.98 49.92 60.03 
49 9.99 9.99 9.99 15 50.04 60.15 
50 10 9.99 9.99 15 49.88 60.01 
51 10 9.99 9.99 14.99 49.92 60.03 
52 10 9.99 9.99 14.99 49.92 60.02 
53 10 10 9.99 14.99 49.94 60.02 
54 10 10 10 14.99 49.92 60 
55 10 9.99 9.98 14.98 49.9 59.99 
56 10.01 10 10 15.01 50.07 60.13 
57 10 9.99 9.99 15 49.83 59.98 
58 10 9.99 9.99 15 49.87 60.02 
59 10 10 9.99 14.99 49.89 60.01 
60 10 10 9.99 14.99 49.89 60.01 
61 9.99 9.99 9.99 14.98 49.92 60.04 
62 10.01 10.01 10 15 49.88 60 
63 10 9.99 9.99 14.99 49.95 60.01 
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Eigenanalysis of the Aluminum Pin Correlation Matrix with n = 63 

 

Table 4.5j  The Eigenanalysis of the extended HDS with n = 63. 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.8207 1.6032 0.2810 0.1567 0.0824 0.0561 
Proportion 0.637 0.267 0.047 0.026 0.014 0.009 
Cumulative 0.637 0.904 0.951 0.977 0.991 1.000 
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PCA Simplicial Depth r chart for the first PC of the 7 NEW 

observations for n=63 (α  = 0.05 and 0.10) 
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Figure 4.5g  PCA Simplicial Depth r chart using the first PC n = 63. 

 

Using the HDS of n = 63, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05: Points D17 

At α  = 0.10: Points D17 and D36 
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PCA Simplicial Depth r chart for the last PC of the 7 NEW  

observations for n=63 (α  = 0.05 and 0.10) 
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Figure 4.5h  PCA Simplicial Depth r chart using the last PC for n = 63. 

 

Using the HDS of n = 63, the following points from the 7 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05: Points D6 and D36 

At α  = 0.10: Points D6 and D36 
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Aluminum Pin Data Summary Table 

 

Table 4.5k  40 NEW points with the out of control observations labeled X(n=30), Y(n=40), 
Z(n=50) and U(n=63). 
 
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

D1      
D2      
D3      
D4      
D5      
D6  Y Z U   X Y Z U 
D7     X 
D8      
D9      
D10      
D11      
D12      
D13      
D14      
D15      
D16      
D17 X Z U   X Z U  
D18      
D19      
D20      
D21      
D22    X Y  
D23      
D24      
D25      
D26      
D27      
D28    X  
D29      
D30      
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D31      
D32      
D33      
D34      
D35     X 
D36 X Y X Y U  X Y Z U X Y Z U 
D37      
D38      
D39      
D40      

 
 

 

4.6 Automotive Data Set 

Our fourth data set with 2 process variables consists of 70 observations with the 

first 45 observations representing the HDS.  In numerous studies of MSPC, Mason and 

Young (2003) and Wade and Woodall (1993), Liu (1995) bivariate data has been used to 

gain insight into various techniques.  For example, Mason and Young (2002) utilize PCA 

on a bivariate data set to easily illustrate the scaling and the transformations.  This 

bivariate data set, which Wade and Woodall (1993) gathered from Constable, et.al. 

(1988), represents measurements of a component part for the breaking system for an 

automobile, and the two process variables measured are rollweight (RWT) and 

brakeweight (BWT).  Table 4.6a contains the 45 points for the HDS.  
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Historical Data Set (HDS) Original 45 observations 

Table 4.6a Historical Data Set of the Automotive Data with n = 45. 

Obs  RWT BWT 
1 210 200 
2 211 200 
3 208 199 
4 208 200 
5 209 203 
6 210 203 
7 211 202 
8 211 201 
9 210 201 
10 213 203 
11 210 200 
12 211 203 
13 210 201 
14 210 201 
15 209 202 
16 211 202 
17 211 201 
18 211 202 
19 212 202 
20 208 200 
21 212 202 
22 209 201 
23 210 202 
24 210 201 
25 211 201 
26 210 200 
27 210 200 
28 210 200 
29 211 201 
30 211 202 
31 211 201 
32 210 201 
33 209 201 
34 212 203 
35 209 200 
36 209 199 
37 208 201 
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38 210 202 
39 210 200 
40 212 200 
41 209 201 
42 212 203 
43 211 201 
44 212 204 
45 209 200 

 

 

 

 

 

Eigenanalysis of the Automotive Correlation Matrix with n=45 

Table 4.6b  The Eigenanalysis of the HDS with n = 45 

 PC1 PC2 
Eigenvalue 1.5372 0.4628 
Proportion 0.769 0.231 
Cumulative 0.769 1.000 
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25 NEW OBSERVATIONS for n=45 

Table 4.6c The 25 NEW observations for n = 45 

Obs Name of 
point RWT BWT 

1 E1 209 201 
2 E2 206 200 
3 E3 210 200 
4 E4 208 199 
5 E5 208 198 
6 E6 208 200 
7 E7 206 197 
8 E8 208 199 
9 E9 211 201 
10 E10 214 204 
11 E11 212 203 
12 E12 209 200 
13 E13 209 204 
14 E14 206 201 
15 E15 214 202 
16 E16 211 202 
17 E17 212 202 
18 E18 210 203 
19 E19 214 201 
20 E20 209 200 
21 E21 210 201 
22 E22 212 201 
23 E23 214 206 
24 E24 214 204 
25 E25 212 203 
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PCA Simplicial Depth r chart for the first PC of the 25 NEW 

observations for n=45 (α  = 0.05 and 0.10) 
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Figure 4.6a  PCA Simplicial Depth r chart using the first PC n = 45. 

 

Using the HDS of n = 45, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points E7 and E23 

At α  = 0.10:  Points E7, E10, E23 and E24 

 



  

152 

 

 

PCA Simplicial Depth r chart for the last PC of the 25 NEW 

observations for n=45 (α = 0.05 and 0.10) 
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Figure 4.6b  PCA Simplicial Depth r chart using the last PC for n = 45. 

 

Using the HDS of n = 45, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points E13 and E19 

At α  = 0.10:  Points E13, E14, E15 and E19 

From the 25 points which were monitored using the different PCs, the control 
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chart generated signaled for the following 8 points: E7, E10, E13, E14, E15, E19, E23 

and E24.  [The third scenario included both PCs not shown here in generating possible 

false alarms.]  Using the 17 in-control points:  E1, E2, E3, E4, E5, E6, E8, E9, E11, E12, 

E16, E17, E18, E20, B21, B22 and E25, we will augment the HDS to 62 in order to again 

determine the sensitivity of the control chart with respect to sample size.  (see Table 4.6d)   

Automotive Data – Extended Historical Data Set (HDS) with 62 

observations (45 plus 17 identified as in-control from the control charts 

with n=45) 

Table 4.6d Extended Historical Data Set of the Automotive Data with n = 62. 

