You are here

Molecular Mechanisms involved in inflammatory angiogenesis induced by monocyte chemotactic protein induced protein-1 (MCPIP1)

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
Major diseases such as cardiovascular diseases, diabetes, obesity and tumor growth are known to involve inflammatory angiogenesis. MCP-induced protein 1 (MCPIP1) encoded by ZC3H12A gene, was reported to promote angiogenesis and is addressed in my dissertation as MCPIP. The mechanism/s involved in the angiogenic differentiation induced by MCPIP was however unknown. The aim of this study was to bridge this gap in our knowledge and delineate the molecular mechanisms and sequential processes involved in angiogenesis mediated via MCPIP. To determine if angiogenesis induced by inflammatory cytokines, TNF-?, IL-1? and IL-8 is mediated via induction of MCPIP, knockdown of MCPIP by its specific siRNA, in human umbilical vein endothelial cells was performed. Oxidative stress, ER stress and autophagy are known to be involved in mediating inflammation. We hypothesized that MCPIP-induced angiogenic differentiation is mediated via induction of oxidative stress, ER stress and autophagy. Chemical inhibitors and specific gene knockdown approach were used to inhibit each process postulated. Oxidative stress was inhibited by apocynin or cerium oxide nanoparticles or knockdown of NADPH oxidase subunit, phox47. Endoplasmic reticulum (ER) stress was blocked by tauroursodeoxycholate or knockdown of ER stress signaling protein IRE-1 and autophagy was inhibited by the use of 3?methyl adenine, or LY 294002 or by specific knockdown of beclin1. Matrigel assay was used as an in vitro tool to assay angiogenic differentiation. Inhibition of each step inhibited the subsequent steps postulated. The results reveal that angiogenesis induced by inflammatory agents is mediated via sequential induction of MCPIP that causes oxidative and nitrosative stress resulting in ER stress leading to autophagy required for angiogenesis. MCPIP has deubiquitinase and anti-dicer RNase activities. If and how the dual enzymatic activities of MCPIP mediate angiogenesis was unknown. Our results showed that hypoxia-induced angiogenesis is mediated via MCPIP. MCPIP deubiquitinated ubiquitinated hypoxia-inducible factor (HIF-1?) and the stabilized HIF-1? entered the nucleus to promote the transcription of its target genes, cyclooxygenase-2 and vascular endothelial growth factor causing the activation of p38 MAP kinase involved in angiogenesis. MCPIP expression promoted angiogenesis by inhibition of thrombospondin-1 synthesis via induction of silent information regulator (SIRT)-1 and/or via suppression of VEG-inhibitor levels caused by inhibition of NF-?B activation. MCPIP inhibited the production of the anti-angiogenic microRNAs (miR)-20b and miR-34a that repress the translation of HIF-1? and SIRT-1, respectively. Cells expressing the RNase-dead mutant of MCPIP, D141N, that had lost the ability to induce angiogenesis had deubiquitinase activity but did not inhibit the production of miR-20b and miR-34a. Mimetics of miR-20b and miR-34a inhibited MCPIP-induced angiogenesis. These results show for the first time that both deubiquitinase and anti-dicer RNase activities of MCPIP are involved in inflammatory angiogenesis. Results from our study delineate key processes that could be potential targets for therapeutic intervention against inflammatory angiogenesis.
Title: Molecular Mechanisms involved in inflammatory angiogenesis induced by monocyte chemotactic protein induced protein-1 (MCPIP1).
44 views
23 downloads
Name(s): Roy, Arpita, Author
Kolattukudy, Pappachan, Committee Chair
Ebert, Steven, Committee Member
Parthasarathy, Sampath, Committee Member
Self, William, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Major diseases such as cardiovascular diseases, diabetes, obesity and tumor growth are known to involve inflammatory angiogenesis. MCP-induced protein 1 (MCPIP1) encoded by ZC3H12A gene, was reported to promote angiogenesis and is addressed in my dissertation as MCPIP. The mechanism/s involved in the angiogenic differentiation induced by MCPIP was however unknown. The aim of this study was to bridge this gap in our knowledge and delineate the molecular mechanisms and sequential processes involved in angiogenesis mediated via MCPIP. To determine if angiogenesis induced by inflammatory cytokines, TNF-?, IL-1? and IL-8 is mediated via induction of MCPIP, knockdown of MCPIP by its specific siRNA, in human umbilical vein endothelial cells was performed. Oxidative stress, ER stress and autophagy are known to be involved in mediating inflammation. We hypothesized that MCPIP-induced angiogenic differentiation is mediated via induction of oxidative stress, ER stress and autophagy. Chemical inhibitors and specific gene knockdown approach were used to inhibit each process postulated. Oxidative stress was inhibited by apocynin or cerium oxide nanoparticles or knockdown of NADPH oxidase subunit, phox47. Endoplasmic reticulum (ER) stress was blocked by tauroursodeoxycholate or knockdown of ER stress signaling protein IRE-1 and autophagy was inhibited by the use of 3?methyl adenine, or LY 294002 or by specific knockdown of beclin1. Matrigel assay was used as an in vitro tool to assay angiogenic differentiation. Inhibition of each step inhibited the subsequent steps postulated. The results reveal that angiogenesis induced by inflammatory agents is mediated via sequential induction of MCPIP that causes oxidative and nitrosative stress resulting in ER stress leading to autophagy required for angiogenesis. MCPIP has deubiquitinase and anti-dicer RNase activities. If and how the dual enzymatic activities of MCPIP mediate angiogenesis was unknown. Our results showed that hypoxia-induced angiogenesis is mediated via MCPIP. MCPIP deubiquitinated ubiquitinated hypoxia-inducible factor (HIF-1?) and the stabilized HIF-1? entered the nucleus to promote the transcription of its target genes, cyclooxygenase-2 and vascular endothelial growth factor causing the activation of p38 MAP kinase involved in angiogenesis. MCPIP expression promoted angiogenesis by inhibition of thrombospondin-1 synthesis via induction of silent information regulator (SIRT)-1 and/or via suppression of VEG-inhibitor levels caused by inhibition of NF-?B activation. MCPIP inhibited the production of the anti-angiogenic microRNAs (miR)-20b and miR-34a that repress the translation of HIF-1? and SIRT-1, respectively. Cells expressing the RNase-dead mutant of MCPIP, D141N, that had lost the ability to induce angiogenesis had deubiquitinase activity but did not inhibit the production of miR-20b and miR-34a. Mimetics of miR-20b and miR-34a inhibited MCPIP-induced angiogenesis. These results show for the first time that both deubiquitinase and anti-dicer RNase activities of MCPIP are involved in inflammatory angiogenesis. Results from our study delineate key processes that could be potential targets for therapeutic intervention against inflammatory angiogenesis.
Identifier: CFE0004793 (IID), ucf:49760 (fedora)
Note(s): 2012-12-01
Ph.D.
Medicine, Molecular Biology and Microbiology
Doctoral
This record was generated from author submitted information.
Subject(s): Angiogenesis -- MCPIP -- Oxidative stress -- ER stress -- Deubiquitinase
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004793
Restrictions on Access: public 2013-06-15
Host Institution: UCF

In Collections