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ABSTRACT 

Acousto-Optic Deflectors (AODs) are inertialess optical solid state devices that have advantages 

over conventional mechanically controlled mirror-based deflectors in numerous scientific and 

industrial applications.  These applications include fluorescence microscopy, sensing, variable-

focus lens, photolithography and laser materials processing.  AODs are currently operated with a 

single piezoelectric transducer that modulates the refractive index only in one direction.  This 

operating principle limits the performance of AODs to a narrow acoustic bandwidth of the 

transducer and a small angle of laser deflection governed by the Bragg diffraction.   

          To overcome these two limitations, the operation of AODs with phased array ultrasonic 

transducers is analyzed in this study.  Only the amplitude and frequency of the acoustic waves are 

modulated in conventional AODs.  The phased array mechanism enables modulating the acoustic 

phase in addition to the amplitude and frequency modulations.  The latter two phenomena affect 

the refractive index variation and its periodicity in the AOD medium, respectively, and the phase 

modulation produces tilted wavefronts due to diffraction and interference of the ultrasonic waves.  

Consequently, a tilted phase grating is formed inside the AOD device and the tilt angle 

automatically modifies the laser incident angle on the grating compared to the original angle of 

incidence on the AOD device.  The acoustic frequency and amplitude are, therefore, modulated to 

achieve the Bragg diffraction under the new angle of incidence and maximize the diffraction 

efficiency, respectively.   

           The phase grating can be tilted at any arbitrary angle by steering the ultrasonic beam in 

different directions.  The beam steering can be achieved by operating the transducers with various 

time delays to generate ultrasonic waves of different phases.  Due to the diffraction pattern of the 
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ultrasonic intensity distribution, the refractive index varies both longitudinally and transversely to 

the beam steering direction, and two-dimensional refractive index modulation occurs when the 

transducers are very long in the third dimension.  The acoustic waves affect the refractive index 

through the photoelastic effect by inducing mechanical strain waves in the AOD medium. The 

ultrasonic beam steering and the mechanical strain are determined using a modified Rayleigh-

Sommerfeld diffraction integral.  This integral represents the mechanical displacement vector field 

produced by ultrasonic waves in solid media.  An analytic expression is obtained for the 

displacement field and the resulting strain distribution is calculated using this expression.   

            Based on the strain and the photoelastic constants, the two-dimensional variation in the 

refractive index is determined for single-crystal paratellurite TeO2 which is an excellent AOD 

material.  Conventional two-dimensional coupled mode theory of AOD, which is based on only 

one-dimensional refractive index modulation, is extended in this study to analyze the effect of two-

dimensional index variation on the performance of AODs.  The diffraction efficiency and the laser 

beam deflection angle are determined for both plane waves and Gaussian laser beams by obtaining 

analytic solutions for the coupled mode equations.  The diffraction efficiency is found to be nearly 

unity over a broad range of the acoustic frequency, and the deflection angle can also be increased 

by steering the ultrasonic beam at large angles. 
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CHAPTER 1: INTRODUCTION TO LASER BEAM SCANNING AND 

GENERAL APPLICATIONS 

Since the invention of the laser in 1960, the demand for various methods to scan, deflect, switch 

or modulate laser beam scanning has been developed for  a wide range of scientific and industrial 

applications, such as fluorescence microscopy, optical storage, laser printers, display, sensing and 

laser material processing [1,2]. Among these applications, these laser beam scanners are used to 

scan or deflect the laser beam, in order to position the laser spot, in 1D, 2D, or even 3D dimensions, 

on the surface of the substrate under consideration. To achieve fast response time, large deflection 

scan angle, large band width and high diffraction efficiency is of interest not only for microscopy 

applications, such as random-access scanning fluorescence microscopy [3] and swept-source 

optical coherence tomography [4], but also for high-power, high-repetition-rate laser material 

processing [5,6,7].  

 

1.1. What is it meant by laser beam scanning? 

In modern optical engineering, the term laser beam scanning is used to mainly describe the 

controlled deflection of laser beams, visible or invisible [8]. The scanned laser beams can be used 

in stereo-lithography, in laser material processing, in laser engraving machines, in confocal 

microscopy, in laser printers, in laser shows, in Laser TV, in LIDAR and in barcode scanners. 

Laser beam scanning or deflection devices are capable of: pointing a laser beam randomly within 

a wide field-of-view; stepping the beam in small increments from one angular position to the next; 

dwelling in each position for the required time on target. 



2 

In contrast, laser beam scanning devices move the beam axis continuously and laser beam 

switching devices are only able to address predefined directions [9]. 

 

1.2. Types of light beam deflectors 

Various laser beam deflectors may be loosely grouped into two categories: lowe-speed and high-

speed deflectors, see Fig. 1-1. The low-speed mechanical deflectors, such as Galvanometric 

scanners, Piezo scanners and static MEMS scanners, are fundamentally limited by the inertia 

associated with the mass of the rotating mirror and other moving parts (𝜃̇ < 103 rad/s) and hence 

difficult to exploit the high repetition-rate (𝑓𝑟𝑒𝑝 = 100𝑀𝐻𝑧) of ultrashort pulsed laser sources; 

while other high-speed mechanical deflectors, including rotating polygon wheel scanners, resonant 

Piezo scanners and resonant MEMS scanners, can achieve high-speed deflection angle velocity 𝜃̇ 

and large maximum deflection scan angles ∆𝜃 by operating the mechanism at its eigen-frequency.  

           In essence, polygon and resonant scanners are operating in raster scanning mode, in which 

the laser beam scans over the substrate line by line in a raster pattern. In this approach, the laser 

power is to be modulated and synchronized to the laser pulse frequency 𝑓𝑟𝑒𝑝, in order to deliver 

the desired energy dose at the desired location on the substrate.  

           In contrast to raster scanning, random-access scanning scans the laser beam along a 

trajectory where the laser energy actually needs to be delivered to the substrate, rather than 

scanning the entire area. Random-access scanning can provide a higher spatial resolution, as well 

as a reduced processing time, when compared to raster scanning. 
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Figure 1-1 Laser beam scanning technologies of high-speed deflection vs. low-speed deflection. 

 

1.2.1. Galvanometers (mirror-based deflectors) 

All modern high-performance oscillating galvanometer scanners are built with a moving 

magnet torque motor, position transducers, bearing suspension, and mirrors, see Fig. 1-2.  

 The torque motor is selected for its ability to integrate with the other elements of the 

scanner, the mirror, the position transducer, and the electronic driver/controller  

 The torque motor is built with large air gaps, where the drive coil is housed, and 

consequently radial forces are negligible.  

 The torque motor pushes against the torsion bar and positions the mirror.  

 Galvanometric scanners are built with either ball bearing suspension or flexure bearing 

suspension. 
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Figure 1-2 (a) Schematic view of oscillating galvanometer and (b) illustration of all inside construction elements [8]. 

 

1.2.2. Electro-optic deflectors (EODs) 

An Electro-Optic Deflector (EOD), see Fig. 1-3, means the change of the refractive index, ∆𝑛, of 

a material as a result of an electric field E applied to an optically transparent crystsl. The latter is 

achieved by applying an electric voltage over the EO medium. The change of the refractive index, 

∆𝑛, is caused by electro-magnetic forces that perturb the position, orientation or shape of atom or 

molecule structure in the EO material. EODs refract a laser beam by introducing a phase delay 

across the cross section of the laser beam.  

  Two types of EO effects are distinguished: if the refractive index varies linearly with the 

electric field, it is referred to as the Pockels effect (LEO effect); if quadratically with the electric 

field, it is referred to as the Kerr effect or quadratic electro-optic effect (QEO effect).  

These index-changes are small and usually of the order of ∆𝑛 ≈ 10−4. Usually the Pockels effect 

is stronger than the Kerr effect, but for special EO crystal KTN, which shows larger index change 

(∆𝑛 ≈ 10−2) and in turn the larger deflection angle ∆𝜃. 
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The scan angle of deflection is defined as (for Pockels effect), see in Fig. 1-3(a) 

∆𝜃𝑝 =
∆𝑛

𝑛

𝑙

𝑤
                                                                          (1) 

where 𝑛 denotes the refractive index of the optical prism, ∆𝑛 denotes the difference between the 

refractive index of the optical prism and the surrounding material. 

The scan angle of deflection is defined as (for Kerr effect, taking the example of KTN), see Fig. 

1-3(b) 

∆𝜃𝑒 = −0.153𝑛3𝜀0
2𝜀𝑟

2 𝑉2

𝑑3
𝐿                                             (2) 

where 𝜀0 and 𝜀𝑟 are the permittivity of vacuum and relative permittivity, 𝑛 is the refractive index 

of the EO crystal at 𝑉 = 0, 𝐿 denotes the propagation length of the laser beam in the EO crystal 

and 𝑑 denotes the thickness of the EO crystal.  

 

Figure 1-3 Two typical configurations of an EOD: (a) EOD based on the Pockels effect and (b) EOD based on the 

Kerr effect [2]. 

 

1.2.3. Acousto-optic deflectors (AODs)  

The acousto-optic deflectors are based on the acousto-optic interaction between travelling acoustic 

waves (bulk or surface type) with perpendicularly propagating laser beams (free or guided) due to 

the photoelastic effect. The acoustic waves produce a periodic refractive index modulation, ∆𝑛, 
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from which the optical waves are diffracted or scattered. Several physical mechanisms can 

contribute to the formation of the periodic refractive index modulation [1,2]:  

 the bulky acoustic strain modulates the refractive index of the AO medium through the 

acousto-optic (AO) effect;  

 the surface acoustic strain generates the index changes in an optical waveguide by 

periodically changing its thickness;  

 in piezoelectric mediem the traveling acoustic wave may be accompanied by periodic 

electric fields which induce a refractive index change through the electro-optic (EO) effect.  

These effects create a moving phase grating from which the light wave diffract. Two diffraction 

modes, ±1st-order mode (𝐸⃗ ±1 ) and 0th-order mode (𝐸⃗ 0 ) are most important for the practical 

applications under the incident angle satisfying the Bragg diffraction (𝜃𝑖𝑛 = 𝜃𝐵), see Fig. 1-4(a). 

Most of the acousto-optic beam deflectors are based on the 1st-order mode, which is characterized 

by diffraction of the incident optical wave into almost entirely one order. This case is realized for 

a sufficiently long interaction length L, so that the thick phase grating may be considered. The 

general nature of the laser diffraction process can be described by one parameter introduced below: 

          The Raman-Nath parameter in the medium is given by the Klein-Cook parameter as below 

𝑄 =
2𝜋(𝜆0/𝑛)𝐿

Λ2       (3) 

where 𝜆0 is the optical wavelength in the vacuum, n is the refracted index withoug strain field and 

Λ the acoustic wavelength in the medium [10].  

 when 𝑄 ≪ 1, Raman-Nath region: laser diffracts into multiple diffraction orders;  

 when 𝑄 ≫ 1, Bragg region: laser appears in only one or two diffraction order; 
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 when 𝑄 ≈ 1, Transition region: in the middle between pure phase modulatioin and Bragg 

deflection, no simple analytic solutions exist for solving problems of this type and only 

numerical methods will be resoted to. 

Three important parameters are often used to evaluate the AO devices performance , kind of as a 

performance criterion, bandwidth (Δ𝐵), diffraction efficiency (𝜂), and the deflection scan angle 

(∆𝜃). In Fig. 1-4(a), in which case the acoustic grating appears to be a thin phase grating and a 

multiplicity of diffracted orders results. 

 

Figure 1-4 Typical configuration of an AOD (a) and a two-dimensional light deflectors by arranging two OADs 

orthogonally in series [2]. 

 

The Bragg angle in the air outside of the crystal, see Fig. 1-4(a), is defined as 

𝜃𝐵 = 𝑠𝑖𝑛−1 (
𝜆0

2Λ
)                                                              (4) 

The maximum deflection angle or the maximum deflection scan angle in the air outside of the 

crystal, see Fig. 1-4(a), is defined as  

Δ𝜃 =
𝜆0

𝑉
Δ𝑓                                                                    (5) 
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1.3. Performance criterion of mechanical deflectors vs. optical deflectors 

Resolution (𝑁𝑅), bandwidth (Δ𝐵), and speed or access time (𝜏0) are the important characteristics 

shared by all types of light beam scanning or deflection system. The resolution is defined as the 

maximum deflection angle divided by the diffraction limited angle: 

𝑁𝑅 = Φ𝑚𝑊/𝑒𝜆0                                                          (6) 

where 𝑊 is the aperture of the mirror, 𝜆0 is the wavelength of light in vacuum, and 𝑒 is a number 

of order unity that depends on the uniformity of illumination of the input optical window and the 

criterion used for resolution. The random access time is defined as 

𝜏0 =
1

2𝑓0
  (for galvanometer)                                          (7)   

where 𝑓0 is the specified resonant frequency of the galvanometer. Advantages for a mechanical 

beam deflector as follows: 

A mechanical deflector has only a single surface (one mirror for one dimension); while in 

the non-mechanical deflectors, the light interacts with a volume of active material that must be of 

high optical quality as well as having good optical surfaces and low acoustic or dielectric losses.  

A mirror deflector is simple to align and use because of its large angular aperture compared 

to Limitations of a mechanical deflector as follows: 

 First limitation is their low speed. The scanning frequency typically not exceeding 200/s, 

which is generally insufficient for many current industrial applications. 

 Second limitation consists in the complexity of the mechanically driven systems. Their 

performance is strongly affected by environmental factors such as vibrations and depends 

on the physical robustness of their components at industrial conditions. 
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 Third limitation, they don’t allow random access, have short operational life time, and are 

susceptible to mechanical damage. 

 Comparing with mechanical deflectors, the acousto-optic deflectors and electro-optic 

deflectors have high angular accuracy (𝜇𝑟𝑎𝑑) and small access time, 𝜏 (𝜇𝑠) but less resolution, 𝑁, 

that is. the number of the resolvable spots, see Fig. 1-5 and Fig. 1-6 below. 

 

Figure 1-5 Resolution vs. response time of various light beam scanning technologies at infra-red wavelength (1.0 

μm) [2]. 
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Figure 1-6 Resolution vs. maximum deflection scan angle of various light beam scanning technologies at infra-red 

wavelength (1.0 μm) [2]. 

 

1.4. Potential applications of Acousto-optic deflectors for laser direct machining  

The term laser direct machining is used here to describe materials processing with the focused spot 

of a laser beam (Fig. 1-7 ).This technique is used in a wide range of micromachining applications 

where high precision and small feature sizes are essential, including laser microvia drilling, fuel 

injector drilling, gas sensor drilling, solar cell scribing and MEMS prototyping. The movement of 

the beam relative to the workpiece using a glavo-scanner and motorised stages is synchronized 

with the firing of the laser to create the desired features. Processing speeds of up to 10 ms can be 

attained with a Galvanometric scanner [2,11]. 
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Figure 1-7 Schematic of the direct machining using a galavo-scanner and motorised x–y translation stages (left) and 

using a acousto-optic deflector and a Telecentric lens (right). 

 

1.4.1. AODs potential application in the CW laser material processing 

In Fig. 1-8, the examples of demonstration of what the CW laser material processing can be done 

with high power continuous wave (CW) laser sources [12]: (a) metal cutting of 5-mm-thick 

stainless steel with a CO2 slab laser of 2kW; (b) a laser trepanned hole as used in diesel fuel 

injectors (the typical diameter is 40–150  m through 1-mm steel); (c) a spinneret hole showing 

the versatility of trepanned laser holes, which can be of almost any required shape; (d) micrograph 

of the transverse section through a laser-welding showing the fusion and heat affected zones. 
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Figure 1-8 Examples of showing high power CW-laser used in the material processing: (a) laser-cutting, (b) laser-

drilling; (c) laser-piercing and (d) laser-welding [12]. 

 

1.4.2. AODs potential application in the CW laser microvia drilling 

In the electronics industry, a "via" is a hole through a material which, when filled with a conductive 

material such as copper or silver-conductive ink, creates an electrical connection between at least 

two conductive layers. The typical configuration has sandwich-type, involving two conductive 

layers separated by an insulating substrate. Vias can be divided into two types: 

 Through vias are drilled through all layers of the laminate structure. 

 Blind vias are initiated at one surface and stop at a layer interface within the laminate. 

Vias are routinely drilled by pure mechanical methods with diameters 500 μm down to 100 μm. 

However, as the diameter decreases, the vias become more difficult and costly to produce using 

traditional mechanical methods. An advantage offered by laser microvia drilling is that high power 

CW lasers can readily drill small diameter vias from 200 μm down to 25 μm [7,13]. 
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Figure 1-9(a) shows the microvia produced with a pitchfork beam of pulse energy = 0.3 mJ. 

Top diameter = 55 μm, bottom diameter = 48 μm and tapering angle = 5o. Fig. 1-9(b) shows the drilling 

front profile produced with a pitchfork laser beam (pulse energy = 0.3 mJ, averaged beam radius = 21 

μm, pulse width = 430 ns, repetition rate = 83.3 kHz).  

 

Figure 1-9 Examples of laser microvia drilling (Courtesy of Dr. Chong Zhang at CREOL). 
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CHAPTER 2: TECHNICAL BARRIER IN CURRENT AOD 

TECHNOLOGY AND TECHNICAL APPROACH 

 

2.1. Performance criteria for future HDI requirements in semiconductor industry  

With the advent of smartphones and hand-held electronic devices, microvias have evolved from 

single-level to stacked microvias that cross over multiple high density interconnect (HDI) layers 

(e.g. finer lines and spaces, and smaller vias). The reliability of HDI structure is one of the major 

challenges for its successful widespread implementation in the current semiconductor industry. 

The reliability of microvas depends on many factors such as microvia geometry parameters, 

dielectric material properties, and processing parameters. Among them, good geometrical 

reliability of microvias is an essential part of HDI reliability [1,2,3,4,5]. 

           HDI standards in semocondutor indutry define microvias as blind or buried vias with a 

diameter equal to or less than 150 μm. Microvia geometry parameters, such as microvia diameter, 

wall angle and plating thickness, must be carefully optimized to fabricate reliable microvias, 

especially for stacked microvias, without resulting in incomplete filling, dimples, or voids in the 

copper plating process, as seen in Fig. 2-1 [6]. 