Obs  RWT BWT 
1 210 200 
2 211 200 
3 208 199 
4 208 200 
5 209 203 
6 210 203 
7 211 202 
8 211 201 
9 210 201 
10 213 203 
11 210 200 
12 211 203 
13 210 201 
14 210 201 
15 209 202 
16 211 202 
17 211 201 
18 211 202 
19 212 202 
20 208 200 
21 212 202 
22 209 201 
23 210 202 
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24 210 201 
25 211 201 
26 210 200 
27 210 200 
28 210 200 
29 211 201 
30 211 202 
31 211 201 
32 210 201 
33 209 201 
34 212 203 
35 209 200 
36 209 199 
37 208 201 
38 210 202 
39 210 200 
40 212 200 
41 209 201 
42 212 203 
43 211 201 
44 212 204 
45 209 200 
46 209 201 
47 206 200 
48 210 200 
49 208 199 
50 208 198 
51 208 200 
52 208 199 
53 211 201 
54 212 203 
55 209 200 
56 211 202 
57 212 202 
58 210 203 
59 209 200 
60 210 201 
61 212 201 
62 212 203 
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Eigenanalysis of the Automotive Correlation Matrix with n = 62 

Table 4.6e  The Eigenanalysis of the extended HDS with n = 62. 

 PC1 PC2 
Eigenvalue 1.6298 0.3702 
Proportion 0.815 0.185 
Cumulative 0.815 1.000 

 

 

 

 

8 OBSERVATIONS out of 25 that were identified as out of 

control from the PCA Simplicial Depth r-charts for n=45. 

 

Table 4.6f   The 8 NEW points for Extended HDS with n = 62. 

Obs 
Name 

of 
point 

RWT BWT 

1 E7 206 197 
2 E10 214 204 
3 E13 209 204 
4 E14 206 201 
5 E15 214 202 
6 E19 214 201 
7 E23 214 206 
8 E24 214 204 
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PCA Simplicial Depth r chart for the first PC of the 8 NEW 

observations for n=62 (α  = 0.05 and 0.10) 

 

Index

R
A

NK
S 

of
 F

ir
st

 1
 P

C

87654321

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.05
0.10

E24

E23

E19E15

E14

E13E10

E7

PCA Simplicial Depth r chart

 

Figure 4.6c  PCA Simplicial Depth r chart using the first PC for n=62. 

 

Using the HDS of n = 62, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Point E23 

At α  = 0.10:  Point E23 
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PCA Simplicial Depth r chart for the last PC of the 8 NEW  

observations for n=62 (α = 0.05 and 0.10) 
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Figure 4.6d  PCA Simplicial Depth r chart using the last PC for n =62. 

 

Using the HDS of n = 62, the following points from the 8 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points E13 and E19 

At α  = 0.10:  Points E13 and E19 
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For a bivariate process, a PCA Simplicial Depth r chart for each PC may unmask 

the cause(s) of the signal.  In this case study, the eigenanalysis for each HDS n= 45 and 

n=62 illustrates how sample size clearly affects the percentages of variability in this 

bivariate data set.   However, for both sample sizes the possible correlation signals of E13 

and E19 were identified with alpha at 0.05.   
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Automotive Data Summary Table 

 

Table 4.6g  25 NEW points with the out of control observations labeled X(n=45) and 
Y(n=62). 
 
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

E1      
E2      
E3      
E4      
E5      
E6      
E7 X   X  
E8      
E9      
E10    X  
E11      
E12      
E13  X Y   X Y 
E14     X  
E15     X  
E16      
E17      
E18      
E19  X Y   X Y 
E20      
E21      
E22      
E23 X Y   X Y  
E24    X  
E25      
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4.7 Electrolyzer Data Set 

Our sixth data set with 6 process variables consists of 21 observations 

representing the HDS and 6 additional observations which represent mean vectors of sets 

of 4 observations.(Mason and Young 2002)  The six process variables, namely NaOH, 

NaCl, I1, I2, O2 and Cl2, are the chemicals used in a electrolyzer process.  Table 4.7a lists 

the 21 in control observations that will be used for the HDS. 

 

Historical Data Set (HDS) Original 21 observations 

Table 4.7a Historical Data Set of the Electrolyzer Data with n = 21. 

Obs  NaOH NaCl I1 I2 O2 Cl2 
1 134.89 203 0.05 4 98.37 1.17 
2 129.3 203.1 0.06 1.9 98.37 1.17 
3 145.5 208.6 0.17 6.1 98.23 1.42 
4 143.8 188.1 0.11 0.4 98.44 1.12 
5 146.3 189.1 0.22 0.5 98.44 1.11 
6 141.5 196.19 0.16 3.5 98.26 1.35 
7 157.3 185.3 0.09 2.9 98.23 1.4 
8 141.1 209.1 0.16 0.5 98.69 0.86 
9 131.3 200.8 0.17 3.8 97.95 1.64 
10 156.6 189 0.19 0.5 97.97 1.62 
11 135.6 192.8 0.26 0.5 97.65 1.94 
12 128.39 213.1 0.07 3.6 98.43 1.23 
13 138.1 198.3 0.15 2.7 98.12 1.36 
14 140.5 186.1 0.3 0.3 98.15 1.37 
15 139.3 204 0.25 3.8 98.02 1.54 
16 152.39 176.3 0.19 0.9 98.22 1.3 
17 139.69 186.1 0.15 1.6 98.3 1.25 
18 130.3 190.5 0.23 2.6 98.08 1.37 
19 132.19 198.6 0.09 5.7 98.3 1.16 
20 134.8 196.1 0.17 4.9 97.98 1.5 
21 142.3 198.8 0.09 0.3 98.41 1 
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Eigenanalysis of the Electrolyzer Correlation Matrix with n=21 

Table 4.7b  The Eigenanalysis of the HDS with n = 21 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 2.5666 1.9017 0.7369 0.4338 0.3348 0.0261 
Proportion 0.428 0.317 0.123 0.072 0.056 0.004 
Cumulative 0.428 0.745 0.868 0.940 0.996 1.000 
 

 

 

 

6 NEW OBSERVATIONS for n=21 

 

Table 4.7c The 6 NEW observations for n = 21 

Obs Electrolyzer 
Number NaOH NaCl I1 I2 O2 Cl2 

1 573 130.04 192.26 0.26 10.93 98.1 1.47 
2 372 131.77 189.75 0.16 0.94 98.36 1.21 
3 834 134.37 184.99 0.14 1.1 98.43 1.12 
4 1021 140.47 195.84 0.14 4.51 97.91 1.64 
5 963 129.68 198.03 0.23 8.52 97.82 1.71 
6 622 137.96 196.98 0.2 1.74 98.18 1.38 
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PCA Simplicial Depth r chart for the first PC of the 6 NEW 

observations for n=21 (α  = 0.05 and 0.10) 
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Figure 4.7a  PCA Simplicial Depth r chart using the first PC n = 21. 

