You are here

Data-Driven Modeling and Optimization of Building Energy Consumption

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Sustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the operation. The City of Orlando has similar goals of sustainability and reduction of energy consumption so, they provided us access to their BAS for the data and study the operation of its facilities. The data scraped from the City's BAS serves can be used to develop statistical/machine learning methods for decision making. We selected a mid-size pilot building to apply these techniques. The process begins with the collection of data from BAS. An Application Programming Interface (API) is developed to login to the servers and scrape data for all data points and store it on the local machine. Then data is cleaned to analyze and model. The dataset contains various data points ranging from indoor and outdoor temperature to fan speed inside the Air Handling Unit (AHU) which are operated by Variable Frequency Drive (VFD). This whole dataset is a time series and is handled accordingly. The cleaned dataset is analyzed to find different patterns and investigate relations between different data points. The analysis helps us in choosing parameters for models that are developed in the next step. Different statistical models are developed to simulate building and equipment behavior. Finally, the models along with the data are used to optimize the building Operation with the equipment constraints to make decisions for building operation which leads to a reduction in energy consumption while maintaining temperature and pressure inside the building.
Title: Data-Driven Modeling and Optimization of Building Energy Consumption.
0 views
0 downloads
Name(s): Grover, Divas, Author
Pourmohammadi Fallah, Yaser, Committee Chair
Vosoughi, Azadeh, Committee Member
Zhou, Qun, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Sustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the operation. The City of Orlando has similar goals of sustainability and reduction of energy consumption so, they provided us access to their BAS for the data and study the operation of its facilities. The data scraped from the City's BAS serves can be used to develop statistical/machine learning methods for decision making. We selected a mid-size pilot building to apply these techniques. The process begins with the collection of data from BAS. An Application Programming Interface (API) is developed to login to the servers and scrape data for all data points and store it on the local machine. Then data is cleaned to analyze and model. The dataset contains various data points ranging from indoor and outdoor temperature to fan speed inside the Air Handling Unit (AHU) which are operated by Variable Frequency Drive (VFD). This whole dataset is a time series and is handled accordingly. The cleaned dataset is analyzed to find different patterns and investigate relations between different data points. The analysis helps us in choosing parameters for models that are developed in the next step. Different statistical models are developed to simulate building and equipment behavior. Finally, the models along with the data are used to optimize the building Operation with the equipment constraints to make decisions for building operation which leads to a reduction in energy consumption while maintaining temperature and pressure inside the building.
Identifier: CFE0007810 (IID), ucf:52335 (fedora)
Note(s): 2019-12-01
M.S.Cp.E.
Engineering and Computer Science,
Masters
This record was generated from author submitted information.
Subject(s): Data Analysis -- Data Science -- Building Automation System Data -- Energy Optimization -- Building Behavior Modeling -- Time Series Modeling -- HVAC Statistical Modeling
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007810
Restrictions on Access: campus 2024-12-15
Host Institution: UCF

In Collections