 

Figure 2-1 A cross-section view of a microvia with a void. 
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           Since the traditional mirror-based mechanical deflectors, i.e. galvanometers, can not meet 

the future confronting requirements of HDIs fabrication and processing in the semiconductor 

industry, the nonmechanical optical deflectors for laser microvia drilling, as a potential alternative 

candidate, come into attention with the required performance criteria highlighted in Table 1.  
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Table 1 Performance criteria of optical deflectors for future semiconductor industrial requirements 

 

Process parameters Performance criteria 

Scanning resolution ( r ) 0.25 - 1 m  

Position accuracy ( PAr ) 1 - 3 m  

Scanning field (2r > 30mm) > 30 30
2mm  

Deflection angle range (
2


 ) 3 10o o    

Stepping speed (
1


) 2CO  20 - 100 kHz 

UV  20 kHz - 2 MHz 

Target feature ( microviaD ) 2CO  40 m  

UV  8 m  

Power handling  
2CO  50 W (3 

2/W cm ) 

UV  5.0 W (1.5 
2/W cm ) 

Diffraction efficiency ( ) > 50% 
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2.2. Technical barriers facing the current AOD devices 

As we mentioned before, the three main parameters of any current acousto-optic deflectors 

(AODs) are diffraction efficiency 𝜂, transit time 𝜏 and bandwidth Δ𝐵. The resolution is defined as 

the number of resolvable spots and equals the product of the transit time and bandwidth; while the 

diffraction efficiency is the fraction of the -1st-order diffracted power ot the laser inputr power and 

the bandwidth corresponds the maximum deflection scan angle. Future HDIs fabricagtion and 

processing requires a high performance of optical deflection both in high diffraction efficiency and 

large deflection scan angle for fast scanning laser beam over a large angular range. 

           The current acousto-optic deflectors is limited by the bandwidth, as imposed by the Bragg 

condition, as seen in Fig. 2-2. The traditional method of enlarging the interaction bandwidth is 

normally to increase the acoustic beam diffraction spread by shrinking transducer plate. 

Unfortunaltely, that is not ideal approach to solve the limitation. There are two disadvantages 

going with this approach: 

 first, only partial of the acoustic momentum components can satisfy phase matching to the 

incident or the diffracted light momentum components and the rest of acoustic momentum 

or power are wasteful. 

 second, this increased acoustic power density due to the transducer size shrinking may 

produce heating at the transducer, and in turn lead to thermal distortion in the acousto-optic 

medium due to the gradients in the acoustic velocity and refractive index. 

 

As Bragg condition in the case of isotropic acousto-optic interaction is pictured in Fig. 2-2, the 

momentum vectors do not form a closed triangle, which means certain amount of momentum is 
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lost. Phase mismatch of 
1

2i

i

k 


 
   

 
 leads to momentum loss of 

ip k   , and then finally 

the energy loss is ic k . The energy loss brought up by the tuning of acoustic frequency has bad 

effect on laser vias-drilling: the energy in central lobe decreases and the energy in side lobes start 

to increase which affects the quality of vias-drilling; the dissipated energy will heat workpiece [7].  

 

Figure 2-2 Bragg condtion for effective acousto-optic interation in Bragg diffraction region. 

 

2.3. An ideal solution to this issue  

An ideal solution to this t=difficulty would be the approach in which the acoustic beam changes 

in direction as the RF frequency is varied, so that for every RF frequency the Bragg condition is 

perfectly matched. This promising approach was fistly proposed by LMAAA group at CREOL, 

UCF, as far as we kmow. The so-called “actoustic beam steering” can be achieved by utilizing 

multiple phase array transducer based on PZT plate and electronically tuned by RF signal to control 

the applied frequency components and RF power and time delay between neighboring elements of 

tranducer array. By using multi transducer array attached to the acousto-optic medium, the atomic 

planes in the AO medium can be tilted to satisfy strictly Bragg Reflection Condition all the time 
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whatever the tuning of acoustic frequency is. Fig. 2-3 illustrates such idea with two typical cases 

of atomic planes tilting: (left figure) by appropriating combination of RF frequencies and RF 

power, the atomic plane inside AO medium is tilted on purpose to deflect the input laser beam to 

the right-up corner; (right figure) similarly, by utilizing another suitable combination of RF signal 

both in frequencies and power distribution among individual elements, the input laser beam can 

be deflected to the right-down corner. 

 

 

Figure 2-3 Deflection of laser beam to the top of focusing lens (left); to the bottom of the focusing lens (right). 
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CHAPTER 3: TWO-DIMENSIONAL ANALYTIC MODELING OF 

ACOUSTIC DIFFRACTION FOR ULTRASONIC BEAM STEERING BY 

PHASED ARRAY TRANSDUCCERS  

3.1. Introduction 

Ultrasonic phased arrays consist of a number of individual elements of width comparable to or 

smaller than the ultrasonic half-wavelength and spacing of 56 µm between two consecutive 

elements.  This type of geometry offers a dynamic means of focusing and scanning the ultrasonic 

beam by modulating the time delay between the RF electronic excitation of the individual element. 

The phased array technology dominates in several important areas, such as radar, underwater 

acoustics, medical diagnostics, and therapeutic treatment. Much of the early work implemented 

one-dimensional arrays in medical devices for imaging applications [1-3]. Later two-dimensional 

arrays were implemented for volumetric imaging [4-6]. This initial success of the technology 

quickly spread into numerous sub-disciplines, such as pulse-echo imaging, Doppler techniques, 

sono-elastic imaging, computed tomography, and three-dimensional imaging [7-8]. Improvements 

were made in the therapeutic field by introducing intracavity phased arrays capable of increasing 

tissue temperature as a potential tool for prostate cancer treatment [9-11] and transskull therapy 

[12].  

            Non-destructive testing or evaluation (NDT or NDE) of materials, mainly in the field of 

nuclear inspection, utilizes the phased array transducer technology [13]. This technology enables 

acoustic imaging for NDE and locating the position of flaws quickly and accurately. Other notable 

endeavors include the time-reversal processing [14], and self-focusing techniques [15]. These 

efforts have provided a variety of NDE tools for industrial applications to image flaws or detect 

defects by swiftly scanning an ultrasonic beam over the material of interest [16]. The sensitivity 
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and efficiency of the ultrasonic diagnostic and inspection are greatly enhanced by the phased array 

technique due to the constructive or destructive interference as well as the diffraction of the 

ultrasonic waves.  

           The tremendous success of the ultrasonic diagnostic technology in the medical and NDE 

fields sparked considerable interest for possible applications in optics and photonics since 1960s 

[17] after the invention of lasers. Acousto-optic scanning and deflection (AOSD) devices have 

been produced for a variety of laser applications such as detection, modulation, or filtering of 

coherent light.  The operating principle of these devices include modulation of the refractive index 

of an acousto-optic medium using acoustic waves to generate a transparent dynamic volume phase 

grating that deflects an incident laser beam.  This type of acousto-optic deflectors (AODs) has 

been used in many applications such as laser marking, micromachining, patterning and direct 

writing. Galvo scanners are traditionally used to direct laser beams to different locations on a 

workpiece using two mirrors. The mechanical motion of x-y mirrors in the scanner affects the 

accuracy of beam positioning and repeatability in high-volume manufacturing. Ultrasonic beam 

steering without any moving optical component is necessary to overcome the limitations of 

conventional scanning technology.  The ability to steer ultrasonic beam in different directions 

within the acousto-optic crystal using phased array transducers provides a unique device for 

flexible and high speed deflection of laser beams with high precision and accuracy.   

           The fundamental aspect of this new device is the capability to steer ultrasonic waves inside 

the crystal using phased array transducers. The diffraction of the waves is studied to analyze the 

formation of the zeroth order diffraction lobe as the steered ultrasonic beam. The ultrasonic 

displacement vector field generated by an immersion piston transducer can be calculated using the 

Rayleigh-Sommerfeld integral (RSI) model for liquid [18]. In solid media, on the other hand, 
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Vezzetti’s model [19] is applied to determine the ultrasonic displacement vector field generated 

by a contact piston transducer, because this model accounts for the Christoffel equation of motion.  

This solid media model yields an integral equation for the displacement vector field  by the method 

of angular spectrum. Schmerr [20] simplified Vezeetti’s model to obtain an explicit expression 

that resembles the Rayleigh-Sommerfeld diffraction integral for the displacement field and, 

therefore, Schmerr’s model is called the modified Rayleigh-Sommerfeld integral (mRSI) model.   

        Since TeO2 is a good AOD material for lasers of wavelength 0.35 - 5.0 µm, an analytic 

expression is derived in this paper for the displacement field in TeO2 by applying the mRSI model 

to an ultrasonic linear phased array transducers. This paper begins by presenting a theoretical 

background in Section 2 as a foundation for the two models, Fourier and Filon models, developed 

in this study.  These two new models are validated in Section 3 by comparing their results to that 

of the non-paraxial multi-Gaussian beam (NMGB) model [21] and  then the profile of the 

displacement field is analysed using the Fourier model for various ultrasonic beam steering angles. 

Finally, the results are summarized and discussed in Section 4. 

3.2. Theoretical Background  

Conventional AODs are operated with a single transducer, or an array of transducers assembled in 

the planar or stepped configuration [22]. The performance of  single-transducer AODs is limited 

by the applied radiofrequency (RF) power, narrow bandwidth, small deflection angle and narrow 

scan angle of the laser beam, and low diffraction efficiency.  Phased array transducers are used to 

improve the performance of AODs. Each transducer is operated with relative time delay in the 

applied RF power to generate phase-shifted ultrasonic waves.  These waves form a tilted wavefront 
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in the AOD medium due to the diffraction of the waves.  The interaction of a laser beam with the 

tilted wavefront improves the deflection angle and diffraction efficiency [23]. Conventional 

phased array AODs are, however, operated with fixed time delays, and therefore, the ultrasonic 

wavefronts cannot be steered at any arbitrary angle for a given AOD.  To achieve flexibility in the 

ultrasonic beam steering, the time delays of the transducers can be varied during the operation of 

the AOD.  This type of beam steering or focusing technique produces a tilted ultrasonic diffraction 

pattern with the zeroth order diffraction lobe pointing in the principal direction zs at the steering 

angle s as shown in Fig. 1a [23, 24] .    

           In this paper, the mathematical formulation to analyze the beam steering is based on 

Nakahata and Kono’s [25] three-dimensional model for ultrasonic wave patterns in solids due to 

phased array transducers.  Their single-transducer model is applied to multiple phased array 

transducers in this study for two-dimensional wave patterns. The geometry of the AOD medium 

is presented in Fig. 1a with transducers that are infinitely long along the y axis.  So the 

displacement of the atoms at any point P(x,z) in the AOD medium for unit length in the y direction 

is given by the following expression for longitudinal ultrasonic waves in the medium.   

 

U⃗⃗ (𝑥, 𝑧) =
1

2𝜋𝜌
∑

𝑃𝑚

c𝑙𝑚
2 ∫ 𝐷(𝜃(𝑥𝑚))𝑑 𝑝(𝑥𝑚)

exp⁡[(𝑖𝜅𝑚−𝛼𝑚)𝑟𝑚]

𝑟𝑚
𝑅𝑒𝑐𝑡 (

𝑥𝑚−𝑥𝑐𝑚

2𝑎𝑚
) 𝑒𝑥𝑝(𝑖∆𝜙𝑚)𝑑𝑥𝑚

∞

−∞
𝑀
𝑚=1                  (1) 

 

Here 𝜌 is the density of the AOD medium and clm represents the speed in this medium for the 

longitudinal ultrasonic waves emitted by the m-th transducer.  Since the speed depends on the 

ultrasonic frequency, the effect of operating the transducers at different frequencies can be 

analyzed by selecting the value of clm corresponding to each frequency.  p
m

 is the pressure exerted 

on the AOD medium by the m-th transducer. 𝜅m (=𝜔𝑚/clm) and 𝛼𝑚  are the wave number and 

attenuation coefficient of the ultrasonic wave in the medium, respectively, where 𝜔𝑚 is the angular 
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frequency of the waves, due to m-th transducer.  M is the total number of transducers. The distance 

between the point P(x,z) and an arbitrary point B(xm,0) on the m-th transducer is denoted by 

 

 𝑟𝑚 = 𝐵𝑃 = √(𝑥 − 𝑥𝑚)2 + 𝑧2      (2) 

 

and the rectangular function is defined as 



𝑅𝑒𝑐𝑡 (
𝑥𝑚−𝑥𝑐𝑚

2𝑎𝑚
) = {

1, for⁡𝑥𝑐𝑚 − 𝑎𝑚 ≤ 𝑥𝑚 ≤ 𝑥𝑐𝑚 + 𝑎𝑚

0, otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
  




where am is the half-width of the m-th transducer, which allows to study the effect of the transducer 

size variation on the ultrasonic wave pattern in the medium, and xcm is the x-coordinate of the mid-

point on the m-th transducer.  The directivity function for the m-th transducer, D(𝜃𝑚), is given by⁡ 

 

D(𝜃(𝑥𝑚)) =
𝑐𝑚
2 (

1

2
𝑐𝑚
2 −𝑠𝑖𝑛2𝜃(𝑥𝑚))𝑐𝑜𝑠𝜃(𝑥𝑚)

2(𝑠𝑖𝑛2𝜃(𝑥𝑚)−𝑐𝑚
2 /2)

2
+

1

2
𝑠𝑖𝑛2(2𝜃(𝑥𝑚))√𝑐𝑚

2 −𝑠𝑖𝑛2𝜃(𝑥𝑚)

   (4) 

 

 

where xm) is the angle between the line BP and the normal to the surface of the m-th transducer 

at an arbitrary point xm, and  𝑐𝑚 = 𝑐𝑙𝑚/𝑐𝑠𝑚⁡where csm is the speed of ultrasonic shear waves in the 

AOD medium due to the m-th transducer. The polarization vector for the m-th transducer,⁡𝑑 𝑝(𝑥𝑚), 

is given by 

  

𝑑 𝑝(𝑥𝑚) =
𝑥−𝑥𝑚

𝑟𝑚
𝑥̂ +

𝑧

𝑟𝑚
𝑧̂                                    (5) 

 

where 𝑥̂ and 𝑧̂ are the unit vectors in the x and z directions respectively.  The phase shift m 

represents the ultrasonic phase difference between the center of each transducer element, such as 



28 

C(xcm,0) and the center of the entire transducer array, such as O(0,0), in Fig. 1a. This phase shift 

is related to the time delays for ultrasonic waves arriving at point Q(xʹ,zʹ) from points C(xcm,0)  

and O(0,0), i.e., Δ𝜏𝑚 = (𝐹′ − 𝑅𝑚
′ )/𝑐𝑙𝑚, where Q is the point of focus at a distance F' from the 

point O, and  𝑅𝑚
′  is the distance CQ [25, 26].  Applying the cosine law of triangle to the triangle 

QOC,  the relationship between the phase shift and time delay can be expressed as 

 

∆𝜙𝑚 = 2𝜋𝐹𝑚∆𝜏𝑚 =
2𝜋

Λ𝑚
𝐹′[1 − {𝐹′2 + 𝑥𝑐𝑚

2 − 2𝐹′𝑥𝑐𝑚𝑠𝑖𝑛𝜃𝑠}
1/2]                            (6) 

 

where Fm and m are the frequency and wavelength of the ultrasonic waves in the AOD medium, 

respectively, for the m-th transducer.  In this study, all of the transducers are considered to emit 

ultrasonic waves of the same frequency and wavelength.  xcm represents the coordinate value of 

the center of m-th transducer, i.e., xcm is negative for the transducers lying on the –x axis.  The 

steering angle 𝜃𝑠 is considered positive when measured from the z axis in the clockwise direction.       
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Figure 3-1 Geometry of the AOD medium and piezoelectric transducers for ultrasonic beam steering. 
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3.2.1. Fourier Model for a Linear Phased Array Transducer 

This model is developed by carrying out the integration in Eq. (1) analytically, and the model is 

named after Fourier because the analytic result involves the sine and cosine functions.  When the 

width of a transducer, Wm = 2am, is very small, the variation of the directivity function and the 

polarization vector, 𝑑 𝑝(𝑥𝑚), at various points within a given transducer would be very small.  

Therefore, evaluating these two variables at xcm, i.e., taking D((xm)) ≈ D((xcm)) and 𝑑 𝑝(𝑥𝑚) ≈

𝑑 𝑝(𝑥𝑐𝑚), Eq. (1) can be simplified as 

 

U⃗⃗ (𝑥, 𝑧) = ∑ 𝐴𝑚 ∫
exp⁡(𝑖𝐾𝑚𝑟𝑚)

𝑟𝑚
𝑑𝑥𝑚

𝑥𝑐𝑚+𝑎𝑚

𝑥𝑐𝑚−𝑎𝑚

𝑀
𝑚=1     (7) 

 

where A𝑚 =
1

2𝜋𝜌

𝑃𝑚

c𝑙𝑚
2 𝐷(𝜃(𝑥𝑐𝑚))𝑑 𝑝(𝑥𝑐𝑚)𝑒𝑥𝑝(𝑖2𝜋𝐹𝑚∆𝜏𝑚) and 𝐾𝑚 = 𝜅𝑚 + 𝑖𝛼𝑚. Using Eq. (2) to 

change the variable of integration from xm to rm, Eq. (7) can be written as 

 

U⃗⃗ (𝑥, 𝑧) = −∑ 𝐴𝑚 ∫
exp⁡(𝑖𝐾𝑚𝑟𝑚)

𝑥−𝑥𝑚
𝑑𝑟𝑚

𝑏𝑢

𝑏𝑙

𝑀
𝑚=1    (8) 

 

where 𝑏𝑙 = √𝑧2 + [𝑥 − (𝑥𝑐𝑚 − 𝑎𝑚)]2  and 𝑏𝑢 = √𝑧2 + [𝑥 − (𝑥𝑐𝑚 + 𝑎𝑚)]2 . Noting that the 

oscillating exponential factor exp(ikmrm) in the integrand of Eq. (8) varies rapidly compared to the 

denominator x-xm, and x-xm ≈ x-xcm for small widths of the transducers, Eq. (8) yields 

 

U⃗⃗ (𝑥, 𝑧) = −∑
𝐴𝑚

𝑖𝐾𝑚

exp(𝑖𝐾𝑚𝑏𝑢)−exp⁡(𝑖𝐾𝑚𝑏𝑙)

𝑥−𝑥𝑐𝑚

𝑀
𝑚=1  for x ≠ xcm     (9) 
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For the case of, x = xcm, L’Hospital’s rule is applied to Eq. (8) by taking the limit as x → xcm to 

obtain the following expression for the displacement vector field.  