 

Using the HDS of n = 21, the following points from the 6 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points 834 and 963 

At α  = 0.10:  Points 834 and 963 
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PCA Simplicial Depth r chart for the last PC of the 6 NEW  

observations for n=21 (α = 0.05 and 0.10) 
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Figure 4.7b  PCA Simplicial Depth r chart using the last PC for n = 21. 

 

For the HDS of n = 21, the following points from the 6 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Point 1021 

At α  = 0.10:  Points 372 and 1021 
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Electrolyzer Data Summary Table 

 

Table 4.7d  6 NEW points with the out of control observations labeled X(n=21). 
 
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

573      
372     X 
834 X   X  
1021  X   X 
963 X   X  
622      

 

 

 

4.8 Mechanical Data Set 

Our next data set with 7 process variables consists of 36 observations of a 

complex mechanical part. (Fuchs and Kennet 1998)  The process variables are: X1, X2 

(both represent two diameter measurements on another cylindrical segment of that part), 

X3, X4, X5 (all three represent lengths of various portions of the part), X6 and X7 (both 

represent two different tall width measures).  Table 4.8a lists the 27 in control 

observations that will be used for the HDS. 



  

165 

 

 

Historical Data Set (HDS) 27 observations 

 

Table 4.8a Historical Data Set of the Mechanical Data with n = 27. 

Obs  X1 X2 X3 X4 X5 X6 X7 
1 74.95 74.95 10 26.22 29 0.07 0.12 
2 74.95 75 10 26.2 29 0.08 0.13 
3 74.93 75 10 26.18 29 0.05 0.12 
4 74.93 75 10 26.18 29 0.08 0.15 
5 74.95 75 10 26.2 29 0.09 0.14 
6 74.95 75 10 26.2 29 0.1 0.18 
7 74.94 75 10 26.2 29 0.13 0.25 
8 74.02 75 10 26.3 29 0.05 0.15 
9 74.95 75 10 26.22 29 0.07 0.16 
10 74.94 75 10.04 26.22 29 0.05 0.12 
11 74.95 74.97 10.06 26.3 29 0.05 0.13 
12 74.95 74.75 10.04 26.2 29 0.06 0.05 
13 74.96 74.75 10.04 26.2 29 0.1 0.2 
14 74.94 74.99 10.06 26.2 29 0.12 0.16 
15 74.93 74.98 10.06 26.2 29 0.12 0.18 
16 74.92 74.99 10.08 26.2 29 0.05 0.25 
17 74.93 74.98 10.06 26.18 29 0.05 0.05 
18 74.92 74.96 10.06 26.24 29.04 0.06 0.04 
19 74.93 74.99 10.08 26.2 29.04 0.03 0.12 
20 74.92 74.99 10.1 26.1 29.08 0.12 0.17 
21 74.93 74.98 10.1 26.16 29.06 0.08 0.06 
22 74.93 74.99 10.04 26.16 29.06 0.08 0.1 
23 74.92 74.97 10.06 26.16 29.06 0.1 0.05 
24 74.92 74.97 10.04 26.22 29.08 0.04 0.09 
25 74.93 74.99 10.06 26.14 28.98 0.15 0.15 
26 74.92 74.98 10.06 26.16 28.98 0.1 0.05 
27 74.91 74.98 10.04 26.2 29.02 0.04 0.1 
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Eigenanalysis of the Mechanical Correlation Matrix with n=27 

Table 4.8b  The Eigenanalysis of the HDS with n = 27 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Eigenvalue 2.0940 1.6740 1.1028 0.7646 0.6035 0.4984 0.2627 
Proportion 0.299 0.239 0.158 0.109 0.086 0.071 0.038 
Cumulative 0.299 0.538 0.696 0.805 0.891 0.962 1.000 
 

 

 

9 NEW OBSERVATIONS for n=27 

 

Table 4.8c The 9 NEW observations for n = 27 

Obs  Name X1 X2 X3 X4 X5 X6 
1 H1 74.92 74.99 10.06 26.21 29.04 0.07 
2 H2 74.93 74.98 10.12 26.28 28.98 0.11 
3 H3 74.94 75 10.08 26.22 28.98 0.05 
4 H4 74.93 74.99 10.06 26.2 29.04 0.09 
5 H5 74.94 75 10.06 26.22 29.04 0.08 
6 H6 74.93 75 10.04 26.22 29.04 0.04 
7 H7 74.93 74.99 10 26.2 28.98 0.07 
8 H8 74.93 74.99 10.06 26.28 29.04 0.13 
9 H9 74.94 74.99 10.04 26.25 28.98 0.13 
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PCA Simplicial Depth r chart for the first 2 PCs of the 9 NEW 

observations for n=27 (α  = 0.05 and 0.10) 
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Figure 4.8a  PCA Simplicial Depth r chart using the first 2 PCs n = 27. 

 

Using the HDS of n = 27, the following points from the 9 new observations were 

identified as out of control by the control chart when selecting the first 2 PCs: 

At α  = 0.05:  No Points 

At α  = 0.10:  Points H1, H4, H6 and H7 
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PCA Simplicial Depth r chart for the last PC of the 9 NEW  

observations for n=27 (α = 0.05 and 0.10) 
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Figure 4.8b  PCA Simplicial Depth r chart using the last PC for n = 27. 

 

Using the HDS of n = 27, the following points from the 40 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Point H3 

At α  = 0.10:  Points H3 and H8 
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Mechanical Data Summary Table 

 

Table 4.8d  9 NEW points with the out of control observations labeled X(n=27). 
 
 05.0=α   10.0=α  
Name of 

point 
First 
2 PCs 

Last 
PC 

 First 
2 PCs 

Last 
PC 

H1    X  
H2      
H3  X   X 
H4    X  
H5      
H6    X  
H7    X  
H8     X 
H9      

 

 

4.9 Robustness to Random Error in the HDS 

The following data set contains an observation generated as a random error in the 

HDS (Fuchs and Kennet 1998).  Fuchs and Kennet (1998) used a simulated data run of 

the Aluminum Pin Data and generated a bivariate data set from two of the variables, 

specifically Length 1 and Length 2, and titled them VAR 1 and VAR 2.  Table 4.9a 

displays the HDS with n = 50 with observation 23 identified as the random error in the 

bivariate dataset with process variables VAR1 and VAR2.  (Fuchs and Kennet 1998) 
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Historical Data Set (HDS) Original 50 observations with one random 

error 

 

Table 4.9a Historical Data Set of the Bivariate Data with n = 50 including the random 
error point (Observation 23) 
 

