You are here
THE EFFECTIVENESS OF TEACHING METHODS DESIGNED TO IMPROVE STUDENT ENGAGEMENT AND RETENTION OF PHYSICS SUBJECT MATTER FOR BOTH SCIENCE AND NON-SCIENCE MAJORS
- Date Issued:
- 2011
- Abstract/Description:
- The necessity of students' engagement with the subject matter for successful learning is well-documented in education research in general, and in physics education research in particular. This study examines the merits of two different programs designed to improve student learning through enhanced student engagement with the material. The target populations of the two programs are different: One is the group of students taking a physical science class as part of the general curriculum required of non-science, non-engineering majors; the other is the group of students, mostly in engineering disciplines, who must take the calculus-based introductory physics sequence as part of their majors' core curriculum. The physical science class is required for non-science majors due to the importance of having a science-literate public. To improve this group's engagement with the subject matter, Physics in Films approaches the subject in the context of scenes taken from popular Hollywood films. Students' learning in the class is evaluated by comparison between performance on pre- and post-tests. The students are also polled on their confidence in their answers on both tests, as an improved belief in their own knowledge is one of the goals of the class. For the calculus-based physics group, a large issue is retention within the major. Many students change to non-science majors before the completion of their degree. An improved understanding of the material in the introductory physics sequence should help alleviate this problem. The Physics Suite is a multi-part introductory physics curriculum based on physics education research. It has been shown to be effective in several studies when used in its entirety. Here, portions of the curriculum have been used in select sections of the introductory physics classes. Their effectiveness, both individually and in conjunction, is studied. Students' mastery of concepts is evaluated using pre- and post-tests, and effects on class performance and retention within the major are examined. Input from both groups of students in the study was obtained through interviews and surveys.
Title: | THE EFFECTIVENESS OF TEACHING METHODS DESIGNED TO IMPROVE STUDENT ENGAGEMENT AND RETENTION OF PHYSICS SUBJECT MATTER FOR BOTH SCIENCE AND NON-SCIENCE MAJORS. |
![]() ![]() |
---|---|---|
Name(s): |
Maronde, Dan, Author Efthimiou, Costas, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2011 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The necessity of students' engagement with the subject matter for successful learning is well-documented in education research in general, and in physics education research in particular. This study examines the merits of two different programs designed to improve student learning through enhanced student engagement with the material. The target populations of the two programs are different: One is the group of students taking a physical science class as part of the general curriculum required of non-science, non-engineering majors; the other is the group of students, mostly in engineering disciplines, who must take the calculus-based introductory physics sequence as part of their majors' core curriculum. The physical science class is required for non-science majors due to the importance of having a science-literate public. To improve this group's engagement with the subject matter, Physics in Films approaches the subject in the context of scenes taken from popular Hollywood films. Students' learning in the class is evaluated by comparison between performance on pre- and post-tests. The students are also polled on their confidence in their answers on both tests, as an improved belief in their own knowledge is one of the goals of the class. For the calculus-based physics group, a large issue is retention within the major. Many students change to non-science majors before the completion of their degree. An improved understanding of the material in the introductory physics sequence should help alleviate this problem. The Physics Suite is a multi-part introductory physics curriculum based on physics education research. It has been shown to be effective in several studies when used in its entirety. Here, portions of the curriculum have been used in select sections of the introductory physics classes. Their effectiveness, both individually and in conjunction, is studied. Students' mastery of concepts is evaluated using pre- and post-tests, and effects on class performance and retention within the major are examined. Input from both groups of students in the study was obtained through interviews and surveys. | |
Identifier: | CFE0003742 (IID), ucf:48793 (fedora) | |
Note(s): |
2011-05-01 Ph.D. Sciences, Department of Physics Masters This record was generated from author submitted information. |
|
Subject(s): | Physics Education | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0003742 | |
Restrictions on Access: | public | |
Host Institution: | UCF |