You are here
Experimental confirmation of ballistic nanofriction and quasiparticle interference in Dirac materials.
- Date Issued:
- 2018
- Abstract/Description:
- This dissertation is broadly divided into two parts. The first part details the development and usage of an experimental apparatus to measure the dry nanofriction for a well-defined interface at high sliding speeds. I leverage the sensitivity of a quartz crystal microbalance (QCM) to determine the drag coefficient of an ensemble of gold nanocrystals sliding on graphene at speeds up to 11 cm/s. I discuss the theories of velocity-dependent friction, especially at high sliding speeds, and QCM modeling. I also discuss our synthesis protocols for graphene and molybdenum disulfide, as well as our protocol for fabricating a clean, graphene-laminated QCM device and nanocrystal ensemble. The design and fabrication of our QCM oscillator circuit is presented in detail. The quantitatively-measured the drag coefficient is compared against molecular dynamics simulations at both low and high sliding speeds. We show evidence of a predicted ultra-low friction regime and find that the interaction energy between gold nanocrystals and graphene is lower than previously assumed. In the second part of this dissertation, I detail the band structure measurement of a novel semimetal using scanning tunneling microscopy. In particular, I measured the energy-dependenceof quasiparticle interference patterns at the surface of zirconium silicon sulfide (ZrSiS), a topological nodal line semimetal whose charge carrier quasiparticles possess a pseudospin degree offreedom. The aims of this study were to (1) discover the shape of the band structure above the Fermi level along a high-symmetry direction, (2) discover the energetic location of the line node inthe same high-symmetry direction, and (3) discover the selection rules for k transitions. This study confirms the predicted linearity in E(k) of the band structure above the Fermi level. Additionally,we observe an energy-dependent mechanism for pseudospin scattering. This study also provides the first experimentally-derived estimation of the line node position in E(k).
Title: | Experimental confirmation of ballistic nanofriction and quasiparticle interference in Dirac materials. |
33 views
14 downloads |
---|---|---|
Name(s): |
Lodge, Michael, Author Ishigami, Masahiro, Committee Chair Kaden, William, Committee Member Schelling, Patrick, Committee Member Del Barco, Enrique, Committee Member Roy, Tania, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2018 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | This dissertation is broadly divided into two parts. The first part details the development and usage of an experimental apparatus to measure the dry nanofriction for a well-defined interface at high sliding speeds. I leverage the sensitivity of a quartz crystal microbalance (QCM) to determine the drag coefficient of an ensemble of gold nanocrystals sliding on graphene at speeds up to 11 cm/s. I discuss the theories of velocity-dependent friction, especially at high sliding speeds, and QCM modeling. I also discuss our synthesis protocols for graphene and molybdenum disulfide, as well as our protocol for fabricating a clean, graphene-laminated QCM device and nanocrystal ensemble. The design and fabrication of our QCM oscillator circuit is presented in detail. The quantitatively-measured the drag coefficient is compared against molecular dynamics simulations at both low and high sliding speeds. We show evidence of a predicted ultra-low friction regime and find that the interaction energy between gold nanocrystals and graphene is lower than previously assumed. In the second part of this dissertation, I detail the band structure measurement of a novel semimetal using scanning tunneling microscopy. In particular, I measured the energy-dependenceof quasiparticle interference patterns at the surface of zirconium silicon sulfide (ZrSiS), a topological nodal line semimetal whose charge carrier quasiparticles possess a pseudospin degree offreedom. The aims of this study were to (1) discover the shape of the band structure above the Fermi level along a high-symmetry direction, (2) discover the energetic location of the line node inthe same high-symmetry direction, and (3) discover the selection rules for k transitions. This study confirms the predicted linearity in E(k) of the band structure above the Fermi level. Additionally,we observe an energy-dependent mechanism for pseudospin scattering. This study also provides the first experimentally-derived estimation of the line node position in E(k). | |
Identifier: | CFE0007218 (IID), ucf:52222 (fedora) | |
Note(s): |
2018-08-01 Ph.D. Sciences, Physics Doctoral This record was generated from author submitted information. |
|
Subject(s): | ballistic nanofriction -- friction -- graphene -- quartz crystal microbalance -- QCM -- Dirac semimetal -- topological semimetal -- zirconium silicon sulfide -- ZrSiS -- scanning tunneling microscopy -- STM -- quasiparticle interference -- QPI -- Fourier-transform STM -- FT-STM -- spectroscopic imaging -- band structure measurement | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007218 | |
Restrictions on Access: | campus 2023-08-15 | |
Host Institution: | UCF |