Obs  VAR1 VAR2 
1 49.8585 60.0008 
2 49.8768 59.9865 
3 49.8706 60.0055 
4 49.9117 60.0126 
5 49.847 60.0165 
6 49.8883 60.0216 
7 49.9158 60.0517 
8 49.9152 60.0673 
9 49.9055 60.0726 
10 49.8969 60.0208 
11 49.9137 60.0928 
12 49.8586 59.9823 
13 49.9514 60.0866 
14 49.8988 60.0402 
15 49.8894 60.072 
16 49.9403 60.0681 
17 49.9132 60.035 
18 49.8546 60.0145 
19 49.8815 59.9982 
20 49.8311 59.9963 
21 49.8816 60.0457 
22 49.8501 59.986 
23* 49.9778* 60.0875* 
24 49.869 60.0159 
25 49.8779 60.0055 
26 49.868 60.0088 
27 49.9388 60.0711 
28 49.9133 60.0634 
29 49.912 60.056 
30 49.925 60.0749 
31 49.9442 60.11 
32 49.8386 59.9725 
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33 49.9492 60.1014 
34 49.9204 60.0803 
35 49.8994 60.0625 
36 49.8703 60.0219 
37 49.8846 60.0271 
38 49.958 60.0878 
39 49.8985 60.0329 
40 49.9397 60.0826 
41 49.8741 60.0061 
42 49.914 60.0401 
43 49.9501 60.081 
44 49.8865 60.0169 
45 49.8912 60.0406 
46 49.9252 60.0532 
47 49.9326 60.0741 
48 49.968 60.1219 
49 49.9289 60.0709 
50 49.9233 60.0632 

 

 

 

 

Eigenanalysis of the Bivariate Correlation Matrix with n=50 including 

the Random Error Observation 

 

Table 4.9b  The Eigenanalysis of the HDS with n = 50 

 PC1 PC2 
Eigenvalue 1.8827 0.1173 
Proportion 0.941 0.059 
Cumulative 0.941 1.000 
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25 NEW OBSERVATIONS for n=50 and n=49 

Table 4.9c The 25 NEW observations for n = 50 and for n = 49 

Obs Name of point VAR1 VAR2 
1 G1 49.8798 60.0417 
2 G2 49.9208 60.0292 
3 G3 49.9606 60.1172 
4 G4 49.9498 60.0543 
5 G5 49.839 59.9665 
6 G6 49.9284 60.0079 
7 G7 49.9648 60.0482 
8 G8 49.978 60.0186 
9 G9 50.0218 60.0854 
10 G10 50.0606 60.1399 
11 G11 50.0365 60.1005 
12 G12 49.9756 60.0387 
13 G13 49.984 60.0857 
14 G14 50.0028 60.0482 
15 G15 49.977 60.0278 
16 G16 49.8579 60.0588 
17 G17 49.8997 60.082 
18 G18 49.9156 60.1415 
19 G19 49.9258 60.1132 
20 G20 49.8384 60.0449 
21 G21 49.8937 60.0893 
22 G22 49.8631 60.0757 
23 G23 49.9406 60.1298 
24 G24 49.9046 60.0739 
25 G25 49.8718 60.0676 

  

 The 25 new observations in Table 4.9c will be tested with the HDS for n = 50 

which includes the random error and n = 49 with the random error point deleted in order 

to test the robustness of our proposed control chart scheme when the HDS has been 

contaminated by a point that was not caused by process degradation but rather a random 

error reading. 
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PCA Simplicial Depth r chart for the first PC of the 25 NEW 

observations for n=50 (α  = 0.05 and 0.10) 
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Figure 4.9a  PCA Simplicial Depth r chart using the first PC n = 50. 

 

Using the HDS of n = 50, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Point G10 

At α  = 0.10:  Points G5, G10 and G20. 
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PCA Simplicial Depth r chart for the last PC of the 25 NEW 

observations for n=50 (α = 0.05 and 0.10) 
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Figure 4.9b  PCA Simplicial Depth r chart using the last PC for n = 50. 

 

Using the HDS of n = 50, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points G8 and G18 

At α  = 0.10:  Points G8 and G18 

 



  

175 

 

 

Historical Data Set (HDS) Original 49 observations without the random 

error (Corrected) 

 

Table 4.9d Historical Data Set of the Bivariate Data with n = 49 without the random error 

Obs  VAR1 VAR2 
1 49.8585 60.0008 
2 49.8768 59.9865 
3 49.8706 60.0055 
4 49.9117 60.0126 
5 49.847 60.0165 
6 49.8883 60.0216 
7 49.9158 60.0517 
8 49.9152 60.0673 
9 49.9055 60.0726 
10 49.8969 60.0208 
11 49.9137 60.0928 
12 49.8586 59.9823 
13 49.9514 60.0866 
14 49.8988 60.0402 
15 49.8894 60.072 
16 49.9403 60.0681 
17 49.9132 60.035 
18 49.8546 60.0145 
19 49.8815 59.9982 
20 49.8311 59.9963 
21 49.8816 60.0457 
22 49.8501 59.986 
23 49.869 60.0159 
24 49.8779 60.0055 
25 49.868 60.0088 
26 49.9388 60.0711 
27 49.9133 60.0634 
28 49.912 60.056 
29 49.925 60.0749 
30 49.9442 60.11 
31 49.8386 59.9725 
32 49.9492 60.1014 
33 49.9204 60.0803 
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34 49.8994 60.0625 
35 49.8703 60.0219 
36 49.8846 60.0271 
37 49.958 60.0878 
38 49.8985 60.0329 
39 49.9397 60.0826 
40 49.8741 60.0061 
41 49.914 60.0401 
42 49.9501 60.081 
43 49.8865 60.0169 
44 49.8912 60.0406 
45 49.9252 60.0532 
46 49.9326 60.0741 
47 49.968 60.1219 
48 49.9289 60.0709 
49 49.9233 60.0632 

 

 

 

 

 

Eigenanalysis of the Bivariate Correlation Matrix with n=49 Corrected 

Table 4.9e  The Eigenanalysis of the corrected HDS with n = 49 

 PC1 PC2 
Eigenvalue 1.8861 0.1139 
Proportion 0.943 0.057 
Cumulative 0.943 1.000 
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PCA Simplicial Depth r chart for the first PC of the 25 NEW 

observations for n=49 (α  = 0.05 and 0.10) 
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Figure 4.9c  PCA Simplicial Depth r chart using the first PC n = 49. 

 

Using the HDS of n = 49, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the first PC: 

At α  = 0.05:  Points G5 and G10 

At α  = 0.10:  Points G5 and G10 
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PCA Simplicial Depth r chart for the last PC of the 25 NEW 

observations for n=49 (α = 0.05 and 0.10) 
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Figure 4.9d  PCA Simplicial Depth r chart using the last PC for n = 49. 