 

U⃗⃗ (𝑥, 𝑧) = 2∑ 𝐴𝑚
𝑎𝑚

√𝑧2+𝑎𝑚
2

exp(𝑖𝐾𝑚√𝑧2 + 𝑎𝑚
2 )𝑀

𝑚=1    for x = xcm     (10) 

Eqs. (9) and (10) will be used to analyze the ultrasonic beam steering in the AOD medium due to 

phase modulation of the piezoelectric transducers. 

3.2.2. Filon Model for a Linear Phased Array Transducer  

This model is named after Filon because the integration in Eq. (1) is carried out following Filon’s 

quadrature method for trigonometric integrals [27] of the form: 

 

 ∫ 𝜓′(𝑥)sin(𝑘𝑥)𝑑𝑥
𝑋𝑢

𝑋𝑙
     (11)   

 

In this method, the integral is represented by a sum of integrals over small intervals within the    

range of integration [Xu,Xl], and the function ⁡𝜓′(𝑥) is approximated as a polynomial, such as a 

quadratic function [27] or a linear function [28], to evaluate the integral analytically in each 

interval.  

 To apply Filon’s method, Eq. (2) is substituted into Eq. (7) to obtain the following 

expression:      
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U⃗⃗ (𝑥, 𝑧) = ∑
𝐴𝑚

𝑧
∫

exp⁡(𝑖𝐾𝑚𝑧𝜓(𝑥𝑚))

𝜓(𝑥𝑚)
𝑑𝑥𝑚

𝑥𝑐𝑚+𝑎𝑚

𝑥𝑐𝑚−𝑎𝑚

𝑀
𝑚=1    (12) 

 

where 

 

𝜓𝑚 = √1 + (
𝑥−𝑥𝑚

𝑧
)
2

     (13) 

 

The interval of integration, [xcm-am, xcm-am], is divided into J number of equal intervals with j = 1 

for the first point at the lower limit of the integration, i.e., xm1 = xcm-am and j = J+1 for the last point 

at the upper limit of the integration, i.e., xm(J+1) = xcm-am as shown in Fig. 1b, and the width of each 

interval is ∆𝑥𝑚 = 𝑥𝑚(𝑗+1) − 𝑥𝑚𝑗 =
2𝑎𝑚

𝐽
·  The integral in Eq. (12) can be written as a sum of J 

number of integrals as follows: 

 

U⃗⃗ (𝑥, 𝑧) = ∑
𝐴𝑚

𝑧
∑ ∫

exp⁡(𝑖𝐾𝑚𝑧𝜓(𝑥𝑚))

𝜓(𝑥𝑚)
𝑑𝑥𝑚

𝑥𝑚(𝑗+1)

𝑥𝑚𝑗

𝐽
𝑗=1

𝑀
𝑚=1      (14) 

 

To evaluate the integrals in Eq. (14), 𝜓(𝑥𝑚)  is fitted as a straight line in each interval of 

integration, 𝑥𝑚𝑗 ≤ 𝑥𝑚 ≤ 𝑥𝑚(𝑗+1) .  It should be noted that the coefficient of the sinusoidal 

function, i.e., 𝜓′(𝑥) in Eq. (11), is approximated as a polynomial or a linear function in each 

interval of integration in the original Filon method.  This original approach is modified in this 

study by approximating the denominator, (xm), as a straight line in each interval of integration, 

i.e.,       
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𝜓(𝑥𝑚) = 𝜓𝑚𝑗 + ∆𝜓𝑚𝑗𝜉𝑚    (15) 

 

where 𝜓𝑚𝑗 = 𝜓(𝑥𝑚𝑗), ∆𝜓𝑚𝑗 = 𝜓𝑚(𝑗+1) − 𝜓𝑚𝑗  and 𝜉𝑚 =
𝑥𝑚−𝑥𝑚𝑗

∆𝑥𝑚
.  Substituting Eq. (15) into 

Eq. (14), the total displacement vector can be written as 

 

U⃗⃗ (𝑥, 𝑧) = ∑
𝐴𝑚

𝑧
∑ ∆𝑥𝑚

𝐽
𝑗=1 ∫

exp⁡(𝑖𝐾𝑚𝑧(𝜓𝑚𝑗+∆𝜓𝑚𝑗𝜉𝑚))

𝜓𝑚𝑗+∆𝜓𝑚𝑗𝜉𝑚
𝑑𝜉𝑚

1

0
𝑀
𝑚=1   (16) 

 

and Eq. (16) is evaluated for the following two cases. 

(i) When∆𝜓𝑚𝑗 = 0, the integrand in Eq. (16) is independent of 𝜉𝑚 and the following expression 

is obtained for the displacement vector. 

 

U⃗⃗ (𝑥, 𝑧) = ∑
2𝐴𝑚𝑎𝑚

𝑧𝐽
∑

exp⁡(𝑖𝐾𝑚𝑧𝜓𝑚𝑗)

𝜓𝑚𝑗

𝐽
𝑗=1

𝑀
𝑚=1    (17) 

 

(ii) When ∆𝜓𝑚𝑗 ≠ 0, the change of variable, 𝛽𝑚 = 𝜓𝑚𝑗 + ∆𝜓𝑚𝑗𝜉𝑚 , is applied to Eq. (16) to 

obtain the following expression: 

 

U⃗⃗ (𝑥, 𝑧) = ∑
2𝐴𝑚𝑎𝑚

𝑧𝐽
∑

1

∆𝜓𝑚𝑗

𝐽
𝑗=1 ∫

exp⁡(𝑖𝐾𝑚𝑧𝛽𝑚)

𝛽𝑚
𝑑𝛽𝑚

𝜓𝑚(𝑗+1)

𝜓𝑚𝑗

𝑀
𝑚=1      (18) 

 

which yields the following result in terms of the cosine and sine integrals [29], e.g., Ci(Z) and 

Si(Z) of an arbitrary argument Z, respectively.  
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U⃗⃗ (𝑥, 𝑧) = ∑
2𝐴𝑚𝑎𝑚

𝑧𝐽
∑

1

∆𝜓𝑚𝑗

𝐽
𝑗=1 [{𝐶𝑖(𝐾𝑚𝑧𝜓𝑚(𝑗+1)) − 𝐶𝑖(𝐾𝑚𝑧𝜓𝑚𝑗)} + 𝑖{𝑆𝑖(𝐾𝑚𝑧𝜓𝑚(𝑗+1)) −𝑀

𝑚=1

𝑆𝑖(𝐾𝑚𝑧𝜓𝑚𝑗)}]          (19)  

 

Eqs. (17) and (19) are used to calculate the displacement vector and the accuracy is verified by 

comparing with the results of the Fourier and NMGB models. 

3.3. Numerical Results and Discussion 

TeO2 is the acousto-optic medium for numerical simulation in this study with a row of M = 22 

piezoelectric transducers. Each transducer is operated at the ultrasonic frequency of F=75 MHz 

each, and at this frequency, the speeds of S and L waves are  𝑐𝑠𝑚= 616 ± 10 m/s clm = 4202 ± 10 

m/s, respectively [30].  For the L waves, the ultrasonic wavelength and wavenumber are  = 56 

µm and 𝜅𝑚  = 1.12×105 m-1, respectively. The width and height of each transducer element is 

W=20.8⁡𝜇𝑚  and H=2.76⁡𝑚𝑚 , which yields the half-width am = 10.4 m.  The row of the 

transducers and the height of the AOD medium are aligned with the x and z axes, respectively, 

with the origin of this coordinate system lying at the center of the transducer row of pitch 

S=Λ/2=56 µm as shown in Fig. 3-1a. For the computation in the Filon model, the total number of 

intervals J = 2, that yields the integration step ∆𝑥𝑚=10.4 µm, which is approximately Λ/5 and 

sufficiently small to resolve the ultrasonic wavefront for beam steering studies.  The pressure 

exerted on the AOD medium by each transducer is taken as p
m

 =  1 N/mm2 and the distance of the 

point of focus from the origin of the x-z coordinate system is considered to be very large at Fʹ = 1 

km.  All the required parameters for simulation are listed in Table 2. 
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Table 2 Simulation parameters for TeO2 crystal at HeNe-laser. 

Laser wavelength 632.8 nm at HeNe 

AO material TeO2 crystal 

Refractive index, n 2.26 

Sound speed at P-wave 4200 m/s 

Sound speed at S-wave 616 m/s 

Density of AO medium, 𝜌 5.99 g/cm3 

Central acoustic frequency 75 MHz 

Central acoustic avelength, 56 𝜇m 

Acoustic bandwidth 32 MHz 

Figure of merit, M2 793×10-15 s3/kg 

Attenuation constant, Γ 15 dB/cm-GHz2 

Attenuation coefficient, 𝛼 0.0194/cm 

 

           The accuracy of the ultrasonic wave model plays an important role in the design of acousto-

optic deflector and the investigation of acousto-optic interactions. So the ultrasonic displacement 

fields obtained from the NMGB [27] are used to verify the accuracy of the Fourier analytical  

model and the Filon numerical model for two values of the beam steering angle at the ultrasonic 

central frequency of F=75 MHz. Fig. 3-2, 3-3 and 3-4 show the results of the NMGB, Fourier and 

Filon models, respectively, which represent the two-dimensional amplitudes of the ultrasonic 

displacement field |𝑈| for the beam steering angles of 𝜃𝑠  = 0𝑜  and 30𝑜  in each figure. These 

results indicate that the two models of this study are in good agreement with the NMGB model.  

           The models are also compared along the ultrasonic beam steering axis inside the TeO2 

crystal.  Each model yields the displacement vector 𝑈⃗⃗ .  The scalar magnitude of this vector is 𝑈 =

√𝑈⃗⃗ ∙ 𝑈⃗⃗ , which is a complex variable in this study.  The amplitude of U, which is given by the 

modulus |𝑈| = √𝑈𝑈∗, where U* is the complex conjugate of U, is plotted in Fig. 3-5 for the 

steering angles s = 0𝑜 and 30𝑜, indicating that the three models are in good agreement. The curves 

clearly distinguish the ultrasonic wave propagation domain into two sections, representing the near 

field and far field regions of the diffraction pattern. The near field regions extend to approximately 
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56µm and 1.0 mm from the zs = 0 surface (Fig. 3-1a) for s = 0° and 30°, respectively, before the 

development of the far-field region.  For phased array transducers emitting ultrasonic waves of a 

single frequency, the near field region is characterized by the amplitude of the field varying rapidly 

with maximum and minimum values.  The reason for this type of variation in the amplitude is that 

the phase of the waves, which arrive from different regions of the transducer array, vary rapidly 

from point to point near the transducer plane (z = 0 in Fig. 3-1a) [28], resulting in maximum and 

minimum amplitudes due to constructive and destructive interferences respectively.  The 

amplitude of the ultrasonic field is nearly constant over a certain range of the far field region, and 

this region is generally preferred for AOD applications because the uniform acoustic amplitude 

produces a phase grating of constant refractive index amplitude.  Due to good agreements between 

the NMGB, Fourier and Filon models, and the simplicity of the Fourier model, the following 

results are obtained using the Fourier model.    

           Figure 3-6 is a three-dimensional view showing the amplitude |𝑈|  along the x and z 

directions in the TeO2 medium based on Fourier model for the beam steering angle 𝜃𝑠= 0°.  The 

ultrasonic wave propagation is calculated from one wavelength above the transducer plane, i.e., 

from z=56 𝜇m.  For 𝜃𝑠=0o, the amplitude profile is symmetric about the x = 0 line as the wave 

propagates in the z direction. Fig. 3-6 shows the front and rear views of the amplitude profile.  Near 

the transducer plane, i.e., close to the z = 0 plane, the front view of the amplitude profile exhibits 

a rectangular diffraction pattern consisting of peaks at the two edges of the rectangle and 

oscillations of very small amplitude between the edges.  This pattern is similar to the profile 

produced by Gibbs’ phenomenon when a rectangle function is synthesized using a Fourier series.  

The synthesized function overshoots at the edges of the rectangle function and oscillates between 

the edges.  In this study, each transducer emits ultrasonic waves as a rectangle function, and the 
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resulting diffraction pattern near the transducer plane is denoted as Gibbs’ profile.  This profile 

spreads and the overall amplitude decreases as the waves propagate in the x and z directions.  

Gibbs’ profile transforms into the Fresnel diffraction pattern as shown in the rear view at z = 2 

mm.     

           The effect of phase shift or time delay on the amplitude profile is studied in Fig. 3-7. The 

time delays between two neighboring transducers are taken as  = 0 ns, 0.58 ns, 3.33 ns and 4.71 

ns, which correspond to the steering angles 𝜃𝑠=0°, 5°, 30° and 45°, respectively. Due to different 

steering angles and, correspondingly, different time delays, the phase characteristics of the 

ultrasonic waves arriving at the same observation position P(x,z) [ Fig. 3-1a] from the transducers 

would be different.  Consequently, the peaks and valleys, which are formed in the resultant 

displacement field due to the interference of the waves, will be different for these cases as shown 

in Fig. 3-7.  However, the length of the near field is approximately 1 mm for the three cases, and 

the amplitude is nearly constant in the far field region for the steering angles up to 30°.   

           The phase plots, i.e., tan-1(𝑈𝑖/𝑈𝑟), where 𝑈𝑖 and 𝑈𝑟 are the imaginary and real parts of 𝑈 

respectively, are presented in Fig. 3-8 for the steering angles s = 0° and 5° to show that the 

wavefronts also tilt by the same angle as s.  The wavefronts are formed due to the interference of 

the waves emitted by the phased array transducers.   The main, i.e., the zeroth order, diffraction 

lobe coincides with the steering axis zs corresponding to the steering angles 𝜃𝑠= 0° and 5°, and the 

side lobes, i.e., the higher order diffraction pattern is formed in the transverse direction of the zs 

axis.  The tilted wavefront implies slanted displacement field that produces an oblique phase 

grating in the AOD medium.  This type of oblique phase gratings can be utilized to increase the 

deflection angles of laser beams in AODs.  



38 

           The characteristics of the main and side diffraction lobes are examined in Fig. 3-9, which 

shows the amplitude of the ultrasonic displacement field along x-axis, for the steering angles s = 

0° (left) and 5° (right) at different distances, z = 56 m, 2 mm, 5 mm and 10 mm, from the 

transducer plane. The common diffraction features can be observed in both groups of the amplitude 

profile [31].  Near the source, i.e., close to the transducer plane, typical diffraction pattern of 

rectangular shape is observed and then the shape changes to the Fresnel diffraction profile in the 

near-field region.  This pattern ultimately evolves into the Fraunhofer profile in the far-field region. 

In the case of 𝜃𝑠=0o, the amplitude profiles are symmetric about the z axis since this axis coincides 

with the steering axis (zs). On the other hand, the profiles are asymmetric about the z axis  in the 

case of 𝜃𝑠=5o because the z and zs axes do not coincide. Gibbs’ profile is observed at z = 56 m, 

which is near the transducer plane, and the Fresnel diffraction pattern  is observed at a distance of 

z = 10 mm, indicating the existence of near-field diffraction effect over a large distance in the 

AOD medium. However, the peak of the main lobe shifts to the right, which indicates that the peak 

lies on the steering axis zs.  

 

 

Figure 3-2 Two-dimensional amplitude of  the ultrasonic displacement field |𝑈⃗⃗ | in the AOD medium based on 

NMGB model for two beam steering angles. 
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Figure 3-3 Two-dimensional amplitude of  the ultrasonic displacement field |𝑈⃗⃗ | in the AOD medium based on 

Fourier model for two beam steering angles. 

 

 

Figure 3-4 Two-dimensional amplitude of  the ultrasonic displacement field |𝑈⃗⃗ | in the AOD medium based on Filon 

model for two beam steering angles. 
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Figure 3-5 Comparison of one-dimensional amplitude of the ultrasonic displacement field |𝑈⃗⃗ | in the AOD medium 

based on NMGB, Fourier and Filon models for two steering agnles to verify the accuracy of the models. 

 

We noticed that in Table 2, the attenuation coefficient was found to be 0.0194/cm when the 

atocustic wave propagating inside the AO meium of TeO2. So the amplitude of the displacement 

acouxtic field has no obvious differences whether such attenuation factor is considered or not, 

givent the usual AO crsytral size in the range of ~5 cm. 
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Figure 3-6 Front and rear views of three-dimensional amplitude of the ultrasonic displacement field |𝑈⃗⃗ | in the AOD 

medium based on Fourier model with beam steering angle of θs = 0o . 
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Figure 3-7 Comparison of one-dimensional amplitude of the displacement field |𝑈⃗⃗ | in the AOD meidum based on 

Fourier model to study the effect time delay on the amplitude profile. 
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Figure 3-8 Phase plot of the ultrasonic displacement field |𝑈⃗⃗ | in the AOD medium based on Fourier model for two 

beam steering angles. 
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Figure 3-9 Effect of diffraction on the evolution of the amplitude of the ultrasonic displacement field |𝑈⃗⃗ | at different 

heights in the AOD medium based o Fourier model for two beam steering angles. 
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3.4. Summary and Conclusions 

           Two models called Fourier and Filon models have been developed to analyze the 

performance of phased array transducers for producing ultrasonic displacement field in AOD 

media.  The Fourier model provides analytic solution for the displacement field, while the Filon 

model involves numerical integration of the diffraction integral to express the displacement field 

as a series.  The accuracy of these two models is found to be excellent by comparing the results 

with the NMGB model.  By varying the phases of the ultrasonic waves emitted by the transducers, 

i.e., by operating the transducers at different time delays, the waves can be caused to interfere to 

produce a diffracted wave pattern in a predetermined direction called the beam steering axis.  This 

type of beam steering can be utilized to scan ultrasonic waves inside materials for non-destructive 

testing.  The amplitude of the composite wave exhibits a rapidly varying wavy characteristic in the 

near field region and an almost constant value in the far field region.  Therefore, nonperiodic and 

periodic phase gratings would be formed in the near and far field regions, respectively. So the 

beam steering effect and the far field region can be utilized in AODs to achieve large deflection 

angles for laser beams.  Since the phase grating region extends over a certain volume inside the 

AOD medium and is primarily affected by the main lobe of the diffraction pattern, the locus of the 

main lobe is important in AOD applications.  The peak of the main lobe is found to lie on the 

steering axis and the width of the lobe increases along this axis.           
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CHAPTER 4: TWO DIMENSIONAL REFRACTIVE INDEX 

MODULATION BY PHASED ARRAY TRANSDUCERS IN ACOUSTO-

OPTIC DEFLECTORS 

4.1. Introduction 

The scanning or deflection of light with high performance and broad frequency bandwidth is 

applied in a number of applications, including light modulators, optical beam deflectors, optical 

signal processors, optical tunable filters [1,2], RF spectrum analyzers [3], WDM optical 

communication [4-6], optical tweezers for molecule trapping [7-9], optical image scanners [10-

12], optical fringe pattern projectors [13-15], and optical frequency shifters [16,17].  Acousto-optic 

deflectors (AODs) involve interactions between lasers and acoustic waves, and the deflectors 

generally operate in three different modes: random access, continuous mode and multi-frequency 

modes [18]. The performance of the AODs is characterized by the angular resolution for deflecting 

the laser beam, acoustic frequency bandwidth for modulating the phase grating in the AOD 

medium, diffraction efficiency to maximize the laser power in the first order diffracted laser beam, 

and access time to minimize the time for the deflector to steer the beam from one position to 

another one.  The access time, which is the ratio of the laser beam diameter to the acoustic velocity, 

represents the necessary time for the acoustic wave to propagate through the laser beam. 

