You are here

A NEAT APPROACH TO GENETIC PROGRAMMING

Download pdf | Full Screen View

Date Issued:
2007
Abstract/Description:
The evolution of explicitly represented topologies such as graphs involves devising methods for mutating, comparing and combining structures in meaningful ways and identifying and maintaining the necessary topological diversity. Research has been conducted in the area of the evolution of trees in genetic programming and of neural networks and some of these problems have been addressed independently by the different research communities. In the domain of neural networks, NEAT (Neuroevolution of Augmenting Topologies) has shown to be a successful method for evolving increasingly complex networks. This system's success is based on three interrelated elements: speciation, marking of historical information in topologies, and initializing search in a small structures search space. This provides the dynamics necessary for the exploration of diverse solution spaces at once and a way to discriminate between different structures. Although different representations have emerged in the area of genetic programming, the study of the tree representation has remained of interest in great part because of its mapping to programming languages and also because of the observed phenomenon of unnecessary code growth or bloat which hinders performance. The structural similarity between trees and neural networks poses an interesting question: Is it possible to apply the techniques from NEAT to the evolution of trees and if so, how does it affect performance and the dynamics of code growth? In this work we address these questions and present analogous techniques to those in NEAT for genetic programming.
Title: A NEAT APPROACH TO GENETIC PROGRAMMING.
23 views
12 downloads
Name(s): Rodriguez, Adelein , Author
Wu, Annie , Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2007
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The evolution of explicitly represented topologies such as graphs involves devising methods for mutating, comparing and combining structures in meaningful ways and identifying and maintaining the necessary topological diversity. Research has been conducted in the area of the evolution of trees in genetic programming and of neural networks and some of these problems have been addressed independently by the different research communities. In the domain of neural networks, NEAT (Neuroevolution of Augmenting Topologies) has shown to be a successful method for evolving increasingly complex networks. This system's success is based on three interrelated elements: speciation, marking of historical information in topologies, and initializing search in a small structures search space. This provides the dynamics necessary for the exploration of diverse solution spaces at once and a way to discriminate between different structures. Although different representations have emerged in the area of genetic programming, the study of the tree representation has remained of interest in great part because of its mapping to programming languages and also because of the observed phenomenon of unnecessary code growth or bloat which hinders performance. The structural similarity between trees and neural networks poses an interesting question: Is it possible to apply the techniques from NEAT to the evolution of trees and if so, how does it affect performance and the dynamics of code growth? In this work we address these questions and present analogous techniques to those in NEAT for genetic programming.
Identifier: CFE0001971 (IID), ucf:47451 (fedora)
Note(s): 2007-12-01
M.S.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Masters
This record was generated from author submitted information.
Subject(s): genetic programming
neural networks
evolutionary computation
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001971
Restrictions on Access: public
Host Institution: UCF

In Collections