You are here

Determination of Frequency-Based Switch Triggers for Optimal Vibration Reduction via Resonance Frequency Detuning

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
Resonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach that applies to systems experiencing transient excitation through the system's resonance(-)for example, turbomachinery experiencing changes in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of piezoelectric material and manipulation of its electrical boundary conditions, which control the stiffness of the piezoelectric material. Resonance frequency detuning exploits this effect by intelligently switching between the open-circuit (high stiffness) and short-circuit (low stiffness) conditions as the excitation approaches resonance, subsequently shifting the natural frequency to avoid this resonance crossing and limit the response. The peak response dynamics are then determined by the system's sweep rate, modal damping ratio, electromechanical coupling coefficient, and, most importantly, the trigger (represented here in terms of excitation frequency) that initiates the stiffness state switch. This thesis identifies the optimal frequency-based switch trigger over a range of sweep rates, damping ratios, and electromechanical coupling coefficients. With perfect knowledge of the system, the optimal frequency-based switch trigger decreases approximately linearly with the square of the coupling coefficient. Furthermore, phase of vibration at the time of the switch has a very small effect; switching on peak strain energy is marginally optimal. In practice, perfect knowledge is unrealistic and an alternate switch trigger based on an easily measurable parameter is necessary. As such, this thesis also investigates potential methods using the open-circuit piezoelectric voltage response envelope and its derivatives. The optimal switch triggers collapse to a near linear trend when measured against the response envelope derivatives and, subsequently, an empirical control law is extracted. This control law agrees well with and produces a comparable response to that of the optimal control determined using perfect and complete knowledge of the system.
Title: Determination of Frequency-Based Switch Triggers for Optimal Vibration Reduction via Resonance Frequency Detuning.
38 views
14 downloads
Name(s): Lopp, Garrett, Author
Kauffman, Jeffrey, Committee Chair
Das, Tuhin, Committee Member
Xu, Yunjun, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Resonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach that applies to systems experiencing transient excitation through the system's resonance(-)for example, turbomachinery experiencing changes in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of piezoelectric material and manipulation of its electrical boundary conditions, which control the stiffness of the piezoelectric material. Resonance frequency detuning exploits this effect by intelligently switching between the open-circuit (high stiffness) and short-circuit (low stiffness) conditions as the excitation approaches resonance, subsequently shifting the natural frequency to avoid this resonance crossing and limit the response. The peak response dynamics are then determined by the system's sweep rate, modal damping ratio, electromechanical coupling coefficient, and, most importantly, the trigger (represented here in terms of excitation frequency) that initiates the stiffness state switch. This thesis identifies the optimal frequency-based switch trigger over a range of sweep rates, damping ratios, and electromechanical coupling coefficients. With perfect knowledge of the system, the optimal frequency-based switch trigger decreases approximately linearly with the square of the coupling coefficient. Furthermore, phase of vibration at the time of the switch has a very small effect; switching on peak strain energy is marginally optimal. In practice, perfect knowledge is unrealistic and an alternate switch trigger based on an easily measurable parameter is necessary. As such, this thesis also investigates potential methods using the open-circuit piezoelectric voltage response envelope and its derivatives. The optimal switch triggers collapse to a near linear trend when measured against the response envelope derivatives and, subsequently, an empirical control law is extracted. This control law agrees well with and produces a comparable response to that of the optimal control determined using perfect and complete knowledge of the system.
Identifier: CFE0005829 (IID), ucf:50909 (fedora)
Note(s): 2015-08-01
M.S.A.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): vibration reduction -- piezoelectric device -- turbomachinery damping
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005829
Restrictions on Access: public 2015-08-15
Host Institution: UCF

In Collections