Therefore, the operation of AODs using the ultrasonic longitudinal or shear waves impacts the 

performance of the deflector.  The longitudinal waves (L-waves) successively compress and 

stretch the distance between the atomic planes of the AOD material in the direction of the 

ultrasonic wave propagation, which is similar to the compression and rarefaction phenomena 

caused by sound waves in air.  The shear waves (S-waves), on the other hand, vibrate the atoms at 

right angles to the direction of the ultrasonic wave propagation.  Since the velocity of L-waves is 
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generally much higher than that of the S-waves, the L-waves allow shorter access time and, 

consequently, make the deflectors faster than the S-wave mode of operation.  The lower velocity 

of S-waves, however, yields larger deflection angle than in the case of L-waves.        

           The diffraction efficiency and the deflection scan angle are governed by the elasto-optic or 

photoelastic effect which states that mechanical stresses modify the refractive index.  This effect 

arises when acoustic waves propagate through a medium since an acoustic wave is a traveling 

strain or pressure disturbance in the material. Acoustic waves, therefore, can be considered as time-

varying deformations of atomic planes in the acousto-optic medium with displaced particles from 

their equilibrium positions. This mechanical effect of acoustic waves modifies the refractive index 

of the medium in a periodic pattern and produces dynamic volume phase grating for the laser light 

passing through the medium. The displacement of the particles can be determined by solving the 

Christoffel Equation that involves the tensor constitutive relation of the material properties [18]. 

Kazuyuki and Naoyuki [19] simplified this equation to express the diffraction of acoustic waves 

as a modified Rayleigh-Sommerfeld integral (mRSI) for the particle displacement vector field, and 

evaluated the integral numerically to analyze ultrasonic beam steering by phased array transducers.  

The applications of the phased array technology for beam steering include non-destructive testing 

of material defects, radar, underwater acoustics, medical diagnostics, and therapeutic treatment. 

Tiansi et al. [20] evaluated the modified Rayleigh-Sommerfeld integral analytically for transducers 

of small widths to obtain the displacement vector field that compares well with the numerical 

solution of the integral [19]. The analytic expression of the integral is used in this study to 

determine the strain induced in the acousto-optic medium by phased array piezoelectric 

transducers, and then the two-dimensional variation of the refractive index is calculated using the 

strain tensor. 
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4.2. Analytic Model for Numerical Simulation 

4.2.1. Strain tensor in the AOD medium due to a row of phased array transducers  

In this study, a row of transducers is attached to the AOD medium at the surface z = 0 as shown in 

Fig. 4-1.  The width and length of each transducer are 2a and infinite along the x and y axes, 

respectively.  For each transducer, if P0 is the pressure exerted on the AOD, cl is the speed of L-

waves in the AOD, and 𝜅 and 𝛼 are the wave number and attenuation coefficients of the waves, 

respectively, the displacement vector of the atoms in the AOD medium can be written as [20] 

follows for unit length of the medium along the y axis: 

for x ≠ xcm 

𝑈⃗⃗ (𝑥, 𝑧) = −
𝑃0

2𝜋𝜌𝑐𝑙
2

1

𝑖(𝜅+𝑖𝛼)
∑ 𝐴𝑚

𝑒𝑥𝑝[𝑖(𝜅+𝑖𝛼)𝑏𝑢]−𝑒𝑥𝑝⁡[𝑖(𝜅+𝑖𝛼)𝑏𝑙]

𝑥−𝑥𝑐𝑚

𝑀
𝑚=1                     (1) 

and for x = xcm 

𝑈⃗⃗ (𝑥, 𝑧) =
𝑃0𝑎

𝜋𝜌𝑐𝑙
2

1

√𝑧2+𝑎2
∑ 𝐴𝑚𝑒𝑥𝑝(𝑖(𝜅 + 𝑖𝛼)√𝑧2 + 𝑎2)𝑀

𝑚=1                             (2) 

where the two integration limits are defined as 𝑏𝑙 = √𝑧2 + [𝑥 − (𝑥𝑐𝑚 − 𝑎)]2 , 𝑏𝑢 =

√𝑧2 + [𝑥 − (𝑥𝑐𝑚 + 𝑎)]2 and 𝑥𝑐𝑚 is the coordinate of the center of m-th transducer on the x axis, 

i.e., 𝑥𝑐𝑚 is negative when the transducer is on the –x axis.  The expression for Am is given by 

A𝑚 = 𝐷(𝜃(𝑥𝑐𝑚))𝑑 𝑝(𝑥𝑐𝑚)𝑒𝑥𝑝(𝑖∆𝜙𝑚)  with the following definitions of the variables. 

Directivity function due to m-th transducer: 

𝐷(𝜃(𝑥𝑚)) =
𝑐2(

1

2
𝑐2−𝑠𝑖𝑛2𝜃(𝑥𝑚))𝑐𝑜𝑠𝜃(𝑥𝑚)

2(𝑠𝑖𝑛2𝜃(𝑥𝑚)−𝑐2/2)2+
1

2
𝑠𝑖𝑛2(2𝜃(𝑥𝑚))√𝑐2−𝑠𝑖𝑛2𝜃(𝑥𝑚)

                            (3) 

Polarization vector due to m-th transducer: 

𝑑 𝑝(𝑥𝑚) =
𝑥−𝑥𝑚

√(𝑥−𝑥𝑚)2+𝑧2
𝑥̂ +

𝑧

√(𝑥−𝑥𝑚)2+𝑧2
𝑧̂                                     (4) 
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Phase shift due to the time delay, ∆𝜏𝑚, for ultrasonic waves arriving at point Q(xʹ,zʹ) from points 

C(xcm,0)  and O(0,0), i.e., Δ𝜏𝑚 = (𝐹′ − 𝑅𝑚
′ )/𝑐𝑙, where Q is the point of focus at a distance F'  from 

the point O, and  𝑅𝑚
′  is the distance CQ [19,21]:   

∆𝜙𝑚 = 2𝜋𝐹∆𝜏𝑚 =
2𝜋

𝛬
𝐹′[1 − {𝐹′2 + 𝑥𝑐𝑚

2 − 2𝐹′𝑥𝑐𝑚𝑠𝑖𝑛𝜃𝑠}
1/2]                    (5) 

Here 𝑥𝑐𝑚 is the angular position of the point of interest P(x,z) in the AOD medium relative to the 

normal to the surface of m-th transducer at an arbitrary point B (xm,0), i.e., 𝑥𝑐𝑚  is the angle 

between this normal and the line BP, and c is the ratio of the speeds of ultrasonic L-waves to the 

S-waves. 𝑥̂ and 𝑧̂ are the unit vectors along the x and z axes respectively. F and 𝛬 are the frequency 

and wavelength in the AOD medium for the ultrasonic waves generated by each transducer, and 

𝜃𝑠  is the steering angle which is taken to be positive when measured from the z axis in the 

clockwise direction.       

 

Figure 4-1 Schematic of coordinate system for a modeling of a contact phased array transducer located on solid AO 

medium. 
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Equations (1) and (2) yield the displacement vector 𝑈⃗⃗ (𝑥, 𝑧) = 𝑢𝑥(𝑥, 𝑧)𝑥̂ + 𝑢𝑧(𝑥, 𝑧)𝑦̂ ,  where 

ux(x,z) and uz(x,z) are the displacement components in the x and z directions, respectively.  Using 

these components, the deformation inside the AOD medium can be characterized by the 

displacement gradient 
𝜕𝑢𝑖

𝜕𝑢𝑗
, where the indices i,  j = 1, 2, 3 are the coordinates x, y, z, respectively. 

The mechanical strains due to this deformation are represented by a second rank strain tensor, 𝑺 =

[𝑆𝑖𝑗], and each strain component is given by the following expression[18,22]:  

 𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                         (6) 

This strain changes the atomic density within the volume of acoustic wave propagation inside the 

AOD and, consequently, modifies the refractive index.   

4.2.2. Two-dimensional Refractive Index due to Photoelastic Effect 

Equation (7) is used to determine the refractive index based on the photoelastic effect.  The 

refractive index is inversely related to the relative impermeability tensor and this tensor depends 

on the strain tensor by the following expression [23]:    

𝜂𝑖𝑗(𝑺) = 𝜂𝑖𝑗𝑢 + ∆𝜂𝑖𝑗(𝑺) = 𝜂𝑖𝑗𝑢 + ∑ 𝑝𝑖𝑗𝑘𝑙𝑆𝑘𝑙𝑘,𝑙                                     (7) 

in the relative impermeability tensor due to strain, and 𝑝𝑖𝑗𝑘𝑙  represents the dimensionless 

photoelastic coefficient as a fourth-rank tensor.  Since the photoelastic tensor is symmetric in i and 

j, and in k and l, the indices can be contracted to simplify the double indices 𝑖𝑗 and 𝑘𝑙 to single 

indices 𝑔 and ℎ, respectively, as follows: 

𝑝𝑖𝑗𝑘𝑙 = 𝑝𝑗𝑖𝑘𝑙 = 𝑝𝑖𝑗𝑙𝑘 = 𝑝𝑗𝑖𝑙𝑘 = 𝑝𝑔ℎ                                                    (8) 
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where each of 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 and each of 𝑔, ℎ = 1,2,3,4,5,6. Therefore, Eq. (7) can be expressed 

as 

[
 
 
 
 
 
𝜂1

𝜂2

𝜂3
𝜂4

𝜂5

𝜂6]
 
 
 
 
 

=

[
 
 
 
 
 
𝜂1𝑢

𝜂2𝑢

𝜂3𝑢
𝜂4𝑢

𝜂5𝑢

𝜂6𝑢]
 
 
 
 
 

+

[
 
 
 
 
 
𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

𝑝14 𝑝15 𝑝16

𝑝24 𝑝25 𝑝26

𝑝34 𝑝35 𝑝36
𝑝41 𝑝42 𝑝43

𝑝51 𝑝52 𝑝53

𝑝61 𝑝62 𝑝63

𝑝44 𝑝45 𝑝46

𝑝54 𝑝55 𝑝56

𝑝64 𝑝65 𝑝66]
 
 
 
 
 

[
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6]
 
 
 
 
 

                      (9)  

where the strain elements 𝑆ℎ are defined by the following rule: 

[
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑆𝑥𝑥

𝑆𝑦𝑦

𝑆𝑧𝑧

2𝑆𝑦𝑧

2𝑆𝑥𝑧

2𝑆𝑥𝑦]
 
 
 
 
 
 

                                                              (10) 

The variation of refractive index at different points in the presence of a strain field is given by an 

index ellipsoid:  

𝑋2 (
1

𝑛𝑢
2 + 𝛥𝜂1) + 𝑌2 (

1

𝑛𝑢
2 + 𝛥𝜂2) + 𝑍2 (

1

𝑛𝑢
2 + 𝛥𝜂3) + 2𝑌𝑍∆𝜂4 + 2𝑋𝑍𝛥𝜂5 + 2𝑋𝑌𝛥𝜂6 = 1              (11) 

where X, Y and Z are not the usual Cartesian coordinates but dimensionless electric displacement 

components in the x, y and z directions, respectively. 𝑋 =
𝐷𝑥

√2𝜀0𝑈̃
, 𝑌 =

𝐷𝑦

√2𝜀0𝑈̃
 and 𝑍 =

𝐷𝑧

√2𝜀0𝑈̃
 with 

Dx, Dy and Dz as the x, y and z components, respectively, of the electric displacement field D  

energy density 𝑈̃ =
1

2
𝑬 ∙ 𝑫.  To determine the variation of the refractive index in the principal 

directions, Eq. (11) can be written in its normal form by rotating the axes X, Y and Z to the 

corresponding principal axes Xʹ, Yʹ and Zʹ at an angle that eliminates the cross terms.  Applying 

the rotation     
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[
𝑋
𝑌
𝑍
] = [

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
] [

𝑋′

𝑌′

𝑍′
]                                      (12)  

to Eq. (11), the following result is obtained,  

  

𝜂1(𝑐𝑜𝑠2𝜃 + 𝜂3𝑠𝑖𝑛
2𝜃 − 𝜂5𝑠𝑖𝑛2𝜃)𝑋′2 + 𝜂2𝑌′2 

+(𝜂1𝑠𝑖𝑛
2𝜃 + 𝜂3𝑐𝑜𝑠2𝜃 + 2𝜂5𝑐𝑜𝑠2𝜃)𝑍′2 

+(𝜂1𝑠𝑖𝑛2𝜃 − 𝜂3𝑠𝑖𝑛2𝜃 + 2𝜂5𝑐𝑜𝑠2𝜃)𝑋′𝑍′ = 1                             (13)  

and Eq. (13) is transformed to the normal ellipsoid form by choosing 𝜃 so that the coefficient of 

the cross term XʹZʹ is zero, i.e.,    

      𝜃 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 (

−2𝜂5

𝜂1−𝜂3
)                                                (14) 

The resulting normal form of Eq. (13) yields the following expressions for the refractive indices 

in the principal directions Xʹ, Yʹ and Zʹ.  

𝑛𝑋′ = 1/√𝜂1𝑐𝑜𝑠2𝜃 + 𝜂3𝑠𝑖𝑛2𝜃 − 𝜂5𝑠𝑖𝑛2𝜃 

𝑛𝑌′ =
1

𝜂2
 

𝑛𝑍′ = 1/√𝜂1𝑠𝑖𝑛2𝜃 + 𝜂3𝑐𝑜𝑠2𝜃 − 𝜂5𝑠𝑖𝑛2𝜃                                     (15) 

Single-crystal paratellurite (TeO2) is generally used as an acousto-optic material because of its 

good photoelastic properties and transparency over a broad wavelength ranging from 0.35-5 𝜇m 

[18,24].  However, TeO2 is an anisotropic acousto-optic material both optically and acoustically.   

For the wavelength 632.8 nm in vacuum and TeO2 at room temperature, the ordinary and 

extraordinary refractive indices [24] are no = 2.26 and ne = 2.41, respectively. The photoelastic 

coefficients for this material are reported as [25] 

 



57 

[𝑝𝑖𝑗] =

[
 
 
 
 
 
𝑝11 𝑝12 𝑝13

𝑝12 𝑝11 𝑝13

𝑝31 𝑝31 𝑝33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑝44 0 0
0 𝑝44 0
0 0 𝑝66]

 
 
 
 
 

                                        (16) 

with 𝑝11 = 0.0074, 𝑝12 = 0.187, 𝑝13 = +0.340, 𝑝31 = +0.0905, 𝑝33 = +0.240, 𝑝44 = -0.170 and  p66 

= -0.0463.  In this study, the refractive index of the material at unstrained condition is taken as 

𝑛𝑢 = √𝑛𝑜𝑛𝑒 in Eq. (11).  Applying the phot

I = 1, 2, …, 6, are calculated and then the refractive indices in the x and z directions are determined 

using Eq. (15).  Since the transducers are infinitely long in the y direction, the ultrasonic waves 

induce two-dimensional strains in the x-z plane.  Consequently, two principal values of the 

refractive index, 𝑛𝑋ʹ and 𝑛𝑍ʹ in the principal directions 𝑋ʹ and 𝑍ʹ, respectively, are different from 

the unstrained refractive index nu and the third principal value, nY ,́ is the same as nu.  A mean 

value of the refractive index can be calculated as 𝑛𝑠 = √𝑛𝑋ʹ𝑛𝑍ʹ for the strained AOD under the 

quasi-isotropic approximation which generally holds good for weakly anisotropic media [26].  The 

two-dimensional change in the refractive index compared to the unstrained AOD is determined as 

Δn(x,z) = 𝑛𝑠(x,z)  – 𝑛𝑢(x,z).        

4.3. Results and Discussions 

Results are obtained for TeO2 as the AOD medium using the refractive index data at the He-Ne 

laser wavelength 632.8 nm in vacuum. The speeds of ultrasonic L-waves and S-waves in this 

material are 4202 ± 10 m/s and 616 ± 10 m/s, respectively, for piezoelectric transducer operating 

at 75 MHz [17], which yields the acoustic wavelength Λ = 56 µm and the acoustic wave number 

𝜅  = 1.12×105 m-1 inside the AOD medium.  In this study, the attenuation coefficient of the 
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to determine the phase shift or time delay using Eq. (5) for different values of the steering angle 

θs. The half-width, a, and pitch of the transducers are 10.4 µm and 28 µm, respectively.  The 

amplitude of the ultrasonic waves emitted by each transducer is taken to be P0 = 1 N/mm2 for the 

following results unless stated otherwise. 

