
DESIGN AND CONSTRUCTION OF
MAINTAINABLE KNOWLEDGE BASES THROUGH

EFFECTIVE USE OF ENTITY-RELATIONSHIP
MODELING TECHNIQUES

WILLIAM YANCEY PIKE
B.S., University of West Florida, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of

Master of Science
College of Engineering

University of Central Florida
Orlando, Florida

Summer Term
1993

ABSTRACT

The use of an accepted logical database design tool, Entity-Relationship-Diagrams

(E-RD), is explored as a method by which conceptual and pseudo-conceptual knowledge

bases may be designed. Extensions to Peter Chen's classic E-RD method which can model

knowledge structures used by knowledge-based applications are explored.

The use of E-RDs to design knowledge bases is proposed as a two-stage process.

In the fust stage, an E-RD, termed the Essential E-RD, is developed of the realm of the

problem or enterprise being modeled. The Essential E-RD is completely independent of

any knowledge representation model (KRM) and is intended for the understanding of the -

underlying conceptual entities and relationships in the domain of interest. The second

stage of the proposed design process consists of expanding the Essential E-RD. The

resulting E-RD, termed the Implementation E-RD, is a network of E-RD-modeled KRM

constructs and will provide a m~thod by whichthe proper KRM may be chosen and the

knowledge base may be maintained. In some cases, the constructs of the Implementation

E-RD may be mapped directly to a physical knowledge base.

Using the proposed design tool wiuaid in both the development of the knowledge

base and its maintenance. The need for building maintainable knowledge bases and

problems often encountered during knowledge base construction will be explored.

A case study is presented in which this tool is used to design a knowledge base.

Problems avoided by the use of this-method are highlighted, as are advantages the method
I

presents to the maintenance of the knowledge base. Finally, a critique of the ramifications

of this research is presented, as well as needs for future research.

ACKNOWLEDGEMENTS

The author would like to thank his wife, Tracey, for inspiring, motivating, and

occassionally forcing him to continue his education. The author offers no small amount of

gratitude to Dr. Soheil Khajenoori for displaying tremendous amounts of patience; to Drs.

Tom Peeples and AUan Lang for their assistance and support; and to his parents, Billy and

Eola Pike, for their love and guidance through the years. but most importantly,

the author would like to thank the Lord, without whose supreme assistance this work

would be impossible.

TABLE OF CONTENTS

List of Tables
List of Figures
INTRODUCTION

I. LITERATURE REVIEW
11. KNOWLEDGE REPRESENTATION
111. E-R DIAGRAMS AS A KBS/KBMS DESIGN TOOL
IV. CASE STUDY
V. CONCLUSIONS

APPENDIX A
APPENDIX B
BIBLIOGRAPHY

Table 1
Table2
Table 3

LIST OF TABLES

EMPLOYEE and OFFICE entities and attributes
Rules from Implementation E-RD
Frames mapped from Implementation E-RD

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 2 1
Figure 22
Figure A- 1

Sample E-R Diagram
If-Then from (Rodriguez et. al. 1989)
Depicting If-Then (Rule) relationship in E-RD
E-RD illustrating subclasses, superclasses
E-RD illustrating generalization/specialization
E-RD illustrating aggregation
Encapsulated package entity
Network of E-RD knowledge structures
Top-level E-RD of Rdb Database
Expanded E-RD of Storage Area
Expanded E-RD of Data Page
E-RD of Environment -
E-RD of 3NF Logical Database
Top-level E-RD of Rdb Database with Knowledge Structures
Detailed E-RD of Root File
Detailed E-RD of Snapshot File
Detailed E-RD of Storage. Area
Detailed E-RD of Data Page
Detailed E-RD of Index
E-RD of Store Clause
E-RD of Relationship Group
Encapsulation Snapshot FileIStorage Area E-RD
Example Enti ty-Relationship Diagram

INTRODUCTION

Although the topic of knowledge base and database integration has recently been

an area of considerable research fiom both fiom academia and industry, for the most part

this research has failed to integrate conceptual database design principles into the design

of knowledge bases.

The need for such a design methodology in the knowledge base system world is

inarguably a real one. The design of knowledge-based systems (KBS) and their underlying

knowledge base management systems (KBMS) suffers from a lack of a de facto standard

methodology (Gonzalez and Dankel 1993). This lack of a methodology can lead to a

paradigm shift, in which, during the development of the KBS, the developer must shift to

a new technology. (Gonzalez and Dankel 1993) This paradigm shift is caused when the

initial selection of knowledge representation model (KRM) can not adequately perform its
\

intended function. This represents perhaps the most serious problem in KBS

development. However, there are other inherent problems, as described in (Gonzalez and

Dankel 1993). One problem lies in the difference between solving traditional information-

system problems and heuristic-oriented problems. The data needed for algorithmic

problems can be determined fairly easily, while in the case of knowled_ :-based systems,

sometimes the "nature and quantity" of the knowledge isn't known even by the experts.

The process of knowledge acquisition can thus proye to be fairly frustrating. One of the

underlying reasons for this, claims Earl Cox, a columnist for AI Expert,' is a common

perception that A1 is commonly defined in "terms of ever more advanced knowledge

representation schemes devoid and divorced from fundamental architectural and design

considerations." (Cox 1993) The lack of any recognized conelation between A1 and

conventional systems has lead to "confusion in aims and directions" of A1 in the

marketplace (Cox 1993). Clearly, there is a need to apply sound, established traditional

software development principles to A1 system development

The attitudes and mindsets of KBS developers are perhaps part of the problem.

