You are here
Engineering Evaluation of Multi-beam Satellite Antenna Boresight Pointing using Land/Water Crossings
- Date Issued:
- 2012
- Abstract/Description:
- The Microwave Radiometer (MWR) on the Aquarius/SAC-D mission measures microwave radiation from earth and intervening atmosphere in terms of brightness temperature (Tb). It takes measurements in a push-broom fashion at K (23.8GHz) and Ka (36.5 GHz) band frequencies using two separate antenna systems, each producing eight antenna beams. Pre-launch knowledge of the alignment of these beams with respect to the space-craft is used to geolocate the antenna footprints on ground. As a part of MWR's on-orbit engineering check-out, the verification of MWR's pointing accuracy is discussed here. The technique used to assess MWR's pointing involved comparing the radiometer image of land with high-resolution maps. When the beam's instantaneous field of view (IFOV) passes over a land water boundary, the brightness temperature changes from a radiometrically hot land scene to a radiometrically cold ocean scene. This (")step-function(") change in brightness temperature provides a very sensitive way to characterize the mispointing error of the MWR sensor antenna footprints. This thesis describes the algorithm used for the MWR geolocation calibration. MWR sensor observed boundaries are determined by the absolute maximum Tb slope location. A system of linear equations is produced for each sensor observed land/water crossing to determine the true intersection of the MWR track with the coastline. The observed and expected boundary locations are compared by means of an error distance. Results, presented for all eight beams of the three MWR channels, show that the mispointing error (standard deviations) are overall less than 15 km from the true coastline.
Title: | Engineering Evaluation of Multi-beam Satellite Antenna Boresight Pointing using Land/Water Crossings. |
55 views
17 downloads |
---|---|---|
Name(s): |
May, Catherine, Author Jones, W, Committee Chair Mikhael, Wasfy, Committee Member Wahid, Parveen, Committee Member , Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2012 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The Microwave Radiometer (MWR) on the Aquarius/SAC-D mission measures microwave radiation from earth and intervening atmosphere in terms of brightness temperature (Tb). It takes measurements in a push-broom fashion at K (23.8GHz) and Ka (36.5 GHz) band frequencies using two separate antenna systems, each producing eight antenna beams. Pre-launch knowledge of the alignment of these beams with respect to the space-craft is used to geolocate the antenna footprints on ground. As a part of MWR's on-orbit engineering check-out, the verification of MWR's pointing accuracy is discussed here. The technique used to assess MWR's pointing involved comparing the radiometer image of land with high-resolution maps. When the beam's instantaneous field of view (IFOV) passes over a land water boundary, the brightness temperature changes from a radiometrically hot land scene to a radiometrically cold ocean scene. This (")step-function(") change in brightness temperature provides a very sensitive way to characterize the mispointing error of the MWR sensor antenna footprints. This thesis describes the algorithm used for the MWR geolocation calibration. MWR sensor observed boundaries are determined by the absolute maximum Tb slope location. A system of linear equations is produced for each sensor observed land/water crossing to determine the true intersection of the MWR track with the coastline. The observed and expected boundary locations are compared by means of an error distance. Results, presented for all eight beams of the three MWR channels, show that the mispointing error (standard deviations) are overall less than 15 km from the true coastline. | |
Identifier: | CFE0004245 (IID), ucf:49523 (fedora) | |
Note(s): |
2012-05-01 M.S.E.E. Engineering and Computer Science, Electrical Engineering and Computer Science Masters This record was generated from author submitted information. |
|
Subject(s): | Remote Sensing -- Microwave Radiometer -- geolocation assessment | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0004245 | |
Restrictions on Access: | public 2012-05-15 | |
Host Institution: | UCF |