You are here

A Time-Course Analysis of Behavioral Plasticity and Differential Gene Expression Patterns in Response to Density in Schistocerca americana (Orthoptera: Acrididae)

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
Phenotypic plasticity is the ability of the genotype to express alternative phenotypes in response to different environmental conditions and this is considered to be an adaptation in which a species can survive and persist in a rapidly changing environment. Some grasshoppers and locusts are capable of expressing an extreme form of density-dependent phenotypic plasticity, known as locust phase polyphenism. At low population density, the individuals typically have a cryptic coloration as nymphs, are less active, and only seek out conspecifics for reproductive purposes. At high density, however, they develop a drastically different phenotype in which they have a conspicuous coloration, are much more active, and tend to stay together in large groups. The American Birdwing grasshopper, Schistocerca americana, is a non-swarming species related to the desert locust, S. gregaria, which shows density-dependent phenotypic plasticity in behavior, color, and morphology. In this thesis, I have identified the duration of crowding necessary for a 6th instar S. americana reared in the isolated condition to express the typical crowded behavior. The behavior changed after just one hour of crowding and the effect of crowding diminished after 48 hours to near-complete isolated behavior. In reverse, the crowded condition was isolated, but behavior did not significantly change over time. Gene expression of the following three genes suspected of having a role in behavior change were investigated based on studies of S. gregaria: protein kinase A (PKA), L-Tryptophan-5-monooxygenase (T-5), and Aromatic L-amino acid decarboxylase (Decarb). T-5 was up-regulated in the long-term isolated condition compared to the long-term crowded condition. T-5 and Decarb were up-regulated in isolated individuals that were crowded for 10 hours compared to the long-term isolated condition. This study represents a novel contribution in the study of phenotypic plasticity as it establishes the time course of behavioral and molecular plasticity in a non-swarming grasshopper for the first time.
Title: A Time-Course Analysis of Behavioral Plasticity and Differential Gene Expression Patterns in Response to Density in Schistocerca americana (Orthoptera: Acrididae).
34 views
13 downloads
Name(s): Gotham, Steven, Author
Song, Hojun, Committee Chair
Vonkalm, Laurence, Committee Member
Fedorka, Kenneth, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Phenotypic plasticity is the ability of the genotype to express alternative phenotypes in response to different environmental conditions and this is considered to be an adaptation in which a species can survive and persist in a rapidly changing environment. Some grasshoppers and locusts are capable of expressing an extreme form of density-dependent phenotypic plasticity, known as locust phase polyphenism. At low population density, the individuals typically have a cryptic coloration as nymphs, are less active, and only seek out conspecifics for reproductive purposes. At high density, however, they develop a drastically different phenotype in which they have a conspicuous coloration, are much more active, and tend to stay together in large groups. The American Birdwing grasshopper, Schistocerca americana, is a non-swarming species related to the desert locust, S. gregaria, which shows density-dependent phenotypic plasticity in behavior, color, and morphology. In this thesis, I have identified the duration of crowding necessary for a 6th instar S. americana reared in the isolated condition to express the typical crowded behavior. The behavior changed after just one hour of crowding and the effect of crowding diminished after 48 hours to near-complete isolated behavior. In reverse, the crowded condition was isolated, but behavior did not significantly change over time. Gene expression of the following three genes suspected of having a role in behavior change were investigated based on studies of S. gregaria: protein kinase A (PKA), L-Tryptophan-5-monooxygenase (T-5), and Aromatic L-amino acid decarboxylase (Decarb). T-5 was up-regulated in the long-term isolated condition compared to the long-term crowded condition. T-5 and Decarb were up-regulated in isolated individuals that were crowded for 10 hours compared to the long-term isolated condition. This study represents a novel contribution in the study of phenotypic plasticity as it establishes the time course of behavioral and molecular plasticity in a non-swarming grasshopper for the first time.
Identifier: CFE0005799 (IID), ucf:50049 (fedora)
Note(s): 2014-12-01
M.S.
Sciences, Biology
Masters
This record was generated from author submitted information.
Subject(s): Schistocerca americana -- Schistocerca gregaria -- Phenotypic plasticity -- Behavior Time-Course -- Quantitative Genetics
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005799
Restrictions on Access: campus 2018-06-15
Host Institution: UCF

In Collections