 

Using the HDS of n = 49, the following points from the 25 new observations were 

identified as out of control by the control chart when selecting the last PC: 

At α  = 0.05:  Points G8 and G18 

At α  = 0.10:  Points G8, G14 G18 and G22 
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Bivariate Data with Outlier Summary Table 

Table 4.9f  25 NEW points with the out of control observations labeled R(n=50 with one 
Random Error) and C(n=49 Corrected without the random error). 
 
 05.0=α   10.0=α  
Name of 

point 
First 
PC 

Last 
PC 

 First 
PC 

Last 
PC 

G1      
G2      
G3      
G4      
G5 C   R C  
G6      
G7      
G8  R C   R C 
G9      
G10 R C   R C  
G11      
G12      
G13      
G14     C 
G15      
G16      
G17      
G18  R C   R C 
G19      
G20    R  
G21      
G22     C 
G23      
G24      
G25      
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4.10 Summary and Contributions to Multivariate Quality Control  

This section will provide a summary of our analyses, the outcomes of our findings 

with recommendations and their contributions to MSPC.  In this research we have 

utilized theoretically sound distribution free techniques, namely simplicial depth and 

PCA, which have been proven to be robust (Liu, 2003) and adaptable to different 

industrial settings.  Given the distribution free nature of the techniques that were utilized 

in this research, our proposed scheme can be implemented without having to perform 

diagnostics on distributional assumptions such as normality.  Additionally, 

autocorrelation does not violate any assumptions for the validity of our procedure.  We 

found that by unifying these nonparametric techniques, our approach is likely to be robust 

when the HDS is contaminated with a multivariate outlier that was a random error and 

not the result of process degradation.  In Table 4.9f we find that the robustness appears 

more significant for the last PC which is used to monitor possible correlation shifts.  We 

found that points G8 and G18 were both detected with small alpha values for both the 

random error (R) and corrected (C) data sets.  Given that a random error reading may 

occur, our proposed control chart will likely generate few false alarms and not 

erroneously stop the process when it is still in control.  This is most beneficial given that 

it will prevent an unnecessary interruption in the process that can be costly. 

A significant contribution from this research has been to devise a detection 

scheme that will identify possible shifts in the correlation structure as well as the 
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variability shifts.  In his Principal Component Analysis text, Dunteman (1989) has stated 

that the last PC(s) may provide insight into the correlation structure between the 

variables.    In multivariate quality control, Kourti and MacGregor (1995, 1996) and 

Milectic (2004) discuss the benefits of monitoring the remaining set of un-retained 

principal components that contributed to a small percentage of variability.  However, 

their applications were based on normality, whereas our proposed PCA Simplicial Depth 

r chart for both the first and last PCs is nonparametric.  We find that our proposed 

distribution free scheme for the correlation structure will detect signals with fairly low 

sample sizes.   According to our comparisons, the control chart of the last PC appears to 

detect signals robustly, and slight improvements occur at times with small increases in 

sample size.  Our findings indicate that at a low alpha, we can identify out of control 

points which may have been attributed to a correlation shift.  We recommend setting the 

alpha level at 0.05 since signal detection is possible even with small samples.  For very 

small samples, it may be necessary to raise alpha to 0.10 to avoid increases in missed 

alarms depending on the type of industrial process that is being monitored.  As Mason 

and Young (2002) have suggested, in certain processes such as a chemical process, in 

order to avoid hazardous situations caused by missed alarms, it may be desirable to 

increase alpha.  In our case studies, the final PC appears to generate robust signals. If too 

many of the last PCs are used in the analysis, we believe that some correlation signals 

may be masked by the added variability.  We recommend that the last PC alone or the last 

PCs for which the cumulative variability is less than or equal to 0.009 be used to monitor 

correlation shifts.  Table 4.10a illustrates the effect of sample size on the HDS when 
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selecting the last PC.  We find that a signal may be detected with sample sizes between 

20 and 30 as was the case with the Steam Turbine, Industrial and Electrolyzer data sets.  

For the Industrial data set that had an HDS of n = 7, it is not surprising that signal 

detection was not possible.  As such, we recommend that in situations with sample sizes 

smaller than 20, the HDS should be augmented to at least 20 since we found that n = 20 

seemed to provide fairly good results.  From the results in Table 4.10a, we find that our 

charts are capable of identifying highly significant points for correlation shifts such as 

A2, C17, 1021 and H3 with a 0.05 alpha level and sample sizes between 20 and 40.  It 

appears that there are some false alarms and some missed points until the sample size 

gets close to 50, when it seems to converge to a particular set of points chosen.  

Additional points such as B24, D6 and D36 were detected at the alpha level of 0.10 for 

the smaller sample sizes, and subsequently at a lower alpha value as n increases.  Hence, 

adjusting α  depending on n as well as the consequences of missed versus false alarms 

may be a reasonable approach. 
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Table 4.10a Signals from the Last 1 PC and the effect of sample size 

 <20 20 – 29 30 – 39 40 – 49 50 – 59  60 or > 
Steam 

Turbine 
05.0=α  

 1 pt 
A2 

1 pt 
A2    

  NONE 2 pts 
B24, B31  1 pt 

B24 

Fruit 
Juice 

05.0=α  

10.0=α  
  2 pts 

B14, B24 
2 pts 

B24, B31  2 pts 
B24, B31 

NONE 
 

1 pt 
C17  2 pts 

C17, C58   
Industrial 

05.0=α  
 
 

10.0=α  
NONE 

4 pts 
C13, C17 
C37, C55 

 2 pts 
C17, C58   

  1 pt 
D36 

2 pts 
D6, D36 

1 pt 
D6 

2 pts 
D6, D36 

Aluminum 
Pin 

05.0=α  
 

10.0=α    
4 pts 

D6, D7, 
D35, D36 

2 pts 
D6, D36 

2 pts 
D6, D36 

2 pts 
D6, D36 

Electrolyzer 
05.0=α   1021     

Mechanical 
05.0=α    H3    

 

 

Our proposed control chart scheme is twofold.  We have discovered that it 

appears possible to utilize the proposed control chart scheme to detect two different types 

of signals, correlation and variability shifts.  We have just offered our recommendations 
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based on our findings of the last PC(s), however, the challenge in our findings remains at 

the selection of the first set of PCs to monitor the possible shifts caused by variability.  In 

our analyses, we find that the signal detection becomes extremely erratic to the point 

where true signal detection is lost when high cumulative proportions of variability are 

used as the cutoff for the number of first PCs to be retained.  We investigated the 

possibility of choosing a cumulative percentage variability cutoff of 80% or 70% from 

the eigenanalysis for each data set and found that we risk either the loss of signals which 

could lead to hazardous conditions or excessive false alarms which are costly.  From our 

control charts, the cutoff of 60% cumulative variability appears to generate the best 

compromise to provide a reasonable risk of false alarms with possibly minimal missed 

alarms.  Using different sample sizes, we find that the cutoff of 60% cumulative 

variability will provide the most consistent signal detection.  Additionally, we find that 

using a cumulative percent of variability explained by less than or equal to 60% 

neutralizes the effect of the autocorrelation.  Table 4.10b provides a comparison of the 

results of selecting the first PCs and the corresponding points that signal using our 

recommended 60% variability cutoff with changes in sample size.  When plotting the 

control chart of the first PCs that have been retained using the 60% suggested rule, the 

points that appeared to be highly significant such as A4, B2, B31, D17, D36, 834 and 963 

were detected with low alpha levels even with sample sizes below 40.  Additional points 

that were not detected at 0.05 such as C1 and C16 may be unmasked with the 0.10 alpha.  