 The phased array transducer in this study is a row of 22 planar transducers with the central 

operating frequency 75 MHz. The pitch of the array is ⁡𝑆 = Λ/2 and the width of each element 

is⁡𝑊 = 0.742𝑆. The formation of grating lobes is avoided by choosing the difference of the time 

delay between two adjacent transducers as an integral multiple of half-wavelength, i.e. the pitch 

⁡𝑆 = Λ/2.      

 Figures 4-2 and 4-3 show the strain-induced two-dimensional index change in a rectangular 

region of 2 × 2 mm2 for the beam steering angles  𝜃𝑠 = 0𝑜 and 30𝑜 , respectively.  These two 

angles correspond to the time delays Δτ = 0 and 3.33 s, respectively.  In Fig. 4-2, the ultrasonic 

waves, which are emitted by each transducer, propagate vertically upward while spreading 

laterally due to diffraction.  Consequently, the overlapping waves interfere to produce a composite 

wave field in the form of a diffraction pattern.  This pattern, therefore, defines the strain field 

within which the refractive index is modified.  The refractive index varies in the z and x directions 

due to longitudinal and lateral strains in the vertical and horizontal directions, respectively.  For 

Fig. 4-3, on the other hand, the time dalay was so selected that the composite wave field is steered 

at a certain angle and, therefore, the refractive index pattern is also tilted.  These results indicate 

that the index pattern can be oriented in different directions by varying ∆𝜏 to produce dynamic 

phase grating in the AOD medium for deflecting laser beams at large angles. 
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Figure 4-2 Two-dimensional strain-induced index change of ∆n with the beam steering angle of θs = 0o. 

 

 

Figure 4-3 Two-dimensional strain-induced index change of ∆n with the beam steering angle of θs = 30o. 

 

The two-dimensional features of the index change, Δn(x,z), are examined in Figs. 4-4 and 4-5 that 

represent the front and rear views of the index profile, respectively, when the acoustic beam 

steering angle θs = 0° and each transducer emits the acoustic waves as a rectangle function.  Near 
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the transducer plane, the composite acoustic wavefront assumes a rectangular diffraction pattern 

of peak intensity at the two edges of the rectangle and oscillating intensity of very small amplitude 

between the edges.  This type of pattern is formed due to Gibbs’ phenomenon in the Fourier series 

representation of rectangle functions.  Due to this acoustic diffraction pattern, the refractive index 

has a rectangular profile near the transducer plane as shown in Fig. 4-4.  However, the diffraction 

pattern assumes the Fresnel and Fraunhofer patterns slightly away and far away from the 

transducer plane, respectively, since the waves spread in the longitudinal and transverse directions.  

Consequently, the index profile also changes as indicated by the rear view of the index surface in 

Fig. 4-5.  

 

Figure 4-4 Three-dimensional strain-induced index change with the beam steering angle of θs = 0o (front view). 
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Figure 4-5 Three-dimensional strain-induced index change with the beam steering angle of θs = 0o (rear view). 
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Figure 4-6 One-dimensional strain-induced index change along beam steering axis at center RF frequency of Fc = 59 

MHz  with varying steering angle of θs = 0o, 5o, 30o and 45o. 

 

Figure 4-7 One-dimensional strain-induced index change along beam steering axis at center RF frequency of Fc = 75 

MHz  with varying steering angle of θs = 0o, 5o, 30o and 45o. 
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Figure 4-8 One-dimensional strain-induced index change along beam steering axis at center RF frequency of Fc = 91 

MHz  with varying steering angle of θs = 0o, 5o, 30o and 45o. 

 

The effects of transducers having different central RF frequencies, 59, 75 and 91 MHz are 

presented in Figs. 4-6, 4-7 and 4-8, respectively, for different steering angles.  These results show 

the periodic variation, i.e., the amplitude and wavelength, of ∆n along the beam steering axis zs. 

The steering angles do not affect the wavelength since it is determined by the central RF frequency.  

It can be observed in the results that the wavelength decreases as the RF frequency increases 

because the wavelength is inversely proportional to the frequency. At a fixed RF frequency, the 

steering angle does not affect the periodicity of the index modulation, but the amplitude decreases 

as the angle increases.  The reductions in the amplitude due to the beam steering angle of 45° 

compared to the zero steering angle are 41% and 38% in the near and far fields respectively.  

Figures 4-6, 4-7 and 4-8 show that the refractive index modulation (∆𝑛)⁡ increases as the RF 

frequency increases, which is because the wave number, 𝜅,increases as the frequency increases. 

The mechanical displacement vector of the atoms, on the other hand, are affected by the wave 

number as indicated by Eqs. (1) and (2), and consequently the strain depends on the frequency. It 
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is also known that ∆𝑛 depends on the strain as indicated by Eq. (7). Therefore ∆𝑛 varies with 

frequency through the strain term.  

 The effects of different pressures exerted on the AOD medium by the acoustic waves are 

studied in Figs. 4-9 and 4-10. For the results in both figures, the pressure exerted by each of the 

left-half 11 transducers, which lie on the –x axis, is P0 = 1 N/mm2.  The pressures exerted by each 

of the right-half 11 transducers, which lie on the +x axis, are P0 = 0.1 N/mm2 and 10 N/mm2 for 

Figs. 4-9 and 4-10, respectively.  Higher pressure would increase the amplitude of the acoustic 

waves, resulting in more strain in the AOD medium and, consequently, large modulation in the 

refractive index.  This phenomenon can be observed in Figs. 4-9 and 4-10, which show that ∆𝑛 is 

much higher in Fig. 4-10 due to higher right-half pressure than that in Fig. 4-9.  

 

 

Figure 4-9 One-dimensional strain-induced index change along beam steering axis at center RF frequency of Fc = 

75MHz with varying steering angle of θs = 5o with left-half pressure of P0 =1N/mm2 and right-half pressure of  P0 = 

0.1 N/mm2. 

 



65 

 

Figure 4-10 One-dimensional strain-induced index change along beam steering axis at center RF frequency of Fc = 

75MHz with varying steering angle of θs = 5o with left-half pressure of P0 =1N/mm2 and right-half pressure of  P0 = 

10 N/mm2. 

4.4. Conclusions 

A mathematical model is presented for generating dynamic phase gratings in AOD media based 

on strain-induced modulation of two-dimensional refractive index.  Phased array transducers 

enable acoustic beam steering at any arbitrary angle, and this steering effect is utilized to tilt the 

modulated index profile that can be implemented in AOD devices for deflecting laser beams at 

large angles.  The shape of the index profile and the magnitude of the change in the index are 

significantly different near the transducer plane compared to far away regions.  While the 

periodicity of the index modulation is determined by the central RF frequency of the transducers, 

theamplitude of the index modulation is found to decrease as the steering angle increases.  The 

acoustic pressure affects the amplitude of the index profile significantly, yielding higher 

amplitudes at higher pressures.  
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CHAPTER 5: PLANE WAVE DIFFRACTION BY TWO-DIMENSIONAL 

REFRACTIVE INDEX MODULATION FOR HIGH DIFFRACTION 

EFFICIENCY AND LARGE DEFLECTIVE ANGLE 

 

5.1. Introduciton 

The light diffraction by bulk acoustic waves is a subject of considerable interest due to the wide 

variety of important applications. Bulkwave acousto-optics enable spatial, temporal and spectral 

modulations of light in various devices such as acousto-optic deflectors (AODs), acousto-optic 

modulators and acousto-optic tunable filters.  Specifically, in medical applications, AODs enable 

inertia-free scanning for fast two-dimensional and three-dimensional imaging in multiphoton 

microscopy on physiologically relevant time scales, overcoming the limitations of galvanometer 

scanners [1].  Therefore, the diffraction characteristics of acousto-optic gratings have been 

analyzed extensively.  These studies can be broadly distinguished depending on the sizes of the 

incident light and acousto-optic medium.  The light can be plane waves of infinite dimension 

laterally or a beam of finite size, and similarly, the medium can be the half-space or a crystal of 

finite length. Additionally, the medium can be isotropic or anisotropic. Kastelik et al. [2] analyzed 

the performance of anisotropic acousto-optic crystals by introducing a phase mismatch vector in 

the method of wave vector diagram.    

           Klein and Cook [3] studied the diffraction of light due to ultrasonic waves by solving a set 

of coupled first order difference-differential equations that were obtained from the optical wave 

equation by applying the method of partial wave, which involves resolving the diffracted light into 

a series of plane waves, and neglecting the second order derivatives of the amplitude of the electric 
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field.  Chu and Tamir [4] presented a rigorous modal approach as well as a coupled mode 

representation for the diffraction of light in periodically modulated isotropic media. Although the 

modal theory is accurate, it is tedious and time-consuming for determining the solution. Kogelnik 

[5] developed a coupled wave approach, which yields analytic results that are accurate around the 

Bragg angle of incidence for the Klein-Cook parameter greater than 10.  Kaspar [6] applied 

Burckhardt’s [7] Floquet method to thick gratings and compared the results to the coupled wave 

model.  Burckhardt’s work was only for phase gratings, which was extended to phase-plus-

absorption gratings by Kaspar. Gaylord and Moharam [8] analyzed the coupled wave theory and 

showed the similarity between the coupled wave and modal approaches. These studies were for 

the diffraction of plane waves rather than the practical case of light beams of finite size.  However, 

Chu and Tamir [9,10], and Chu, Kong and Tamir [11] applied the coupled mode theory to Gaussian 

beams by considering the beam as a superposition of plane waves. Moharam, Gaylord and 

Magnusson [12] studied the diffraction of Gaussian beams in acousto-optic media using a modified 

version of the coupled wave theory, yielding two coupled first order partial differential equations.   

           Chu and Tamir [3,9,10] simplified the coupled mode equations under the assumption of 

slowly-varying electric field, 
 E x

, such that  
   2 2

0/ /xd E x dx k dE x dx
where kx is the angular 

wavevector in the direction, x, of the light propagation.  This approximation, which is generally 

applicable to weakly-modulated media, yielded two coupled first order ordinary differential 

equations.  They solved the equations analytically by neglecting the reflection of energy at the exit 

boundary and, therefore, the solution is applicable to the propagation of light in very wide media 

and the half-space. Uchida and Niizeki [13] studied a first order coupled mode theory that yielded 

analytic solutions for 0 and -1 order modes at the Bragg angle of incidence. However, the 

application of their model is restricted to weakly modulated media [11] since it neglects the effect 
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of the exit boundary.  Later Kong [14] presented a simplified second order coupled mode approach 

for both weakly and strongly modulated media and provided analytic solutions for the reflection 

and transmission coefficients, accounting for the effects at both boundaries of an AOD.    

           The above-mentioned studies are, however, based on one-dimensional modulation of the 

refractive index. Only recently, attention has been paid to the effect of two-dimensional refractive 

index modulation on light diffraction as analyzed by Andre, Guen and Jonnard [15]. In the present 

paper, the diffraction of plane wave lights is studied in two-dimensionally modulated media of 

finite size. The bulk acousto-optic grating is formed by the interaction of light and acoustic waves. 

The acoustic wave is steerable [16,17,18] using a phased array of transducers with suitable time 

delayed radio-frequency (RF) signals. This mechanism enables meeting the Bragg condition at 

every RF frequency for incident lights from a fixed source. Consequently, the dynamic acousto-

optic volume grating can improve the performance of AODs, such as high diffraction efficiency, 

large deflection angle and large scan angle. 

           This project begins by presenting in Section 2 a qualitative argument that supports the 

coupled-mode theory of light diffraction based on two-dimensional refractive index modulation. 

An analytic approach is then presented for second-order coupled mode propagation of light in 

AODs with multiple phased-array transducers. The results are presented in Section 3 for TeO2 

AODs based on the phase, frequency and amplitude modulations of the transducers. Additionally, 

the diffraction efficiency of this two-dimensional refractive index model is compared to the results 

of others’ one-dimensional refractive index models.  
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5.2. Theoretical background 

5.2.1. Modulation of refractive index in two dimensions 

Conventional AODs are operated with a single transducer or an array of transducers assembled in 

the planar or stepped configuration [19]. In the single transducer configuration, the performance 

of AODs is limited by the applied RF power, narrow bandwidth, small deflection angle, narrow 

scan angle and low diffraction efficiency. 

 

Figure 5-1 Difference in the refractive index profiles due to Fig. 1(a) static phased array transducers in conventional 

AOD and Fig. 1(b) dynamic phased array transducers in this study. 

 

The array configuration of transducers was introduced to improve the performance of AODs using 

phase-shifted acoustic waves that create tilted modulation in the refractive index as shown in Fig. 

1(a). Each transducer is operated at a relative time delay to generate phase-shifted acoustic waves.  

These waves propagate through the AOD with a tilted composite wavefront and consequently, the 

compressed and rarefied atomic layers are also tilted resulting in the slanted refractive index 

modulation. This type of transducer array improves the deflection scan angle and the diffraction 

efficiency.  However, the time delays are fixed, which produce a static phase grating, and the 

transducers are relatively large in conventional AODs and therefore, the composite wavefronts 
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cannot be steered at any arbitrary angles.  Dynamic phase gratings can be produced by operating 

the transducers at different phase shifts and utilizing the interference and diffraction of the acoustic 

waves.  These phenomena produce a tilted grating lobe with the principal direction, zs, as shown 

in Fig. 1(b) and the lobe can be steered at any angle of interest by varying the phase shift and 

amplitude of the acoustic waves.    

           The steering angle is indicated by   in Fig. 1(b). Noting that 0 is the original incident angle 

of the light onto the unperturbed medium, the new incident angle becomes 0in      for the tilted 

lobe.  Thus the tilted lobe provides a mechanism of automatically changing the incident angle of 

light without moving the original light source.  Also the frequency of the acoustic waves emitted 

by the transducers can be adjusted to achieve the Bragg angle of incidence, i.e., in B   for each 

lobe, which ensures large deflection angle given by in  and large diffraction efficiency given by 

the Bragg diffraction condition. 

          Another aspect of the tilted lobe is two-dimensional modulation of refractive index in the 

lobe, which results in dynamic two-dimensional gratings in contrast to one-dimensional gratings 

in conventional AODs.  The interference and diffraction of the acoustic waves that form the lobe, 

also produce a resultant acoustic intensity distribution as a diffraction pattern, typically, in the form 

of a sinc function. This intensity pattern modifies the refractive index in the transverse direction 

xs, and the index variation is taken as a sinc function in this study.  On the other hand, the refractive 

index varies periodically with the period  in the longitudinal direction zs due to the propagation 

of the acoustic waves in the AOD.  These two mechanisms produce a refractive index profile in 

two dimensions by perturbing the nominal refractive index in the titled lobe as shown in Fig. 2, 

resulting in a two-dimensional phase grating.  Wooh and Shi [20,21,22] showed that multiple 
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piezoelectric transducers can produce steerable acoustic lobes in a medium, and the longitudinal 

direction, zs, coincides with the composite acoustic wavevector K . A typical two-dimensional 

index profile in region II,  ,IIn x z , can be written as: 

   
 

2 0

sin2
, cosII

bx
n x z n n z

bx




  
     

  
                                            (1) 

 

Figure 5-2 Two-dimensional refractive index profile generated by a tilted lobe in an acousto-optic medium. 

 

where n2(0) is the refractive index of the unperturbed acousto-optic medium at the wavelength of 

the incident light in vacuum, 0, and  n  and  are the maximum change in the refractive index 

and the acoustic wavelength in the modulated medium, respectively. The parameter b  is a 

constant that defines the length of the lobe spanned by the central peak of the sinc function with 

significant contribution to n.  Considering that x = 0 is at the center of the lobe, x = ±L/2 represent 

two points on either side of the center, and L is the full width at half maximum of the sinc function, 

b can be related to L by the following expression: 

sin(bL/ 2)
1/ 2

/ 2bL
                                                                        (2) 
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The perturbation of the refractive index, n, from its nominal value,  2 0n  , is given by [21]:    

 3

2 0

1

2
n n pe                                                                   (3)   

where p  is the photo-elastic constant and e is the strain tensor due to the mechanical stresses 

induced by the acoustic wave. The strain amplitude is in the range of 10-8 to 10-5, and the  

photoelastic coefficient is 0.23 for TeO2 [19]. So the value of n and consequently, the maximum 

modulation, n, are relatively small for typical AODs. 

5.2.2. Second order coupled-mode equations for periodically modulated media 

For an incident light of TE polarization in the y direction, the electric field,  ,IIE x z , satisfies the 

following scalar wave equation in the modulated region II bounded by / 2 / 2L x L   ,  

   
2 2

2 2

0 ,2 2
, , 0II II yk n x z E x z

x z

  
   

  

                                                            (4) 

where 
0k  is the angular wavenumber of the light at its wavelength in vacuum.   Since the light 

propagates in a periodic medium of periodicity  and the wavevector of the acoustic field, K , is 

inclined to the z axis at an angle   (Fig. 2),  the electric field can be expanded in a set of Floquet 

waves [14],  

    /2
, ,

i zim mz
mII y

m

E x z E x e e






                                                (5) 

where 

0 cosmz zk mK                                                           (6) 

mE is the m-th mode electric field, 0zk  is the z component of the wavevector of the light inside 

Region II at the incident boundary, and K  is the angular wavenumber of the acoustic wave in this 
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region, i.e., 2 /K   .  Applying Eq. (4) to Eq. (3) and equating the coefficient of the m-th Floquet 

wave to zero, the following second order coupled mode equation is obtained.   

  
 

   
 

 2

2

2

2 2
2 1 12

2

sin
0

m

mz m m mk
d E x bxn

k E x i E E
n bxdx

  

 
 
 
 


                                (7) 

At the Bragg angle of incidence and in its vicinity, only two Floquet modes, i.e.,  0E x   and  1E x  

modes, couple strongly to each other.  So Eq. (7) can be reduced to the following two coupled 

equations by neglecting the higher order modes and taking   as zero.  

