You are here

Investigation of Flow Field Structures in a Rectangular Channel with a Pin Fin Array

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Pin fin arrays are commonly found in heat exchangers, turbine blades, and electronic heat sinks. Fin arrays are extended surfaces that are used as turbulence promoters by inducing horseshoe vortex (HSV) and von Karman vortex (KV) structures. The horseshoe vortex are primarily studied in the leading edge of the blunt body, whereas the KV are formed in the trailing side. This study presents an experimental investigation of flow field structures and pressure loss on staggered pin fin array in the wake region, where KV are dominate. These flow structures increase the local levels turbulence and generate eddies that promote flow mixing, which in turn allows for higher levels of heat transfer. Improvement in heat transfer can increase the efficiency of the heat exchanger by reducing the thermal load and stress on the components which can extended product life. A study of the vortex shedding using a Particle Image Velocimetry (PIV) technique is used to measure flow field using a closed loop vertical water tunnel. A Time Resolved Particle Image Velocimetry (TR-PIV) study for both steady and unsteady flow structures in the fully developed region of a pin fin array at multiple wall normal cross sections are performed. The pin fin array consists of circular pin fins with 8 rows of 7.5 pins in rectangular channel with Reynolds number varying from 10,000 to 20,000. The Pin array is in a staggered configuration with stream wise (Y/D) spacing of 2.5 and span wise (X/D) spacing of 2.5, and height to pin diameter (H/D) of 2. A supplemental computation fluid dynamic (CFD) study is also for comparison with the PIV flow field. The goal of the present study is to determine the major vortex structures that found the flow at different Z/D, quantify parameters that numerical methods are unable to solve, and provide a base line for other parameters that can be used to improve the accuracy of numerical models. The novelty of this work is to provide data and characterize the near the viscous sub layer of Z/D =0.
Title: Investigation of Flow Field Structures in a Rectangular Channel with a Pin Fin Array.
34 views
17 downloads
Name(s): Tran, Patrick, Author
Kapat, Jayanta, Committee Chair
Bhattacharya, Samik, Committee Member
Huang, Helen, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Pin fin arrays are commonly found in heat exchangers, turbine blades, and electronic heat sinks. Fin arrays are extended surfaces that are used as turbulence promoters by inducing horseshoe vortex (HSV) and von Karman vortex (KV) structures. The horseshoe vortex are primarily studied in the leading edge of the blunt body, whereas the KV are formed in the trailing side. This study presents an experimental investigation of flow field structures and pressure loss on staggered pin fin array in the wake region, where KV are dominate. These flow structures increase the local levels turbulence and generate eddies that promote flow mixing, which in turn allows for higher levels of heat transfer. Improvement in heat transfer can increase the efficiency of the heat exchanger by reducing the thermal load and stress on the components which can extended product life. A study of the vortex shedding using a Particle Image Velocimetry (PIV) technique is used to measure flow field using a closed loop vertical water tunnel. A Time Resolved Particle Image Velocimetry (TR-PIV) study for both steady and unsteady flow structures in the fully developed region of a pin fin array at multiple wall normal cross sections are performed. The pin fin array consists of circular pin fins with 8 rows of 7.5 pins in rectangular channel with Reynolds number varying from 10,000 to 20,000. The Pin array is in a staggered configuration with stream wise (Y/D) spacing of 2.5 and span wise (X/D) spacing of 2.5, and height to pin diameter (H/D) of 2. A supplemental computation fluid dynamic (CFD) study is also for comparison with the PIV flow field. The goal of the present study is to determine the major vortex structures that found the flow at different Z/D, quantify parameters that numerical methods are unable to solve, and provide a base line for other parameters that can be used to improve the accuracy of numerical models. The novelty of this work is to provide data and characterize the near the viscous sub layer of Z/D =0.
Identifier: CFE0007736 (IID), ucf:52446 (fedora)
Note(s): 2019-08-01
M.S.M.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): Gas Turbines -- Heat Transfer -- Fluids Dynamics -- Pin Fins
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007736
Restrictions on Access: public 2019-08-15
Host Institution: UCF

In Collections