You are here

Biochemical Characterization of Rv2633c from Mycobacterium tuberculosis and the Effects of Mutagenesis on Iron Binding

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that is the causative agent of the disease Tuberculosis (TB). TB kills an estimated 1.8 million people annually and roughly one third of the world's population carries Mtb in a dormant state. Drug resistant Mtb strains are on the rise, thus a new method of combating this disease is paramount. Mtb survival inside of macrophages requires overcoming various stressors such as; iron restriction, reactive oxygen species, and hypoxic conditions. Mtb employs the use of catalases, nitric oxide reductase, superoxide dismutase, and siderophores to aid in survival. These functions have also been found in a novel group of non-heme diiron binding proteins called hemerythrin-like proteins.The gene Rv2633c encodes a protein with the hemerythrin-like domain and has been shown to be upregulated under acidic or nutrient deficient conditions which coincides with Mtb infection of a macrophage. It has also been shown to be regulated by PhoP, Whib3, and DosR. In this work we expressed the wild type protein and several mutants heterologously in E. coli. The purified proteins were studied via UV-visible spectroscopic analysis, native polyacrylamide gel electrophoresis (native-PAGE) and analyzed for iron content.Our refined expression and purification protocol led to a significant increase in soluble protein with a di-iron cofactor. We found that mutagenesis of 11th amino acid, a histidine, led to the absence of the diiron co-factor. Reduction and autoxidation of protein was also achieved and characterized through UV-visible absorption. Native-PAGE gel analysis indicated only the dimeric form contained iron. This research is the first to produce large quantities of soluble iron laden protein, demonstrate that Rv2663c is capable of both reduction and autoxidation, and show it does not bind oxygen in a functional capacity. This information will enable future studies in protein crystallization, ligand interaction and in vivo studies.
Title: Biochemical Characterization of Rv2633c from Mycobacterium tuberculosis and the Effects of Mutagenesis on Iron Binding.
31 views
14 downloads
Name(s): Strickland, Kyle, Author
Self, William, Committee Chair
Rohde, Kyle, Committee Member
Davidson, Victor, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that is the causative agent of the disease Tuberculosis (TB). TB kills an estimated 1.8 million people annually and roughly one third of the world's population carries Mtb in a dormant state. Drug resistant Mtb strains are on the rise, thus a new method of combating this disease is paramount. Mtb survival inside of macrophages requires overcoming various stressors such as; iron restriction, reactive oxygen species, and hypoxic conditions. Mtb employs the use of catalases, nitric oxide reductase, superoxide dismutase, and siderophores to aid in survival. These functions have also been found in a novel group of non-heme diiron binding proteins called hemerythrin-like proteins.The gene Rv2633c encodes a protein with the hemerythrin-like domain and has been shown to be upregulated under acidic or nutrient deficient conditions which coincides with Mtb infection of a macrophage. It has also been shown to be regulated by PhoP, Whib3, and DosR. In this work we expressed the wild type protein and several mutants heterologously in E. coli. The purified proteins were studied via UV-visible spectroscopic analysis, native polyacrylamide gel electrophoresis (native-PAGE) and analyzed for iron content.Our refined expression and purification protocol led to a significant increase in soluble protein with a di-iron cofactor. We found that mutagenesis of 11th amino acid, a histidine, led to the absence of the diiron co-factor. Reduction and autoxidation of protein was also achieved and characterized through UV-visible absorption. Native-PAGE gel analysis indicated only the dimeric form contained iron. This research is the first to produce large quantities of soluble iron laden protein, demonstrate that Rv2663c is capable of both reduction and autoxidation, and show it does not bind oxygen in a functional capacity. This information will enable future studies in protein crystallization, ligand interaction and in vivo studies.
Identifier: CFE0007729 (IID), ucf:52456 (fedora)
Note(s): 2019-08-01
M.S.
Medicine, Biomedical Sciences
Masters
This record was generated from author submitted information.
Subject(s): Rv2633c -- Non-heme diiron carboxylate -- Hemerythrin -- Hemerythrin-like -- mycobacterium tuberculosis -- tuberculosis -- mycobacterium -- biochemistry
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007729
Restrictions on Access: campus 2020-08-15
Host Institution: UCF

In Collections