You are here

Parity-time and supersymmetry in optics

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
Symmetry plays a crucial role in exploring the laws of nature. By exploiting some of the underlying analogies between the mathematical formalism of quantum mechanics and that of electrodynamics, in this dissertation we show that optics can provide a fertile ground for studying, observing, and utilizing some of the peculiar symmetries that are currently out of reach in other areas of physics. In particular, in this work, we investigate two important classes of symmetries, parity-time symmetry (PT) and supersymmetry (SUSY), within the context of classical optics. The presence of PT symmetry can lead to entirely real spectra in non-Hermitian systems. In optics, PT-symmetric structures involving balanced regions of gain and loss exhibit intriguing properties which are otherwise unattainable in traditional Hermitian systems. We show that selective PT symmetry breaking offers a new method for achieving single mode operation in laser cavities. Other interesting phenomena also arise in connection with PT periodic structures. Along these lines, we introduce a new class of optical lattices, the so called mesh lattices. Such arrays provide an ideal platform for observing a range of PT-related phenomena. We show that defect sates and solitons exist in such periodic environments exhibiting unusual behavior. We also investigate the scattering properties of PT-symmetric particles and we show that such structures can deflect light in a controllable manner. In the second part of this dissertation, we introduce the concept of supersymmetric optics. In this regard, we show that any optical structure can be paired with a superpartner with similar guided wave and scattering properties. As a result, the guided mode spectra of these optical waveguide systems can be judiciously engineered so as to realize new families of mode filters and mode division multiplexers and demultiplexers. We also present the first experimental demonstration of light dynamics in SUSY ladders of photonic lattices. In addition a new type of transformation optics based on supersymmetry is also explored. Finally, using the SUSY formalism in non-Hermitian settings, we identify more general families of complex optical potentials with real spectra.
Title: Parity-time and supersymmetry in optics.
42 views
22 downloads
Name(s): Miri, Mohammad, Author
Christodoulides, Demetrios, Committee Chair
Abouraddy, Ayman, Committee Member
Likamwa, Patrick, Committee Member
Choudhury, Sudipto, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Symmetry plays a crucial role in exploring the laws of nature. By exploiting some of the underlying analogies between the mathematical formalism of quantum mechanics and that of electrodynamics, in this dissertation we show that optics can provide a fertile ground for studying, observing, and utilizing some of the peculiar symmetries that are currently out of reach in other areas of physics. In particular, in this work, we investigate two important classes of symmetries, parity-time symmetry (PT) and supersymmetry (SUSY), within the context of classical optics. The presence of PT symmetry can lead to entirely real spectra in non-Hermitian systems. In optics, PT-symmetric structures involving balanced regions of gain and loss exhibit intriguing properties which are otherwise unattainable in traditional Hermitian systems. We show that selective PT symmetry breaking offers a new method for achieving single mode operation in laser cavities. Other interesting phenomena also arise in connection with PT periodic structures. Along these lines, we introduce a new class of optical lattices, the so called mesh lattices. Such arrays provide an ideal platform for observing a range of PT-related phenomena. We show that defect sates and solitons exist in such periodic environments exhibiting unusual behavior. We also investigate the scattering properties of PT-symmetric particles and we show that such structures can deflect light in a controllable manner. In the second part of this dissertation, we introduce the concept of supersymmetric optics. In this regard, we show that any optical structure can be paired with a superpartner with similar guided wave and scattering properties. As a result, the guided mode spectra of these optical waveguide systems can be judiciously engineered so as to realize new families of mode filters and mode division multiplexers and demultiplexers. We also present the first experimental demonstration of light dynamics in SUSY ladders of photonic lattices. In addition a new type of transformation optics based on supersymmetry is also explored. Finally, using the SUSY formalism in non-Hermitian settings, we identify more general families of complex optical potentials with real spectra.
Identifier: CFE0005844 (IID), ucf:50915 (fedora)
Note(s): 2014-12-01
Ph.D.
Optics and Photonics, Optics and Photonics
Doctoral
This record was generated from author submitted information.
Subject(s): Optics -- Photonics -- PT symmetry -- Supersymmetry
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005844
Restrictions on Access: public 2015-06-15
Host Institution: UCF

In Collections