Subsequently, these additional points will be detected with low alpha levels as the sample 

size increases.  
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Table.4.10b Signals from the first PCs with less than 60% total variation as n changes  

 <20 20 – 29 30 – 39 40 – 49 50 – 59 60 or > 

 
**1 PC 

1 pt 
A4 

1 PC 
2 pts 

A4, A6 
   

Steam 
Turbine 

05.0=α  
 

10.0=α  
 

**1 PC 
2 pts 

A4, A6 

1 PC 
2 pts 

A4, A6 
   

Fruit 
Juice 

05.0=α  
  

1 PC 
2 pts 

B2, B31 

1 PC 
2 pts 

B2, B31 
 

1 PC 
2 pts 

B2, B31 

1 PC 
NONE 

 

2 PCs 
NONE 

 
 

2 PCs 
4 pts 

C1, C16,  
C55, C61 

  

Industrial 
05.0=α  

 
 
 

10.0=α  1 PC 
NONE 

2 PCs 
3 pts 

C1, C5, 
C16 

 

2PCs 
4 pts 

C1, C16,  
C55, C61 

  

  
**1 PC 

2 pts 
D17, D36 

**1 PC 
1 pt 
D36 

**1 PC 
1 pt 
D17 

**1 PC 
1 pt 
D17 

Aluminum 
Pin 

05.0=α  
 
 

10.0=α    

**1 PC 
4 pts 

D17, D22, 
D28, D36 

**1 PC 
2 pts 

D22, D36 

**1 PC 
2 pts 

D17, D36 

**1 PC 
2 pts 

D17, D36 

Electrolyzer 
05.0=α   

1 PC 
2 pts 

834, 963 
    

  2 PCs 
NONE    

Mechanical 
05.0=α  

 
  

10.0=α    

2 PCs 
4 pts 

H1, H4, 
H6, H7 

   

 

**For these cases, the first PC was above the 60% cutoff. 
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In our comparisons illustrated in Tables 4.10a and 4.10b, we did not include the 

bivariate analyses given their unique structure.  In those cases, our suggested 60% cutoff 

percentage of cumulative variability would not be feasible.  For the bivariate cases, we 

propose using the PCA simplicial depth r chart for each PC individually regardless of the 

proportion of the variability explained by each.  We believe this is the only way to 

address both, a detection of shift in correlation structure as well as increase in variability.    

The literature in MSPC has indicated the benefits of using PCA in an industrial setting.  

Applications of projection methods such as Principal Components Analysis (PCA), 

Partial Least Squares and Residual Analysis have been investigated and determined to be 

beneficial in different industrial settings that consist of multivariate processes.  Industries, 

in which projection methods have been well received given their ease of use and 

interpretability, have included manufacturing, automotive, chemical and food industries. 

(Kourti and MacGregor 1995, 1996, 2005)   However, in many MSPC applications of 

these projection methods, the use of PCA has been in conjunction with the 2T  statistic, 

either by using the MYT decomposition (Mason, Young and Tracy, 1997) or the Kourti 

and MacGregor (1996) adaptations of the 2T , thus depending on multivariate normality.  

Our approach utilizes the distribution-free property of projection methods such as PCA 

and simplicial depth, thus multivariate normality will not be required and hence 

independence is likewise unnecessary.   This contribution is significant in industry given 

the need to develop nonparametric techniques in MSPC to eliminate the need to assume 

multivariate normality (Coleman, 1997) and given the presence of autocorrelation in 
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many cases.  

An additional advantage to our approach is the computation and computer aspect 

for implementation.  In terms of software use, most statistical software packages, 

including Minitab and Statistica among others, include the multivariate analysis feature, 

and perform PCA with the eigenanalysis, eigenvectors, scree graphs and PC scores 

generated instantly.  We found that computing simplicial depths was feasible within an 

efficient timeframe which would be beneficial to the user.  Rousseeuw and Ruts (1996) 

designed an algorithm for an efficient computation in the bivariate case for extremely 

large values of n.  In higher dimensionality, the computation of simplicial depth is even 

more challenging which has motivated research for efficient algorithms.  (Mustafa, 2004)  

However, we utilized Mathematica and by solving systems of linear equations for our 

scheme with reduced dimensionality, the computations were obtained rather quickly. 

Additionally, although we investigated using multiple PCs with high proportions 

and low proportions of variability explained, we found that usually we only needed one 

or two of the first set of PCs and one PC on the back end with low variability.  This also 

simplified the computations.  Once the simplicial depths and ranks are computed, the 

univariate control chart scheme for plotting the ranks can be generated using any 

statistical software package with the points labeled clearly as we illustrated.  This 

provides the process user a chart that is easy to use and easy to interpret particularly since 

it is so close in appearance to the old univariate control chart based on normality.  

Additionally, our proposed PCA-Simplicial Depth r control chart is based on theoretically 

sound nonparametric multivariate techniques to identify signals for monitoring the ranks 
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of the simplicial depths of the PCs.  Other adaptations may be possible as new 

developments are found in the theoretical nonparametric multivariate statistical field.  

Table 4.10c summarizes the outcomes from our proposed PCA Simplicial Depth r-control 

chart scheme. 
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Table 4.10c  Outcomes from our proposed PCA Simplicial r-chart. 

