You are here
Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
- Date Issued:
- 2019
- Abstract/Description:
- Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. In this work, we add knowledge to the mechanism for selenium-over-sulfur specificity in hopes of further understanding the controlled regulation of selenium trafficking and the prevention of its toxicity. We have identified SclA, a selenocysteine lyase in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for L-selenocysteine over L-cysteine. Human selenocysteine lyase contains a residue, D146, which plays a significant role in determining its specificity. A D146K mutation eliminated this trait, allowing non-specific L-cysteine degradation. Using computational biology, we identified an orthologous residue in SclA, H100, and generated mutant enzymes with site-directed mutagenesis. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying levels of activity towards L-selenocysteine, hinting at a catalytic role for H100. Additionally, L-cysteine acted as a competitive inhibitor towards all enzymes with higher affinity than L-selenocysteine. Finally, our experiments revealed that SclA possessed extremely poor cysteine desulfurase activity with each mutation exhibiting subtle changes in turnover. Our findings offer key insight into the molecular mechanisms behind selenium-over-sulfur specificity and may further elucidate the role of selenocysteine lyases in vivo.
Title: | Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase. |
![]() ![]() |
---|---|---|
Name(s): |
Johnstone, Michael, Author Self, William, Committee Chair Roy, Herve, Committee Member Moore, Sean, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2019 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. In this work, we add knowledge to the mechanism for selenium-over-sulfur specificity in hopes of further understanding the controlled regulation of selenium trafficking and the prevention of its toxicity. We have identified SclA, a selenocysteine lyase in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for L-selenocysteine over L-cysteine. Human selenocysteine lyase contains a residue, D146, which plays a significant role in determining its specificity. A D146K mutation eliminated this trait, allowing non-specific L-cysteine degradation. Using computational biology, we identified an orthologous residue in SclA, H100, and generated mutant enzymes with site-directed mutagenesis. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying levels of activity towards L-selenocysteine, hinting at a catalytic role for H100. Additionally, L-cysteine acted as a competitive inhibitor towards all enzymes with higher affinity than L-selenocysteine. Finally, our experiments revealed that SclA possessed extremely poor cysteine desulfurase activity with each mutation exhibiting subtle changes in turnover. Our findings offer key insight into the molecular mechanisms behind selenium-over-sulfur specificity and may further elucidate the role of selenocysteine lyases in vivo. | |
Identifier: | CFE0007659 (IID), ucf:52481 (fedora) | |
Note(s): |
2019-08-01 M.S. Medicine, Biomedical Sciences Masters This record was generated from author submitted information. |
|
Subject(s): | selenium -- sulfur -- selenocysteine lyase -- cysteine desulfurase -- NifS -- SclA -- Enterococcus faecalis | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007659 | |
Restrictions on Access: | campus 2020-08-15 | |
Host Institution: | UCF |