 
2 2

2 2
0 1 1

0 12

sin bxd E
E i E

bxdx L L

 


 
 
 
 

                                                   (8) 

 2 2 2
1 1 1

1 02 2 2

sin bxd E
E i E

bxdx L L

  


 
 
 
 

                                                     (9) 

Three dimensionless parameters, 1,   and    , appear in Eqs. (8) and (9), which are given by: 

1 0 2 2cosk n L                                                                              (10) 

 

0

2cos

k nL





                                                                                     (11) 

 

 
1

1 1
Q

 


                                                                          (12) 

 

where Q  and    are Klein-Cook parameter and angle ratio, respectively, which are defined 

below.  The relations 0 2 2sinzk k   and 2 2 0k n k  are used to obtain 1  while deriving equations (8) 

and (9), where 2  is the angle of refraction at the incident boundary of the AOD medium.  1  is a 

phase parameter for the light in the unperturbed medium.   

 which is obtained using the relation 2 2 0k n k  while deriving Eqs. (8) and (9), represents the 

phase difference due to the change in the optical path length nL .  This parameter can be varied 
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by operating the piezoelectric transducer in the amplitude modulation mode since n depends on 

the amplitude of the acoustic wave.  The third parameter  includes the light-sound interactions 

through the Klein-Cook parameter Q  and the angle ratio  .  The relations 0 2 2sinzk k   and 

2 2 0k n k  are used to obtain  while deriving equations (8) and (9).    

Q  is given by [23]: 

2

2 0 2cos

K L
Q

n k 
                                                               (13) 

It classifies the light diffraction process into three regimes: (i)  Raman-Nath diffraction in thin 

gratings corresponding to 1Q , (ii) Bragg diffraction in thick gratings corresponding to 1Q , 

and (iii) the transition region for 1Q  .  The angle ratio, , is defined as:  

02 sin ink

K


                                                                (14) 

It represents the ratio of the sine functions of the incident and Bragg angles since  0sin / 2B K k  , 

where B  is the Bragg angle measured outside the acousto-optic medium.  The sine of an angle is 

approximately equal to the angle itself for small angles, and under this condition,  is a measure 

of the incident angle normalized by the Bragg angle.  = 1 indicates in B   and 1   corresponds 

to in B  .  The angle ratio parameter can be varied by operating the piezoelectric transducers in 

the frequency modulation mode since K  depends on the frequency of the acoustic wave.   
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5.2.3. Solutions of the reduced coupled mode equations 

Equations (8) and (9) are solved for 0 and -1 order Floquet modes  0E x  and  1E x , respectively, 

by the method of variation of parameters.  The resulting expressions, which involve the sine 

integral,  Si z , and cosine integral,  Ci z , [24], are given below:   
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where j1 and j2 are Kronecker’s delta functions and the other auxiliary parameters are defined 

as: 
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                                          (17) 

A1, A2, and B1 and B2 are the constants pertaining to the homogeneous solutions for 0 and -1 order 

Floquet modes, E0(x) and E-1(x), respectively.  On the right hand side in Eqs. (16) and (17), the 

first two terms are these two modes in the unperturbed acousto-optic medium and  the third and 

fourth terms represent the interaction between these two modes in the perturbed medium for 

transferring energy between them.  The last term in each equation represents higher order effects 

for the interaction between the modes involving  
2

n  through the 2 term.  This last term also 

shows the self-effect of each mode because the electric field of a mode at a given point x , e.g., 

 0E x , is affected by the distribution of the field over the entire distance ranging from 0 to x .  Eqs. 

(16) and (17) are essentially Volterra integral equations which can be solved by the method of 

successive approximations [25].  As a first approximation, however, only the first four terms have 

been considered in this study to   calculate  0E x  and  1E x .       

5.2.4. Reflection and transmission due to the  modulated medium 

In region I, the overall electric field, which consists of the incident and reflected fields, can be 

expressed as:  

, , 1,0 1, 10 1
, 0 1( ,z) in mx in mz x xz z

i x i xik x ik z i z i z
mI yE x G e e r e e r e e

   
 

                                    (18) 
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where mG  is the amplitude of m-th plane wave component of the input light, kin,mx is the x 

component of the wavevector of the incident m-th plane wave component, 0r  and 
1r  are the field 

reflection coefficients for 0 and -1 Floquet modes, respectively, and 
1,0x and 

1, 1x 
 are the x 

components of the wavevectors for 0 and -1 Floquet modes, respectively, in region I, as given later 

in this section. 0z  and 1z  are the z components of the wavevectors for 0 and -1 Floquet modes, 

respectively.  

In region II, the electric field takes the form: 

0 1
, 0 1( , ) ( ) ( )z zi z i z

II y iE x z E x e E x e 
                                        (19) 

where E0(x) and E-1(x) are the solutions to the two Floquet modes given by Eqs. (15) and (16), 

respectively.     

In region III, the electric field consists of the transmitted components of 0 and -1 order modes, and 

there is no reflection from this region back to region II.  So the transmitted electric field in region 

III can be written as: 

3,0 3, 10 1
, 0 1( , ) x xz z

i x i xi z i z

III yE x z t e e t e e
   

                                  (20) 

where 0t  and 1t  are the field transmission coefficients for 0 and -1 Floquet modes, respectively, 

and 3,0x  and 3, 1x   are the x components of the wave vectors for 0 and -1 Floquet modes, 

respectively, as given below. 

 The x components of the wave vectors pertaining to the Floquet modes are given by: 

2 2

,r mx r mzk                                                               (21) 

where ,r mx  is the x component of the wavevector in region r, r = 1 or 3, respectively, for m-th 

Floquet mode.  Eqs. (18-20) contain eight unknowns: r0, r-1, A1, A2, B1, B2, t0 and t-1, which are 
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determined by applying the boundary conditions that the tangential electric and magnetic fields 

are continuous at the incident (x = -L/2) and exit (x = L/2) boundaries of the acousto-optic medium. 

The boundary conditions involving the normal components, which require that the normal 

component of the electric displacement vector and the normal component of the magnetic flux 

density vector be continuous at the boundaries, are not considered because these two conditions 

are not independent of the two tangential conditions [26]. Since the tangential magnetic field zH  

is given by Maxwell’s equation as 
1 y

z

E
H

i x





, where  is the permeability of a given medium, 

the boundary conditions can be written as follows for nonmagnetic media, i.e., 1  . 

   
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These four boundary conditions must be satisfied for each mode at all values of z.  So eight linear 

simultaneous equations can be obtained by equating the coefficients of the waveform of each 

mode, i.e., 0zi z
e


 or 1zi z
e
 , to zero for determining the eight unknowns.  The Crammer rule is 

applied in this study to calculate these unknown coefficients.  

The solution is verified by checking that the Conservation of Energy (CoE) is satisfied. The 

transmitted and diffracted electric fields, E0 and E-1, respectively, are related to the electric field 

of the incident light, Ein, by the CoE as stated below: 

 
2 2 2 21,0 1, 1 3,0 3, 1

0 1 0 1

1 1 1 1

1
x x x x

x x x x

r r t t
k k k k
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       
                                   (24) 

for the case of Gm = 1.0. 
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5.3. Results and discussion 

In this study, the acousto-optic medium is a TeO2 crystal, which is transparent in the wavelength 

range of 0.35 to 5 μm [27,13], and the incident light is a plane wave of wavelength 0 = 632.8 nm 

in vacuum. So the angular wavenumber of the light in vacuum is k0 = 9.93×106 m-1. The nominal 

refractive index of the crystal is n2 = 2.26 at this wavelength, which is the refractive index for the 

ordinary light [28]. Although TeO2 is a uniaxial positive crystal, it can be treated as an isotropic 

medium for longitudinal acoustic waves and transverse electric polarized light. The velocity of 

sound in the crystal is V = 4260 m/s in the crystallographic direction [001] for the longitudinal 

mode [28] that results in  = 56 μm and K = 1.12×105 m-1. So the Bragg angle of incidence is B 

= 0.324° at 75 MHz. The length of the modulated region is L = 2.24 cm, which yields Q = 4π and 

therefore, the AOD is operated in the Bragg regime since Q >> 1.     

           Results are obtained for different cases by varying the frequency of the acoustic waves as 

well as their amplitudes and phases.  The effect of amplitude modulation manifests as the index 

modulation n, and the phase-shifting corresponds to grating lobes at different steering angles, , 

resulting in a new incident angle 0   [Fig. 1(b)].  This angle would be the Bragg angle of 

incidence if the acoustic frequency for the lobe is chosen properly using the Bragg diffraction 

condition, i.e.,    0 0sin / 2F V    . Thus the effect of phase-shifting manifests as operating the 

AOD under the Bragg diffraction condition for each lobe to achieve large deflection angle, 0  , 

and high diffraction efficiency at any frequency.  Four parameters, the index modulation strength 

n , the acoustic frequency F, the angle of incidence in  and the grating length L, are found to 

affect the optimal performance of the AOD. 
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Figure 5-3 Reflectance and Transmittance as a function of the index modulation strength Δn with L = 2.24 cm,  

Q = 4π and F = 75 MHz at Bragg incidence angle of 0.324o.     

 

           The solutions of the above-mentioned eight linear algebraic equations yield the reflection 

and transmission coefficients, r0, r-1, t0 and t-1, for 0 and -1 order modes. The corresponding 

reflectance and transmittance are given by 2 2

0 0 1 1,R r R r    and  2 2

0 0 1 1,T t T t   , which are 

plotted in   Fig. 3 as a function of the index modulation strength n   for 1 3 1.0n n  . At the index 

modulation strength 52.2 10n    , the transmittance, 1T ,  of -1 order  mode is maximum with the 

value unity and correspondingly the transmittance, 0T , of 0 order  mode is minimum with the value 

zero.  The reflectances are also zero at this critical point.  The index modulation strengths of 

51.1 10 and 54.3 10  are a pair of turning points because the trend in the variation of the 

transmittances reverses, i.e., 1 0T T  after these two points.  The fifth graph, which is designated 

by CoE, is determined using the conservation of energy as given by the left hand side of Eq. (24).  



84 

Its value of unity for different values of n validates the results of the coupled mode theory for 

two-dimensional refractive index modulation.   

           The diffraction efficiency is plotted as a function of the incident angle in  in Fig. 4 for a 

fixed acoustic frequency of 75 MHz and different index modulation strengths. It has the maximum 

value of unity at the Bragg angle of 0.324o

in  at this frequency for the optimal index change of 

52.2 10 . The curves are symmetric about this angle, indicating that the diffraction efficiency 

reduces by the same amount if the incident light is misaligned to either side of the Bragg angle of 

incidence.  As the index modulation strength deviates more from the optimal n , the diffraction 

efficiency decreases further and varies with in  more nonuniformly.  Good uniformity in the curve 

shows that the AOD can be operated at nearly 100% diffraction efficiency over a relatively large 

range of the incident angle and therefore, the AOD would be highly tolerant of misalignment while 

setting it up and tuning to achieve the Bragg angle of incidence in practice. 

           Figure 5 examines the diffraction efficiency as a function of the incident angle in  for 

different acoustic frequencies and 52.2 10n    .  This value of n is the optimal index modulation 

strength at the frequency F = 75 MHz.   The Bragg diffraction condition is satisfied only at 

0.324o

in   for the frequency of 75 MHz. The diffraction efficiency is nearly 100% and varies 

symmetrically in the proximity of this angle, but the curve becomes asymmetric away from this 

angle because Eqs. (8) and (9) hold good around the Bragg angle of incidence. For the other two 

RF frequencies of 65 MHz and 85 MHz, the Bragg angles are 0.281° and 0.367°, respectively.  

Although the Bragg condition is satisfied at these two angles, the diffraction efficiency is not unity 

at the corresponding frequencies because the efficiency of an AOD depends on both the index 

modulation strength and the degree to which the momentum is conserved in the photon-phonon 
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interaction [29,30].  While the frequency of the acoustic wave affects the conservation of 

momentum for a given incident light, the acoustic amplitude influences n . Therefore, both the 

frequency F, and the amplitude or equivalently n, need to be adjusted to optimize the diffraction 

efficiency.   

 

Figure 5-4 Reflectance and Transmittance as a function of the index modulation strength Δn with L = 2.24 cm, Q = 

4π and F = 75 MHz at Bragg incidence angle of 0.324o.    

 

Figure 5-5 Diffraction efficiency as a function of the incident angle θin with Δn = 2.2×10-5, Q = 4π for different RF 

frequencies. 
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Figure 5-6 Diffraction efficiency as a function of the incident angle θin for Q = 4π. 

 

          The effect of the optimal pair of F and n is studied in Fig. 6, which shows the performance 

of dynamic phase gratings, i.e., acoustic lobes at different steering angles.  The diffraction 

efficiency is plotted as a function of the incident angle in  for different pairs F and n, so that 

each pair has its own Bragg angle of incidence.  This is the reason for achieving 100% diffraction 

efficiency at different frequencies.  As discussed earlier in this section, operating the piezoelectric 

transducers at different phase-shifts forms acoustic lobes in the AOD at various steering angles, 

resulting in new incident angles 0  .  For each new angle of incidence, an acoustic frequency 

can be selected to ensure that the Bragg diffraction condition is satisfied.  Also the transducers can 

be operated in the amplitude modulation mode so that the acoustic pressure inside the AOD is 

sufficient to induce an optimal n.  Thus the phase, frequency and amplitude modulations of the 

transducers enable achieving 100% diffraction efficiency with relatively large deflection angles at 

different frequencies.   
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Figure 5-7 Comparison of the diffraction efficiency obtained from different  models. 

 

           Figure 7 compares the results of this study with two other models to examine the effect of 

two-dimensional and one-dimensional refractive index modulations on the diffraction efficiency. 

This study is based on steerable acoustic lobes, whereas models 1 and 2, which were developed by 

Kong [14], and Uchida and Niizeki [13], respectively, considered conventional AODs composed 

of a single or multiple transducers. Models 1 and 2 in Fig. 7 show that conventional AODs have 

the maximum diffraction efficiency only at the Bragg angle corresponding to the central operating 

frequency of the AOD, which is 75 MHz in this study, and have limited bandwidth as imposed by 

the Bragg interaction. Only certain momentum components of the acoustic beam, which can be 

phase-matched to the momentum components of the incident and diffracted lights, are useful for 

generating the -1 order mode from the 0 order mode.  In the acoustic lobe steering model of this 

study, however, the diffraction efficiency is 100% for all operating frequencies of the AOD 

because the Bragg diffraction condition can be achieved at all frequencies as discussed previously. 
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It should be noted that an ideal, i.e., a loss-less acousto-optic device, is considered in this study.  

In practice, however, the acousto-optic crystals can absorb the light causing a significant amount 

of power loss, which will reduce the diffraction efficiency. Additionally, the piezoelectric 

transducers are not ideal, i.e., they do not generate acoustic waves at a single frequency, which can 

also affect the diffraction of the light.  The diffraction efficiency is 100% in loss-less media as 

predicted by models 1 and 2, and the model of this study. Klein and Cook’s [3] model also yielded 

100% diffraction efficiency for isotropic media under certain operating conditions. For anisotropic 

media, Kastelik et al. [2] determined 100% diffraction efficiency theoretically, which compares 

well with their experimental data, over a fairly wide range of acoustic frequency under the no 

power loss condition.  These results highlight that all of the light can be diffracted into the first-

order mode for ideal AODs.     

5.4. Conclusion 

A two-dimensional refractive index model has been presented to modulate the refractive index in 

two dimensions for improved performance of AODs.  The refractive index varies as periodic and 

sinc functions in the longitudinal and transverse directions, respectively.  This type of modulation 

can be achieved by operating the piezoelectric transducers of AODs in the phase, frequency and 

amplitude modulation modes simultaneously.  The resulting second order coupled mode equations 

have been solved analytically for the reflection and transmission coefficients of the AOD.  The 

phased array of transducers allows generating tilted acoustic wavefront dynamically, resulting in 

acoustic lobe steering that produces dynamic two-dimensional phase grating inside the AOD.  Due 

to this effect, the AOD can be operated under the Bragg diffraction condition at any frequency 
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with corresponding optimal index modulation strength and consequently, the diffraction efficiency 

is found to be unity at different frequencies with relatively large deflection angles.  Therefore, the 

performance of AODs under the two-dimensional index modulation is not limited by the frequency 

bandwidth as observed in conventional AODs.       
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CHAPTER 6: GAUSSIAN BEAM DIFFRACTION BY TWO-

DIMENSIONAL REFRACTIVE INDEX MODULATION FOR HIGH 

DIFFRACTION EFFICIENCY AND LARGE DEFLECTIVE ANGLE 

 

6.1. Introduction 

Acousto-Optic Deflectors (AODs) are inertialess optical solid state devices to deflect and scan 

laser beams in numerous applications including microvia drilling in microelectronic industries for 

advanced high density packaging.  Conventional mirror-based mechanical deflectors are prone to 

wear and tear, mechanical noise and drift due to  moving parts such as rotating mirrors [1,2,3].  

AODs are free of these drawbacks since they do not have any moving parts.  Additionally, AODs 

allow  higher deflection velocities, better accuracy in the scan angle and lower response time than 

the mechanical deflectors due to massless photons [1].  Various applications of AODs include 

optical communication [4-6], optical tweezers for molecule trapping [7], optical image scanners 

[8.9], and optical frequency shifters [10].   

           Chu and Tamir [11] modeled the diffraction of Gaussian beams in dielectric media of 

periodically modulated permittivity by treating the incident beam as linear superposition of plane 

waves, and showed that both the refracted and Bragg-scattered beams split into two beams and 

this distortion lowers the diffraction efficiency compared to when a single plane wave is incident 

on the medium.  Later they [12] applied the model to incident angles close to the Bragg angle and 

analyzed the effect of beam splitting by examining the major and minor lobe profiles for both the 

refracted and Bragg-scattered beams.  Chu, Kong and Tamir [13]  and Kong [15] presented a 

highly accurate second order coupled-mode model for the diffraction of Gaussian beams  due to 
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periodic modulation of permittivity, and showed that the conventional first order coupled-mode 

theory is accurate for small perturbation in the permittivity and that the second order approach 

must be used for strongly modulated media.  Moharam, Gaylord and Magnusson [14] modeled the 

diffraction of Gaussian beams in transparent volume gratings by two coupled first order partial 

differential equations based on a modified version of the two-dimensional coupled wave theory.   

