You are here

On the Theory of Zeta-functions and L-functions

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet's L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we also discuss different formulations and approaches to the proof of the Prime Number Theorem and the Riemann Hypothesis. These two topics constitute the main theme of this thesis. For the Prime Number Theorem, we provide a thorough discussion that compares and contrasts Norbert Wiener's proof with that of Newman's short proof. We have also related them to Hadamard's and de la Vallee Poussin's original proofs written in 1896. As far as the Riemann Hypothesis is concerned, we discuss some recent results related to equivalent formulations of the Riemann Hypothesis as well as the Generalized Riemann Hypothesis.
Title: On the Theory of Zeta-functions and L-functions.
39 views
20 downloads
Name(s): Awan, Almuatazbellah, Author
Mohapatra, Ram, Committee Chair
Li, Xin, Committee Member
Brennan, Joseph, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet's L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we also discuss different formulations and approaches to the proof of the Prime Number Theorem and the Riemann Hypothesis. These two topics constitute the main theme of this thesis. For the Prime Number Theorem, we provide a thorough discussion that compares and contrasts Norbert Wiener's proof with that of Newman's short proof. We have also related them to Hadamard's and de la Vallee Poussin's original proofs written in 1896. As far as the Riemann Hypothesis is concerned, we discuss some recent results related to equivalent formulations of the Riemann Hypothesis as well as the Generalized Riemann Hypothesis.
Identifier: CFE0005576 (IID), ucf:50268 (fedora)
Note(s): 2015-05-01
M.S.
Sciences, Mathematics
Masters
This record was generated from author submitted information.
Subject(s): Riemann zeta function -- Hurwtiz zeta function -- L functions -- Dedekind zeta function -- Universality -- Prime Number Theorem -- Riemann Hypothesis -- Generalized Riemann Hypothesis -- Analytic Number Theory -- Special Functions
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005576
Restrictions on Access: public 2015-05-15
Host Institution: UCF

In Collections