Advantages of this Approach in MSPC 

Integrated theoretically sound techniques in a unified nonparametric MSPC 
approach 

• No distribution is assumed; normality is not required 

• Autocorrelation of observations is not a problem 

• Adaptation of existing techniques that are easy to use and recognized in 
Multivariate Quality Control Literature 

Monitors and Identifies Variability and Correlations Shifts 

• First PC(s) for variability 

• Last PC(s) for correlation 

Robustness in MSPC 

• Will not stop the process unnecessarily 

• Low sensitivity to outliers which are not caused by process degradation 

• Low false alarm rates 

Easy to use in different industrial settings that consist of multivariate processes 

• Adaptation of existing techniques that are easy to use and recognized in Quality 
Control Literature 

• PCA-readily available in software and recognized in MSPC 

• Simplicial Depth computations of reduced dimensionality are rapid 

• Graphed in an easy to use univariate scheme 

Foster quality improvement in an industrial setting 

Adaptability 

• Can be incorporated into new multivariate nonparametric test statistics that may 
be developed in the future 
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CHAPTER FIVE: CONCLUSION 

5.1 Summary 

Based on our findings, we have developed a unified distribution free scheme in 

MSPC that has proven to be robust, efficient and easy to understand.  This contribution is 

significant in industry given that it provides an alternative approach to MSPC that will be 

free of distributional assumptions, such as normality and the requirement of 

independence of errors.  As we found consistently in the quality literature, there have 

been significant developments in univariate nonparametric SPC (Chakrati, Van Der Laan, 

and Bakir , 2001), however, the research and development of nonparametric multivariate 

quality schemes has been limited.  (Stoumbos, 2001)  We sought to develop a technique 

utilizing multivariate nonparametric methods that would prove to be easy to use and 

interpret in MSPC. 

The nonparametric data depth charts proposed by Liu (1995) have been well 

received in the multivariate quality literature given their affine invariance and their ease 

of use.  As with the 2T  control chart, the control chart scheme by Liu is univariate which 
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is simple to plot and interpret.  The readability of a univariate plot provides the process 

owner a quick and efficient graphing scheme such that the out of control signal can be 

quickly detected.  Additionally, we found that the computations needed for our proposed 

nonparametric Simplicial Depth r chart will be easy to implement. 

With the affine invariance property satisfied, the statistic utilized by Liu is 

invariant to transformations, scaling and rotations which are necessary when utilizing 

multivariate dimensionality reduction schemes including Principal Component Analysis.  

In the multivariate quality literature, it has been stipulated that a subset of all variables 

will drive a multivariate process.  Thus, it is best to utilize a dimensionality reduction 

scheme such as Principal Component Analysis (PCA) that will identify the components 

that drive the process.  PCA is a technique that is well known and established in both the 

theoretical multivariate statistics field as well as in the industrial multivariate quality 

area.  Given its recognition and availability in software, different industries that are 

driven by multivariate processes have acknowledged the benefit and adaptability of PCA.  

According to the literature in MPSC, PCA has traditionally been used in conjunction with 

the 2T  statistic (Mason and Young, 2002) or modified forms of the 2T  statistic (Kourti 

and MacGregor, 1995) thus imposing normality.  In our proposed scheme, we found that 

PCA, given its distribution free nature, can be utilized beyond traditional parametric 

approaches and incorporated into nonparametric MSPC. 

In order to test our proposed scheme and its adoptability in different industrial 

processes, we gathered numerous real multivariate data sets from the chemical, food and 

manufacturing industries.  The Historical Data Sets (HDS) and new observations were 
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available in the literature and from an undisclosed company data that we analyzed.  We 

performed additional runs with different sample sizes on the HDS in order to test the 

effect of sample size on our proposed scheme.  In our different analyses, we found that 

increases in sample size lowered false alarm rates.  An important finding for the small 

sample case was that signal detection was still possible.  We found that by retaining the 

initial PCs that explain no more than 60% total variation, the autocorrelation effect is 

neutralized.  We plotted ranks of the Simplicial Depths of the first PC(s) and found that 

retaining the first PC(s) that account for at most 60% cumulative variability provide 

robust results even with small samples.  The exception to this rule is when the first PC 

accounts for more than 60% variability in which case the only possibility is to retain the 

first PC.  This holds true for the bivariate case where the first PC is the one that would be 

retained for detecting significant shifts in the process due to variability.. 

Additionally, we find that applying our proposed nonparametric scheme to the last 

PC(s) provides insight into the correlation structure of the multivariate process, which has 

been a challenge.  We recommend selecting either the last PC, or using a cutoff of 0.009 

for the maximum cumulative variability if more than one of the final PCs will be retained 

for the correlation charts.  For the bivariate processes, we recommend utilizing the last 

PC for correlation signal identification.  This is different from current applications of 

projection methods (Kourti and MacGregor, 2003) which utilize the remaining p – k 

PC(s) with the Squared Prediction Error, or Q-statistic, which is dependent on normality.  

As with the PCA Simplicial Depth r-chart of the first PC(s), our proposed scheme for the 

last PC(s) is distribution free.  Our proposed PCA Simplicial Depth r-chart of the last 



  

193 

 

 

PC(s) identified signals with small samples usually at the 0.05 alpha level.  This implies 

that with relatively low false alarm rates a signal generated by a correlation shift can be 

detected even in the small sample cases. 

 

5.2 Future Research 

Our findings are based on utilizing nonparametric methods such as PCA and the 

ranks of the robust Simplicial Depths for an improved signal detection scheme in MSPC.  

Our research focuses on the plots of the ranks of the PC scores of the observations on the 

r control chart, which is a nonparametric multivariate analog of the Shewhart univariate X 

chart as Liu (1995) and Zarate have indicated.  We recommend extending our findings in 

several ways.  One may be to devise a scheme to monitor the expected value which could 

represent an analog to the Shewhart univariate X  chart.  Additional control charts to 

complement PCA and robust simplicial depths may be developed to assist in extending 

beyond our variation and/or correlation detection in an attempt to analyze the variables 

themselves.  There is also an opportunity to fine tune the work on sample size 

requirements.  Also, given the numerous applications of projection methods such as PCA, 

it is possible to investigate some of the other projection methods that represent 

adaptations of PCA including ICA (Independent Component Analysis) and DPCA 
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(Dynamic Principal Component Analysis). 

Currently, PCA is the technique that is available in most statistical software 

packages which facilitates implementation into an industrial application.  However, as 

software developers continue to enhance these statistical programs to include more 

multivariate techniques, these additional projection methods may be utilized more in 

MSPC and may be used to extend our research.  With the computational power of 

modern computers and research that is currently done in computational geometry by 

Mustafa (2004) and Miller and Rousseeuw (2003), we believe that these control chart 

schemes will eventually be programmed in a statistical software package in the same 

manner as control charts such as the X,  X  and 2T  which are generated effortlessly.  

This research provides those in the computer programming field and the quality control 

area the opportunity for joint research and development.  We find that our proposed PCA 

Simplicial Depth r-chart scheme has created an alternative to current developments and 

also generates opportunities for additional research in various fields, most significantly in 

nonparametric multivariate quality control. 
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APPENDIX A  
NONPARAMETRIC MULTIVARIATE STATISTICS 
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During the last six decades, a group of researchers have developed multivariate 

nonparametric statistics but these have not been adopted by the SPC users.  In some cases 

this may be due to the fact that some of the statistics have properties which are 

considered undesirable (such as not being affine invariant).  In other cases, the statistics 

may be difficult to use or limited to bivariate data.  Given the need in industry to develop 

an approach which is easy to use and interpret, for our research we have chosen not to 

utilize these theoretical developments.  These statistics are enumerated and their 

advantages and disadvantages from a theoretical perspective are given in Table A. 
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Nonparametric Statistics from Multivariate Analysis 

which have not been fully adopted in MSPC 

 

Table A Multivariate Analysis Developments  

Statistic Advantages Disadvantages 

Bennet’s multivariate 
sign test with an 
approximate chi-squared 
test statistic 

Provided information for 
2, 3 and in certain 
situations 4 variables 

Property of affine 
invariance is not satisfied. 
 