One-dimensional modulation of the refractive index, n(z), has been considered in the above-

mentioned studies.  Also conventional AODs operate at small deflection angles, and high 

diffraction efficiency only over a narrow bandwidth of the acoustic frequency.  However, advanced 

applications, such as high precision and high speed microvia drilling and image scanning, require 

large deflection angles for large-area processing and high diffraction efficiency over a wide 

acoustic bandwidth.  Phased-array transducers have been incorporated to AODs for improving the 

deflection angle and bandwidth [18,19,20] by assuming one-dimensional index modulation that 

holds good for small tilting of the phase grating planes.    Two-dimensional index modulation, 

n(x,z), provides a mechanism to improve the performance of AODs further. Recently, Andre, Guen 

and Jonnard [16] applied a rigorous coupled-wave theory to lossy volume gratings with two-

dimensional permittivity for X-ray spectroscopy and concluded that the rigorous approach without 

two-wave and first derivative approximations is necessary to accurately calculate the diffraction 

efficiency.  Wang et al. [22] studied the effect of two-dimensional refractive index modulation on 

the diffraction of plane waves and showed that the deflection angle can be increased using phased 

array transducers and the diffraction efficiency is nearly unity over a wide acoustic bandwidth.  

The phase-shifted acoustic waves, which are emitted by the transducers, interfere inside the AOD 

to form a phase grating within which the refractive index varies in two dimensions.  The grating 

lobe can be tilted to different angles by operating the transducers with appropriate time-delayed 



95 

radio-frequency (RF) signals.  This tilt in the grating automatically modifies the incident angle of 

the laser beam on the grating plane even though the laser is stationary [17].  So the frequency of 

the RF signal is changed to achieve the Bragg condition under this new angle of incidence, and 

thus the dynamic acousto-optic volume grating can improve the performance of AODs.   

           In this project, the diffraction of Gaussian beams is studied for AODs of finite size with 

two-dimensional index modulation. Section 2 provides a summary of the AOD geometry and the 

index modulation used in this study. The Gaussian beam is represented by the superposition of 

plane waves and then the electric field is determined at the exit surface of the AOD using the plane 

wave solution from Ref. [22].  The results and discussion are presented in Section 3 for TeO2 and 

Ge AODs based on the phase, frequency and amplitude modulations of the transducers for Ne-Ne 

and CO2 lasers respectively. 

6.2. Theoretical background 

6.2.1. Two-dimensional refractive index modulation   

AODs can be generally classified into two groups depending on whether a single transducer or 

phased-array transducers are used to operate the AODs. The drawbacks of single-transducer AODs 

are narrow acoustic bandwidth, small deflection angle and small scan angle.  Phased-array 

transducers are utilized to overcome these shortcomings [6,22].  Phase-shifted acoustic waves, 

which are emitted by the transducers when they are operated with some time delays with respect 

to each other, propagate through the AOD medium as a tilted composite wavefront (Fig. 5-1) due 

to the diffraction and interference of the waves.  Due to this acoustic effect, the atomic planes of 

the AOD medium are tilted as alternating compressed and rarefied layers with index modulation 
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along the titled planes.  The composite wavefront can be steered in different directions by 

dynamically varying the time delays and, consequently, the index modulation planes can be titled 

at various angles. 

 

Figure 6-1 The refractive index profiles due to dynamic phased array transducers in this study. 

 

A typical steering angle, 𝜃̃ corresponding to the principal direction, zs, of the acoustic diffraction 

lobe is presented in Fig. 5-1, showing that the new incident angle would be 𝜃𝑖𝑛 = 𝜃0 + 𝜃̃ for the 

tilted index modulation if the laser beam is originally incident on the unperturbed AOD at the angle 

𝜃0.  Using this acoustic beam steering mechanism, the angle of laser incidence on the tilted phase 

grating can be varied automatically without moving the original laser beam.  For each steering 

angle, the frequency of the acoustic waves needs to be adjusted to ensure that 𝜃𝑖𝑛 in corresponds 

to the Bragg angle of incidence for achieving large deflection angle given by 𝜃𝑖𝑛  and large 

diffraction efficiency given by the Bragg diffraction condition. 
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           The above-mentioned acoustic effect also produces a two-dimensional phase grating in 

contrast to one-dimensional gratings in conventional AODs. The diffraction pattern of waves 

emitted by a regular array of emitters generally has the sinc-function shape in Cartesian 

coordinates.  Since the variation of refractive index depends on the intensity distribution of the 

composite acoustic wavefront, the refractive index is considered to vary as a sinc-function in the 

transverse direction xs in this study (Fig. 5-2).  On the other hand, the refractive index varies 

periodically with the period Λ . In the longitudinal direction zs, however, the index varies 

periodically with the period Λ, where Λ is the wavelength of the acoustic waves in the AOD 

medium.  So the two-dimensional index profile in region II,  𝑛𝐼𝐼(𝑥, 𝑧), can be written as: 

 

𝑛𝐼𝐼 = 𝑛2(𝜆0) + Δ𝑛𝑐𝑜𝑠 (
2𝜋

Λ
𝑧) (

𝑠𝑖𝑛𝑏𝑥

𝑏𝑥
)                                           (1) 

 

 

Figure 6-2 Transverse refractive index (sinc profile) generated by a tilted lobe in an acousto-optic medium. 
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where 𝑛2(𝜆0) is the refractive index of the unperturbed acousto-optic medium at the wavelength 

of the incident light in vacuum, 𝜆0, and Δ𝑛 is the maximum change in the refractive index. The 

parameter b  is a constant that defines the width of the central lobe of the sinc function. Since this 

function varies from a maximum value at the center of the lobe to zero at the edge of the lobe, the 

parameter b is so chosen that the index modulation is significant in the AOD medium.  The central 

peak of the sinc function occurs at xs = 0 and the lobe spans from xs = -L1 to xs = L2 (Fig. 5-2) to 

yield a significant index modulation.  If Lm represents the larger of the two values L1 and L2, b can 

be determined by considering that Lm is the full width at half maximum of the sinc function, i.e., 

 

𝑠𝑖𝑛(𝑏𝐿𝑚/2)

𝑏𝐿𝑚/2
=

1

2
                                                                        (2) 

 

Wang et al. [22] analyzed the performance of AODs using the coupled mode theory for incident 

lights of plane wavefront and the above-mentioned two-dimensional index modulation.  Their 

model is implemented in this study for analyzing the diffraction of Gaussian beams by 

decomposing the beam into numerous plane waves.    

 

6.2.2. Decomposition of Gaussian laser beam profiles into plane wave spectral 

components 

The electric field of Gaussian laser beams can be written as follows [38] 

 
 

𝐸𝑖(𝑥′, 𝑧′) = 𝐴0
𝑤00

𝜔(𝑥′)
𝑒

−(
𝑧′

𝜔(𝑥′)
)
2

𝑒𝑖𝑘0𝑥′𝑒−𝑖𝜙(𝑥′)𝑒
𝑖𝑘0

𝑧′2

2𝑅(𝑥′)   (3) 
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in the Cartesian coordinate system (𝑥′, 𝑧′) with the origin being at the center of the beam waist as 

shown in Fig. 5-2.  Here 𝐴0 is the peak electric field and 𝑤00 is the radius of the Gaussian beam 

waist which is located at the plane x' = 0.  The radius of the Gaussian beam at any other plane is 

given by 𝜔(𝑥′) = 𝑤00√1 + (𝑥′ 𝑥𝑅
′⁄ )2, 𝜙(𝑥′) is the Gouy phase, 𝜙(𝑥′) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥′ 𝑥𝑅

′⁄ ), 𝑥𝑅
′  is 

the radius of curvature of the Gaussian laser wavefront, 𝑥𝑅
′ = 𝜋𝑤00

2 𝜆0⁄ . 

 

The laser beam is incident on the x = -L/2 surface of the AOD with the interception points A, D 

and B as shown in Fig. 5-2.  The widths of the interception DA and DB are given by wa and wb  

respectively.  These two widths are determined by applying the Gaussian beam radius w(x') to the 

points A and B, which yield wb and wa  that can be expressed as: 

 

𝑤𝑎 =

−2𝑑1𝑠𝑖𝑛𝜃0−√(2𝑑1𝑠𝑖𝑛𝜃0)2−4(𝑠𝑖𝑛𝜃0
2−

𝑐𝑜𝑠𝜃0
2

𝑤00
2 𝑥𝑅

2)(𝑥𝑅
2−𝑑1

2)

2(𝑠𝑖𝑛𝜃0
2−

𝑐𝑜𝑠𝜃0
2

𝑤00
2 𝑥𝑅

2)

                              (4) 

𝑤𝑏 =

2𝑑1𝑠𝑖𝑛𝜃0−√(2𝑑1𝑠𝑖𝑛𝜃0)2−4(𝑠𝑖𝑛𝜃0
2−

𝑐𝑜𝑠𝜃0
2

𝑤00
2 𝑥𝑅

2)(𝑥𝑅
2−𝑑1

2)

2(𝑠𝑖𝑛𝜃0
2−

𝑐𝑜𝑠𝜃0
2

𝑤00
2 𝑥𝑅

2)

                                (5) 

 

To analyze the laser beam propagation inside the AOD medium in the (x,z) coordinate system, 

where the consecutive three transformations are involved with: twice translation shifts are 

characterized by 𝑑1 and 𝐿/2; once rotation matrix is characterized by the incidence angle of 𝜃0. 

The final resultant coordinate transformation Eq. (6) is applied to Eq. (3), 
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(𝑥′
𝑧′

) = (
(𝑥 + 𝐿/2). 𝑐𝑜𝑠𝜃0 + 𝑧. 𝑠𝑖𝑛𝜃0 + 𝑑1

−(𝑥 +
𝐿

2
) . 𝑠𝑖𝑛𝜃0 + 𝑧. 𝑐𝑜𝑠𝜃0

)                               (6) 

 

to obtain the Gaussian beam profile as 

 

𝐸𝑖(𝑥, 𝑧) = 𝐴(𝑑1)𝑒
−[

−(𝑥+𝐿/2)𝑠𝑖𝑛𝜃0+𝑧𝑐𝑜𝑠𝜃0
𝜔(𝑑1)

]
2

𝑒
𝑖𝑘0

[−(𝑥+𝐿/2)𝑠𝑖𝑛𝜃0+𝑧𝑐𝑜𝑠𝜃0]2

2𝑅(𝑑1) 𝑒𝑖𝑘0[(𝑥+𝐿/2)𝑐𝑜𝑠𝜃0+𝑧𝑠𝑖𝑛𝜃0]    (7) 

 

where 𝐴(𝑑1) = 𝐴0
𝜔0

𝜔(𝑑1)
𝑒𝑖𝑘0𝑑1𝑒−𝑖𝜙(𝑑1) and 0 is the incident angle of the Gaussian beam.  Eq. 

(3) is expressed as a superposition of plane waves so that the solution of Ref. [21], which was 

obtained for the diffraction of plane waves due to two-dimensional index modulation, can be 

implemented in this study. 

 

6.2.3. Gaussian beam diffraction in AOD media with two-dimensional refractive index 

modulation 

Fourier representation of Ei(x,z) in terms of angular spectra provides a convenient way of 

expressing the electric field of an incident Gaussian beam as linear plane wave superposition, i.e.,   

 

𝐸𝑖(𝑥, 𝑧) = ∫ 𝐺(𝑘0𝑧)𝑒𝑥𝑝[𝑖(𝑘1𝑥𝑥 + 𝑘0𝑧𝑧)]
∞

−∞
𝑑𝑘0𝑧                             (8) 

 

where 𝐺(𝑘0𝑧) is the spectral amplitude and exp(i𝑘1𝑥𝑥) and exp(i𝑘0𝑧𝑧) are spectral components 

of wavenumbers 𝑘1𝑥 and 𝑘0𝑧 for the plane waves propagating in the x and y directions, 
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respectively.  𝐸𝑖(𝑥, 𝑧) is incident on the incident surface of the AOD medium from region I (x<-

L/2) with the wavenumber 𝑘1 = 𝑛1𝑘0, where 𝑛1 is the refractive index of medium I, 𝑘0 = 2𝜋/𝜆0 

and 𝜆0 is the wavelength of the incident laser in vacuum. So 𝑘1, 𝑘1𝑥 and 𝑘0𝑧 can be related to 

each other by the expressions k1x = k1cosθ, k0z = k1sinθ and 𝑘1𝑥 = √𝑘1
2 − 𝑘0𝑧

2 , where θ is the 

incident angle of an arbitrary plane wave of wavenumber k1.   

          The unknown factor, i.e., the spectral amplitude G(k0z), in Eq. (7) can be obtained by 

applying the Fourier inverse transform to Eq. (7) on the incident surface x = - L/2, which yields    

 

𝐺(𝑘0𝑧) =
1

2𝜋
∫ 𝐸𝑖(−𝐿 2⁄ , 𝑧)𝑒𝑖𝑘1𝑥𝐿/2𝑒−𝑖𝑘0𝑧𝑧𝑑𝑧

∞

−∞
                             (9) 

𝐸𝑖𝑛𝑐(−𝐿/2, 𝑧) = 𝐴0𝑒
−(

𝑧

𝜔0
)
2

𝑒𝑖𝑘0𝑠𝑖𝑛𝜃0𝑧                                             (10) 

 

Substituting Eq. (10) into Eq. (9), 𝐺(𝑘0𝑧) is obtained as 

 

𝐺(𝑘0𝑧) =
𝐴0

√𝜋
(

𝜔𝑠

2
) 𝑒−(𝑘0𝑧−𝑘0𝑠𝑖𝑛𝜃0)2(

𝜔𝑠
2

)
2

𝑒𝑖𝑘1𝑥𝐿/2                              (11) 

 

As pointed out by Chu, Kong and Tamir [23], the transmitted beams in region III can be viewed 

as the linear superposition of plane wave solutions. Therefore, the electric field of the zeroth 

order beam in region III is 

 

𝐸0(𝑥, 𝑧) = ∫ 𝐺(𝑘0𝑧)𝑡0(𝑘0𝑧)𝑒𝑥𝑝(𝑖𝑘3,0𝑥𝑥 + 𝑖𝑘0𝑧𝑧)
∞

−∞
𝑑𝑘0𝑧 ,⁡⁡⁡𝑓𝑜𝑟⁡𝑥 ≥ 𝐿/2             (12) 
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and the Bragg-diffracted, i.e., -1 order, beam is 

 

𝐸−1(𝑥, 𝑧) = ∫ 𝐺(𝑘0𝑧)𝑡−1(𝑘0𝑧)𝑒𝑥𝑝(𝑖𝑘3,−1𝑥𝑥 + 𝑖𝑘−1𝑧𝑧)
∞

−∞
𝑑𝑘0𝑧 ,⁡⁡⁡𝑓𝑜𝑟⁡𝑥 ≥ 𝐿/2       (13) 

where 𝑡0(𝑘0𝑧) and 𝑡−1(𝑘0𝑧) are the transmission coefficients for plane waves of wavenumber 

𝑘0𝑧 in the zeroth order and -1 order lights, respectively, at the exit surface x = L/2.  Due to the 

propagation of acoustic waves of wavenumber K in the AOD medium, 𝑘0𝑧 and 𝑘−1𝑧 in Eqs. (12) 

and (13) are the  z components of the zeroth  and -1 order Floquet modes and are given by 𝑘0𝑧 =

𝑘0𝑠𝑖𝑛𝜃 and 𝑘−1𝑧 = 𝑘0𝑧 − 𝐾.  Similarly, 𝑘3,0𝑥 and 𝑘3,−1𝑥 are the  x components of the 0th-order  

and -1st-order Floquet modes and are given by 𝑘3,0𝑥 = √𝑘3
2 − 𝑘0𝑧

2  and 𝑘3,−1𝑥 = √𝑘3
2 − 𝑘−1𝑧

2 .  

Here K = 2π/Λ and k3 = n3k0 where the wavelength of the acoustic waves in region II and the 

refractive index in region III are Λ and n3, respectively.  The transmission coefficients 𝑡0(𝑘0𝑧) 

and 𝑡−1(𝑘0𝑧) are determined from the solutions of two second-order coupled mode equations for 

each plane wave spectral component 𝑘0𝑧 [41].  

           The integrations in Eqs. (12) and (13) are evaluated numerically using the extended 

trapezoidal rule [23].  To transform the limits of integration from the infinite range to a finite 

range, the limits on 𝑘0𝑧 are considered as follows: 

 

𝑘1𝑠𝑖𝑛𝜃0 − 𝑝
2𝜋

𝑤𝑎+𝑤𝑏
≤ 𝑘0𝑧 ≤ 𝑘1𝑠𝑖𝑛𝜃0 + 𝑝

2𝜋

𝑤𝑎+𝑤𝑏
                                    (14) 

 

where p is any positive number which is chosen to ensure that sufficient number of spectral 

components are selected for representing the Gaussian beam in terms of plane waves.  Ngoc and 

Mayer [24] chose p = 1 for their studies on the intensity distribution of ultrasonic beams reflected 
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from a liquid-solid interface.  In the present study, p is found to be 5 to accurately represent the 

incident Gaussian laser beam as linear superposition of plane waves.  The finite range of 

integration is discretized into M points with the interval ∆𝑘0𝑧 =
4𝑝𝜋

(𝑤𝑎+𝑤𝑏)(𝑀−1)
 and the value of 

the spectral component at any point m as 𝑘0𝑧,𝑚 = 𝑘0𝑧,1 + (𝑚 − 1)∆𝑘0𝑧for m = 1, 2,3, …, M 

where 𝑘0𝑧,1 = 𝑘1𝑠𝑖𝑛𝜃0 − 𝑝
2𝜋

𝑤𝑎+𝑤𝑏
.  Defining the integrands of Eqs. (12) and (13) at any point m 

as   

 

𝐸0,𝑚 = [𝐺(𝑘0𝑧)𝑡0(𝑘0𝑧)𝑒𝑥𝑝(𝑖𝑘3,0𝑥𝑥 + 𝑖𝑘0𝑧𝑧)]𝑘0𝑧=𝑘0𝑧,𝑚
                        (15) 

𝐸−1,𝑚 = [𝐺(𝑘0𝑧)𝑡−1(𝑘0𝑧)𝑒𝑥𝑝(𝑖𝑘3,−1𝑥𝑥 + 𝑖𝑘−1𝑧𝑧)]𝑘0𝑧=𝑘0𝑧,𝑚
                  (16) 

 

the electric fields in the zeroth and -1st-order modes can be approximately determined by the 

following expressions: 

 

𝐸0(𝑥, 𝑧) ≈ ∆𝑘0𝑧 ∑ 𝐸0,𝑚 −
∆𝑘0𝑧

2
𝑀
𝑚=1 (𝐸0,1 + 𝐸0,𝑀)                                         (17) 

𝐸−1(𝑥, 𝑧) ≈ ∆𝑘0𝑧 ∑ 𝐸−1,𝑚 −
∆𝑘0𝑧

2
𝑀
𝑚=1 (𝐸−1,1 + 𝐸−1,𝑀)                                   (18) 

 

Eqs. (17) and (18) are used to analyze the performance of AODs for He-Ne and CO2 lasers of 

wavelengths 632.8 nm 10.6 µm, respectively, and the corresponding AOD media are considered 

to be crystalline TeO2 and Ge. 
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6.3. Results and discussion 

To examine the transmitted behavior of the Gaussian beam diffracted by periodically modulated 

AO medium, several numerical calculations were carried out in this study. The incident Gaussian 

beam is from HeNe laser source with λ0 = 632.8 nm in the air and beam width ϕ = 0.6366 mm. 

