You are here

Groundwater modeling for assessing the impacts of natural hazards in east-central Florida

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
In coastal east-central Florida (ECF) , the low-lying coastal alluvial plains and barrier islands have a high risk of being inundated by seawater due to climate change effects such as sea-level rise, changing rainfall patterns, and intensified storm surge from hurricanes., This will produce saltwater intrusion into the coastal aquifer from infiltration of overtopping saltwater. In the inland ECF region, sinkhole occurrence is recognized as the primary geologic hazard causing massive financial losses to society in the past several decades. The objectives of this dissertation are to: (1) evaluate the impacts of sea-level rise and intensified storm surge on the extent of saltwater intrusion into the coastal ECF region; (2) assess the risk level of sinkhole occurrence in the inland ECF region. In this dissertation, numerical modeling methods are used to achieve these objectives. Several three-dimensional groundwater flow and salinity transport models, focused on the coastal ECF region, are developed and calibrated to simulate impacts of sea-level rise and storm surge based on various sea-level rise scenarios. A storm surge model is developed to quantify the future extent of saltwater intrusion. Several three-dimensional groundwater flow models, focused on the inland ECF region, are developed and calibrated to simulate the spatial variation of groundwater recharge rate for analyzing the risk level of sinkhole occurrence in the geotypical central Florida karst terrains. Results indicate that sea-level rise and storm surge play a dominant role in causing saltwater intrusion, and the risk of sinkhole occurrence increases linearly with an increase in recharge rate while the timing of sinkhole occurrence is highly related to the temporal variation of the difference of groundwater level between confined and unconfined aquifers. The outcome will contribute to ongoing research focused on forecasting the impacts of climate change on the risk level of natural hazards in ECF region.
Title: Groundwater modeling for assessing the impacts of natural hazards in east-central Florida.
46 views
20 downloads
Name(s): Xiao, Han, Author
Wang, Dingbao, Committee Chair
Nam, Boo Hyun, Committee Member
Medeiros, Stephen, Committee Member
Mayo, Talea, Committee Member
Hall, Carlton, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In coastal east-central Florida (ECF) , the low-lying coastal alluvial plains and barrier islands have a high risk of being inundated by seawater due to climate change effects such as sea-level rise, changing rainfall patterns, and intensified storm surge from hurricanes., This will produce saltwater intrusion into the coastal aquifer from infiltration of overtopping saltwater. In the inland ECF region, sinkhole occurrence is recognized as the primary geologic hazard causing massive financial losses to society in the past several decades. The objectives of this dissertation are to: (1) evaluate the impacts of sea-level rise and intensified storm surge on the extent of saltwater intrusion into the coastal ECF region; (2) assess the risk level of sinkhole occurrence in the inland ECF region. In this dissertation, numerical modeling methods are used to achieve these objectives. Several three-dimensional groundwater flow and salinity transport models, focused on the coastal ECF region, are developed and calibrated to simulate impacts of sea-level rise and storm surge based on various sea-level rise scenarios. A storm surge model is developed to quantify the future extent of saltwater intrusion. Several three-dimensional groundwater flow models, focused on the inland ECF region, are developed and calibrated to simulate the spatial variation of groundwater recharge rate for analyzing the risk level of sinkhole occurrence in the geotypical central Florida karst terrains. Results indicate that sea-level rise and storm surge play a dominant role in causing saltwater intrusion, and the risk of sinkhole occurrence increases linearly with an increase in recharge rate while the timing of sinkhole occurrence is highly related to the temporal variation of the difference of groundwater level between confined and unconfined aquifers. The outcome will contribute to ongoing research focused on forecasting the impacts of climate change on the risk level of natural hazards in ECF region.
Identifier: CFE0007298 (IID), ucf:52160 (fedora)
Note(s): 2017-12-01
Ph.D.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Climate change -- Saltwater intrusion -- Groundwater modeling -- Sinkhole occurrence -- Recharge rate -- East-central Florida
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007298
Restrictions on Access: campus 2021-06-15
Host Institution: UCF

In Collections