Based on properties of 
multivariate normal 
distributions 

Bennet’s bivariate signed 
rank test  

Monitors location  Property of affine 
invariance is not satisfied. 
 
Could only monitor 
bivariate data 

Bickel’s vector of 
medians  

Monitors vector of 
medians 
 

Property of affine 
invariance is not satisfied. 
 
Efficiency decreases as 
the correlation increases 

Chatterjee’s bivariate sign 
test  

Monitors location  Property of affine 
invariance is not satisfied. 
 

Gower’s Mediancentre 
 

Bivariate location 
measure to minimize the 
sum of absolute distances 
to observations 

Property of affine 
invariance is not satisfied. 
 
Could only monitor 
bivariate data 
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Utts and Hettmansperger 
vector of  Winsorized 
rank statistics  

Robust nonparametric 
approach to outliers 
 
More efficient than 
Hotelling’s 2T statistic in 
non-normal distributions  
 
Kapatou Nonparametric 
Control Chart scheme 

Property of affine 
invariance is not satisfied 
 
PCA cannot be applied in 
control chart scheme due 
to lack of affine 
invariance  
  

Brown’s spatial median 
for spatial data 

Spatial median according 
to Brown was more 
efficient than the mean 

Property of affine 
invariance is not satisfied. 
 
Could only monitor 
bivariate data 

Oja’s Generalized 
multivariate median 

Measure location, scatter, 
skewness and kurtosis 
 
Property of affine 
invariance is satisfied 

Computation is highly 
intensive 

Brown and 
Hettmansperger’s 
analogues to the 
Wilcoxon signed rank 
sum and the Mann-
Whitney-Wilcoxon rank 
sum test.   

Property of affine 
invariance is satisfied 

Limited to bivariate data 

Randles, multivariate 
analog to the sign test.  
 

Property of affine 
invariance is satisfied  
 
More efficient than 
Hotelling’s 2T statistic in 
heavy-tailed distribution  
Small sample 
distribution-free approach 

Sign Test are not as 
powerful as other 
nonparametric statistics  
 

Peters and Randles’ 
multivariate analog to the 
signed rank test 

Property of affine 
invariance is satisfied 
 
Performs well for a light-
tailed distribution 
 
As efficient as  2T  
statistic in multivariate 
normal distributions 

Performs poorly in 
heavy-tailed situations 
 
Less efficient than 
Randles sign test 
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APPENDIX B  
CONVERGENCE OF THE UNIFORM DISTRIBUTION 
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The following is an overview of the convergence of the simplicial depth rank as 

demonstrated by Liu and Singh (1993) 

Definition Monotonicity Property for the data depth function ( )⋅  ;FD  from Liu and Singh 

(1993).   

( )⋅  ;FD   is monotonically decreasing along any fixed ray from the center 0θ  of the 

distribution.   The distribution F is symmetric around point 0θ .  Given the symmetry 

around  0θ  if F is the distribution of X, then ( )0θ−X  and  ( )X−0θ will have the same 

distribution.  If ( )( ) ( )xFDxFD ;; 00 ≥−+ θαθ    for every x and for α  such that 

10 ≤≤ α . 

 

 

Theorem: If ( )XFD ;  has a continuous distribution under F and assume that 

( ) ( ) 0;;suplim =−
∈∞→

xFDxFD m
xm pR

  assuming the distributions F = G conditionally on X, 

we have that as ∞→m , the rank statistic ( ) [ ]1,0; 1 UYFR m →  along almost all X 

sequences.  (Liu and Singh, 1993) 

  

Proof: 

According to Liu and Singh (1993), to prove this theorem “it suffices to show that 

( )1; yFR m  converges to ( )yFR ;  for almost all fixed y (with respect to F) along almost all 

sequences X.” 
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“Fix a sequence X”  such that the condition ( ) ( ) 0;;suplim =−
∈∞→

xFDxFD m
xm pR

 holds. 

We have that for any 0>ε , ( ) ( )
2

;;sup ε
≤−

∈
yFDyFD m

y pR
 such that every 0mm ≥  for 

some 0m . 

 

Therefore for all 0mm ≥ , if 0→ε we can deduce the following:   

( ) ( ){ } ( ) ( ){ }yFDYFDYyFDYFDY mm ;;:;;: ≥⊆+≥ ε  

 ( ) ( ){ }ε−≥⊆ yFDYFDY ;;:  

 

Theorem: Let  ( ){ }∞=1nn xf  be a sequence of functions defined on a set RA ⊂  and 

converges to f(x).  

 Define nλ : 

  ( ) ( )xfxfn
Ax

n −=
∈

supλ  

The sequence ( ){ }∞=1nn xf  converges uniformly to f(x) on A if and only if 

0→nλ as ∞→n . 

 

Proof:  Two parts: sufficiency and necessity. (Khuri,1993)   

Sufficiency:  Prove: If 0→nλ as ∞→n , then the sequence ( ){ }∞=1nn xf  converges 

uniformly to f(x) on A. 
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Suppose 0→nλ as ∞→n .  Let 0>ε  be given.  Then there exists some integer N such 

that ελ <n  for n > N.  Therefore, we get  

 ( ) ( ) ελ <≤− nn xfxf    for every Ax∈ . 

 

Given that N depends only on ε , the sequence ( ){ }∞=1nn xf  converges uniformly to f(x) on 

A. 

 

Necessity:  If the sequence ( ){ }∞=1nn xf  converges uniformly to f(x) on A, then 0→nλ  as 

∞→n . 

Suppose that sequence ( ){ }∞=1nn xf  converges uniformly to f(x) on A.  Let 0>ε  be given.   

Then there exists some integer N depends only on ε  such that for n > N, 

 ( ) ( )
2
ε

<− xfxfn  for every Ax∈ . 

Consequently, we get 
2
ελ ≤n  

In other words, ( ) ( )
2

sup ελ ≤−=
∈

xfxfn
Ax

n .    Therefore, 0→nλ  as ∞→n . 

For the data depth functions we have ( ) ( )
2

;;sup ε
≤−

∈

yFDyFD m
y pR

 and similarly 

( )1; yFR m  converges uniformly to ( )yFR ;  as such the rank statistic ( ) [ ]1,0; 1 UYFR m →  

along almost all X sequences.  (Liu and Singh, 1993) 
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