The acousto-optic medium is called Tellurium dioxide, TeO2 crystal with the refractive index of 

n2 = 2.26 at HeNe wavelength, which is transparent in the range of 0.35 to 5 μm [16,8]. We chose 

symmetric configuration in region I and II, n1 = n3 = 1.0. 

Table 3 Simulation parameters for TeO2 crystal at HeNe-laser and Ge crystal at CO2-laser. 

Laser wavelength 10.6 𝜇m at CO2 632.8 nm at HeNe 

AO material Ge crystal TeO2 crystal 

Refractive index, n 4.0042 2.26 

Sound speed at P-wave 5500 m/s 4200 m/s 

Sound speed at S-wave 3510 m/s 616 m/s 

Density of AO medium, 𝜌 5.327 g/cm3 5.99 g/cm3 

Central acoustic frequency 70 MHz 75 MHz 

Central acoustic wavelength, 78.6 𝜇m 56 𝜇m 

Acoustic bandwidth 40 MHz 32 MHz 

Figure of merit, M2 150×10-15 s3/kg 793×10-15 s3/kg 

Attenuation constant, Γ 30 dB/cm-GHz2 15 dB/cm-GHz2 

 

           The accuracy of E0(x,z) and E-1(x,z) in Eqs. (23) and (24) depends on the choice of p and 

M.  While p determines the range of spectral components chosen for plane wave decomposition of 

the Gaussian beam, M affects the convergence of the numerical integration by the extended 

trapezoidal rule.  To verify the computational accuracy, the normalized intensity of the Gaussian 

beam is calculated by two approaches that are based on the exact expression of the input beam 

given by Eq. (6) and the spectral representation of the beam given by Eqs. (7) and (9).  The results 

as obtained at the incident surface of the AOD medium with the beam waist on this surface, i.e., x 

= -L/2 and d1 = 0, as shown in Fig. 5-3 for the case of TeO2 AOD. The two results were found to 

match well when p = 5 and M = 100, and p = 5 and M = 100 for TeO2 and Ge AODs respectively.  
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Figure 6-3 Exact Gaussian beam when you use Eq. (6), and Plane wave superposition. 

 

           The results of this study are also compared to the beam profiles determined by Chu, Kong 

and Tamir [13] for one-dimensional index modulation, and their model is referred to as 1D-CKT 

model hereafter.  For this comparison, the sinc function is set to unity in Eq. (1) and the laser beam 

profiles obtained at the exit surface (x = L/2) using Eqs. (17) and (18) are presented in Fig. 5-4. 

Although the profiles of both studies exhibit similar trend, the results do not match exactly and 

this discrepancy may be attributed to the method of solution.  The transmission coefficients t0 and 

t-1 in 1D-CKT model were based on Kong’s [15] exact calculation for these two coefficients by 

solving an 8×8 matrix equation exactly.  In the present study, the transmission coefficients were 

calculated by considering Wang’s et al. [22] first order approximation of the electric field for each 

plane wave component of the Gaussian beam.  The results, however, exhibit two dominant peaks 

in the -1 order diffracted beam showing non-Gaussian profiles and splitting of the beam.  The 
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zeroth order beam is also non-Gaussian  with a fairly uniform irradiance profile showing distortion 

of the original Gaussian beam incident on the AOD.       

 

 

Figure 6-4 Comparison of the Gaussian beam profiles at the exit surface of a TeO2 AOD for one-dimensional index 

modulation.  

 

           To examine the beam splitting and distortion, two-dimensional index modulation of this 

study, which is referred to as 2D model hereafter, is analyzed with optimized index modulation 

strength n as presented in Fig. 5-5.  

           Results are obtained from both the 2D and 1D-CKT models for the optimized values of Δn 

= 2.2×10-5 and 1.4×10-5, respectively, to achieve the maximum diffraction efficiency in each 

model.  Both models yield Gaussian profile with beam splitting in the -1 order diffracted beam.  

The zeroth order beam, however, exhibits non-Gaussian profile with two peaks indicating beam 

splitting at the exit surface x = L/2.  The beam splitting is less dominant with much lower electric 

field in the 2D model than in the case of 1D-CKT model.  Two-dimensional index modulation, 
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therefore, allows more energy transfer to the -1 order beam than the one-dimensional index 

modulation and, consequently, higher diffraction efficiency can be achieved in the former case.            

           Figure 5-6 examines the shape of the zeroth order split beam as it propagates in medium III 

away from the exit surface of the AOD medium.  At x = 3L/2, the zeroth order beam begins to 

separate from the -1 order beam, but the zeroth order beam profile remains the same as at x = L/2 

in Fig. 5-5. 

 

 

Figure 6-5 Near-field Electric field (|E|) at exit boundary x = L/2 calculated from GBD-model (blue solid  line for -

1st ; blue dashed line for 0th ) and CKT-model (red dotted line for -1st ; red dash-dot line for 0th ) with F = 75MHz, L 

= 2.24 cm, θin = 0.324o. 
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Figure 6-6 Near-field Electric field (|E|) at x = 3L/2 calculated from GBD-model (blue solid  line for -1st ; blue 

dashed line for 0th ) and CKT-model (red dotted line for -1st ; red dash-dot line for 0th ) with F = 75MHz, L = 2.24 

cm, θin = 0.324o.  

 

          Wang et al. [22] showed that nearly 100% diffraction efficiency can be achieved for a given 

acoustic beam steering angle, 𝜃̃ (Fig. 5-1), by optimizing the acoustic frequency F and the index 

modulation strength n.  The steering of acoustic beam produces tilted phase grating inside the 

AOD device, and the tilt angle automatically modifies the laser incident angle on the grating 

compared to the original angle of incidence (0) on the AOD device, resulting in a new incident 

angle in = o + 𝜃̃.  So the acoustic frequency and amplitude are modulated to achieve the Bragg 

diffraction under the new angle of incidence and maximize the diffraction efficiency, respectively.  

The diffraction efficiency is plotted as a function of the incident angle θin for different pairs of F 

and n in Fig. 5-7 for He-Ne lasers, so that each pair has its own Bragg angle of incidence and 

thus nearly 100% diffraction efficiency is achieved at different values of F.  A change in F changes 

the wavelength, , of the acoustic waves inside the AOD medium and, therefore, the periodicity 
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of the phase grating changes as F is varied.  Since the diffraction angle and efficiency depend on 

the ratio n20/, the effect of laser wavelength is examined in Fig. 5-8 for CO2 lasers of wavelength 

10.6 m using Ge as the AOD medium.  Both Figs. 5-7 and 5-8 show that the phased array AODs 

increase the efficiency and deflection angle.  Also the acoustic bandwidth of the AODs increases 

since nearly 100% diffraction efficiency is achieved over a wide range of acoustic frequency. 

           In Figs. 5-7 and 5-8, the acoustic lobes were generated at different steering angles 𝜃̃ by 

considering the pitch, i.e., the center-to-center distance between two adjacent transducers, as /2 

for each F. Nakahata et al. [17] reported that optimum lobes are produced when the pitch is /2. 

Since the acoustic lobes affect the shape of the phase grating and  depends on F, the pitch was 

varied for different frequencies to obtain the ideal values of the diffraction efficiency and 

deflection angle under the ideal pitch condition in these two figures.  In practice, however, the 

pitch cannot be varied once the AOD is fabricated with a certain pitch for a given F and, therefore, 

the diffraction efficiency and deflection angle will deviate from their ideal values.  This deviation 

is studied by determining the real values of the diffraction efficiency and deflection angle for the 

pitch m/2. Here m is the minimum acoustic wavelength corresponding to the maximum 

frequency considered in this study for the TeO2 and Ge AODs. The values of m are 21 µm and 

27.5 µm for the frequency of 200 MHz, based on TeO2 and Ge respectively.  Under this pitch 

condition, the real values of the diffraction efficiency and deflection angle are compared to their 

ideal values in Figs. 5-9 and 5-10 for the TeO2 and Ge AODs. Although the real values differ from 

the ideal values, the maximum deviations of the diffraction efficiency are, respectively, within 

32% of the ideal values for the TeO2 AOD and 72% of the ideal values for the Ge AOD; while the 

deflectiona angle has no deivaiton for both cases. 
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Figure 6-7 Diffraction efficiency as a function of the incident angle θin with different combination pairs of RF 

frequency F and index modulation Δn for Q ≥ 4π based on Ge crystal. 

 

 

Figure 6-8 Diffraction efficiency as a function of the incident angle θin with different combination pairs of RF 

frequency F and index modulation Δn for Q ≥ 4π based on Ge crystal. 
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Figure 6-9 Comparison between ideal and real values of the diffraction efficiency and deflection angle for He-Ne 

lasers and a phased array TeO2 AOD with pitch S=10.5µm .   

 

 

Figure 6-10 Comparison between ideal and real values of the diffraction efficiency and deflection angle for CO2 

lasers and a phased array Ge AOD with pitch S=13.75µm .               
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Table 4 Ideal AO performance characterization and TeO2-AOD dimensions based on numerical simulation. 

F (MHz) 60 65 70 75 95 200 

𝜂 (%) 99 99 99 99 96 99 

𝜃𝐷 (in air) 0.26o 0.28o 0.30o 0.32o 0.41o 0.86o 

Δn (×10-5) 1.4 1.9 2.0 2.2 3.1 5.2 

Λ (µm) 70.0 60.0 64.6 56.0 46.7 21.0 

L (mm) 35.0 25.7 29.8 22.4 14.0 9.4 

# of elements 

at pitch=10.5µm 

3334 2448 2838 2134 1334 896 

𝜃̃ at 𝜃0=0.00o 0.26o 0.28o 0.30o 0.32o 0.41o 0.86o 

Time delay (ps) 11.3 12.2 13.1 14.1 17.9 37.7 

Element 

dimension (µm) 

Pitch: S = 10.5 µm 

Width: W = 7.79 µm 

Height: H = 2.74 mm 

 

 

 

 

 

 

 

Table 5 Real AO performance characterization and TeO2-AOD dimensions based on numerical simulation. 

F (MHz) 60 65 70 75 95 200 

𝜂 (%) 99 94 81 67 71 94 

𝜂-deviation (%) 0 5.1 18.2 32.3 26.0 5.1 

𝜃𝐷 (in air) 0.26o 0.28o 0.30o 0.32o 0.41o 0.86o 

Δn (×10-5) 1.4 1.4 1.4 1.4 1.4 1.4 

Λ (µm) 70.0 60.0 64.6 56.0 46.7 21.0 

L (mm) 35.0 35.0 35.0 35.0 35.0 35.0 

# of elements 

at pitch=10.5µm 

3334 3334 3334 3334 3334 3334 

𝜃̃ at 𝜃0=0.00o 0.26o 0.28o 0.30o 0.32o 0.41o 0.86o 

Time delay (ps) 11.3 12.2 13.1 14.1 17.9 37.7 

Element 

dimension  

Pitch: S=10.5 µm 

Width: W=7.79 µm 

Height: H=2.74 mm 
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Table 6 Ideal AO performance characterization and Ge-AOD dimensions based on numerical simulation.  

F (MHz) 65 70 85 200 

𝜂 (%) 98 97 96 96 

𝜃𝐷 (in air) 3.59o 3.87o 4.70o 11.11o 

Δn (×10-4) 7.7 8.5 7.5 4.1 

Λ (µm) 84.6 78.6 65.0 27.5 

L (mm) 10.8 9.9 11.1 2.0 

# of elements 

at pitch=13.75µm 

786 720 808 146 

𝜃̃ at 𝜃0=3.00o 0.59o 0.87o 1.70o 8.11o 

Time delay (ps) 26 38 74 353 

Element 

dimension 

Pitch: S=13.75 µm 

Width: W=10.2 µm 

Height: H=2.74 mm 

 

 

 

Table 7 Real AO performance characterization and Ge-AOD dimensions based on numerical simulation.  

F (MHz) 65 70 85 200 

𝜂 (%) 26 23 96 59 

𝜂-deviation (%) 73.5 76.3 0 38.5 

𝜃𝐷 (in air) 3.59o 3.87o 4.70o 11.11o 

Δn (×10-4) 3.4 3.3 7.5 7.8 

Λ (µm) 84.6 78.6 65.0 27.5 

L (mm) 11.1 11.1 11.1 11.1 

# of elements 

at pitch=13.75µm 

808 808 808 808 

𝜃̃ at 𝜃0=3.00o 0.59o 0.87o 1.70o 8.11o 

Time delay (ps) 26 38 74 353 

Element 

dimension 

Pitch: S=13.75 µm 

Width: W=10.2 µm 

Height: H=2.74 mm 

 

 

 

 

6.4. Conclusions 

The performance of two phased array AODs is analyzed for Gaussian laser beams of wavelengths 

632.8 nm and 10.6 m by considering two-dimensional refractive index modulation.  Nearly 100% 

diffraction efficiency is achieved without any beam splitting or distortion in the -1 order beam for 
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both two-dimensional and one-dimensional index modulations.  The zeroth order beam, however, 

exhibits less distortion and less electric field in the case of former modulation than the latter.  Two-

dimensional modulation, therefore, yields slightly higher diffraction efficiency than the one-

dimensional modulation.  The profile of the distorted beam appears to be non-Gaussian and this 

profile does not change as the beam propagates outside the AOD medium.  The phased array AODs 

can be operated with nearly 100% diffraction efficiency over a broad range of acoustic frequency 

and thus the bandwidth of the device increases.  Also the acoustic beam steering capability 

provides a mechanism to create titled phase gratings and this tilt angle is utilized to achieve large 

deflection angles for the diffracted laser beam.  The performance of phased array AODs depends 

on the pitch of the piezoelectric transducers.  Although the ideal pitch condition cannot be achieved 

in practice, AODs with non-ideal pitch condition are found to perform well with very little 

deviation from the ideal performance.     
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CHAPTER 7: SUMMARY 

 

As concept verification and demonstraiton of the dynamic grating implemented by the 

“acoustic beam steering”  based on multiple linear phased-array transducer, the deailed design 

parameters, such as the pitch between neighboring elements (S), the time delay (∆𝜏) for phase shift 

and the specific demensions for single element (element width W and element height H), have 

been listed in Tables 3 and 4 (for TeO2-AOD) and 5 and 6 (for the Ge-AOD).  

Given the AO material of TeO2, the RF frequencies of 60MHz, 75MHz, 95MHz and 

200MHz were chosed to charactierize the AO performances of TeO2-AOD, such as the diffraction 

efficiency and the deflection angle. The deflection angle 𝜃𝐷 equals the effective input angle 𝜃in = 

θ0 + 𝜃̃, determined by Bragg condition and realized by acoustic beam steering technique. L is the 

thickness of AO material, characterized by Klein-Cook parameter to make sure Bragg diffraction 

operation. The index modulation Δn should be optimized for predefined F and L for maximum 

diffraction efficiency operation. Unfortunately, such optimum parameters combination of F, L and 

Δn are strongly interacted with each other. In the real situation, the pitch of S must make sure the 

generation of the acoustic beam steering, so that is why only the Smin=10.5µm was selected 

conrresponding to the Fmax=200 MHz at the price of the degradation of the diffraction efficiency. 

Similarly, the RF frequencies of 65MHz, 70MHz, 85MHz and 200MHz were simulated 

for Ge-AOD.  In the real situation, the pitch of S must make sure the generation of the acoustic 

beam steering, so that is why only the Smin=13.75µm was selected conrresponding to the Fmax=200 

MHz at the price of the degradation of the diffraction efficiency. 
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APPENDIX A: DETAILED DERIVATION OF EQUATION (4) AND (5) IN 

CHAPTER 6 
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Figure 0-1 Schematic of Gaussian beam interception widths on input surface of AO medium.  

 

when Gaussian beam comes at the input surface of AO medium, there are two interception points 

of A and B, the corresponding the interception widths are usually different, |𝐴𝐷| ≠ |𝐵𝐷|, which 

are necessary for the next calculation of Gaussia beam propagation and diffraction inside AO 

medium. Corsely, we label |𝐴𝐷| and |𝐵𝐷| as 𝑤 as follows. 

 

𝐴𝐶 = 𝑤00√1 + (
𝑑 + 𝑤𝑠𝑖𝑛𝜃0

𝜋𝑤00
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2
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2
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𝑤2 [𝑠𝑖𝑛𝜃0
2 − (

𝜒𝑅𝑐𝑜𝑠𝜃0

𝑤00
)
2

] + 𝑤(2𝑑𝑠𝑖𝑛𝜃0) + (𝑑2 + 𝜒𝑅
2) = 0 

Assume 𝐴 = [𝑠𝑖𝑛𝜃0
2 − (

𝜒𝑅𝑐𝑜𝑠𝜃0

𝑤00
)
2

] , 𝐵 = (2𝑑𝑠𝑖𝑛𝜃0)  and 𝐶 = (𝑑2 + 𝜒𝑅
2) , accordint to the 

quadratic formula for the roots of the general quadratic equation: 

𝑤 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 

Given 𝐴 > 0, and the interception widths of the input Gaussian beam  |𝐴𝐷| = 𝑤𝑎 > ⁡|𝐵𝐷| = 𝑤𝑏,  

𝑤𝑎 = |𝐴𝐷| =
−𝐵 − √𝐵2 − 4𝐴𝐶

2𝐴
 

𝑤𝑏 = |𝐵𝐷| =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
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