The roots of database research lie primarily in the "commercial sector's need for efficient

and secure data processing systems." (Jelly and Gray 1992) Free from this requirement

which would restrict research to mostly commercial applications, early KBS researchers

developed an almost "renegade" approach to application development. Indeed, as Cox has

pointed out, "there does seem to be a general consensus among knowledge engineers that

A1 is somehow completely removed from computer science, systems design, and

functional decomposition." (Cox 1993)

Another viewpoint of this problem is stated in (Cohen 1990). K-l Cohen blames

much of the problem on the lack of qualitative vice quantitative research in AI. He states,

"Much work is unevaluated and most evaluations are limited to measures of performance.

System design appears arbitrary and, when justifications do appear, they are

informal ... Evaluation tends to be limited to performance evaluation, instead of tests of

hypotheses of how behavior arises from the interaction of agents' architectures and their

environments." Cohen goes on to describe what he terms the "strip mining" view of A1

research. "A1 researchers trash the space of questions about intelligence in much the same

way that slash-and-burn cultures trash the rain forest. Both make very inefficient use of

resources." As an example of "strip mining," Cohen points out the following: "The
I

statement 'X is sufficient to produce Y' alleges but does not model or explain the alleged

causal relationship between X and Y . . . Demonstrating that X is sufficient to produce Y

does not show that X is a particularly good way to produce Y, or that X is necessary to

produce Y." This problem is very similar to the "nature and quantity" dilemma discussed

above.

Quality has become somewhat of a buzzword in industry (e.g., "Total Quality

Management1'.) As knowledge-based systems in specific and A1 systems in general come

out of the research lab and into the mainstream of the marketplace, the quality of these

systems must be taken into consideration. It is pointed out in (Fenn and Veren 1991)

that "aaherence to a software engineering methodology and development lifecycle can

significantly improve the quality of a completed system." Earl Cox has stated that

"successful A1 projects combine quality with concems for economical solutions." (Cox

1993)

As the maintenance portion of any software project lifecycle has historically been

the costliest, a design technique should provide for maintenance in order to supply quality

to the project (Ignizio 1991), (Parsaye and Chignell1988), (Debenham 1992).

To a great extent, these same problems or similar concems can be seen in

. traditional database application development efforts. Semantic data models have been
\

used as a design tool to solve these problems. Of all the semantic data models, Peter

Chen's entity-relationship (E-R) model has become the most popular, due to a great extent

to the popularity of the E-R diagram (E-RD), a graphical companion to the E-R model.

(Date 1990)

Applying Peter Chen's classic E-R-diagramming technique, or some variation

thereof, to the design of a knowledge base (regardless of the knowledge representation

technique used by the KBS) provides the developer with a proven methodology to ensure
\ I

a more intelligent design. By developing E-RDs early in the development life-cycle of the

KBS, designers can avoid the knowledge representation paradigm shift by determining the

proper representation a prion' implementation. Having a well-defined E-RD of the

knowledge base can also aid in maintaining the KBS. The effects of adding new

knowledge or modifying existing knowledge can quickly be determined by consulting an

E-RD.

This thesis proposes the use of entity-relationship diagrams as a design tool for the

development of knowledge base systems. More specifically, a two-stage process is

proposed in which a traditional E-RD, called the Essential E-RD, is developed based on

the conceptual knowledge base as the first stage. This E-RD serves to identify the

conceptual entities and relationships of the knowledge realm; In the second stage, the first

E-RD is expanded to model the knowledge structures via extended E-RD structures. The

resulting E-RD is called the Implementation E-RD. These E-RD structures, for the most

part, have already been proposed in earlier bodies of research as development aids for

DBS applications, although additional structures are proposed herein to better model

knowledge concepts.

The use of a semantic data model is defended as a combination of the latter two

levels of the three-level of integration of databases and knowledge bases. The first level,
7

the physical layer, involves utilization of database management systems (DBMSes) to

physically store the knowledge of a KBS, and the integration of traditionally KBS-oriented

features into DBMSes. The second level, termed the pseudo-conceptual layer, starts to

apply conceptual DBMS design methodologies into the design of a knowledge base. In

this layer, the design is presented for a c e h KRM only. At the conceptual layer,

database design techniques are proposed for the design of the conceptual knowledge base,

independently of a specific KRM.
\ I

As knowledge bases continue to grow, they will undoubtedly require a great deal

of support from databases. Many expert-system shells now offer fiont-ends to popular

database engines. Likewise, 'as database applications become more complex, they will

require intelligent features from knowledge based systems. An example of this is ongoing

research in the database community of implementing business rules into databases and

database applications. These rules, defined as "constraint(s) placed upon the business"

(Moriarty 1993), have a five-stage design process very similar to the design process of

KBSes. A reason expert systems fail is that they aren't integrated into the corporate

computing architecture. "A high percentage of expert system programs result in a

successful prototype from a technical point of view but fail to produce a system which is

integrated into an organization's mainstream operational environment" (Fenn and Veren

1991). The corollary of this statement may also well be true; that is, the knowledge bases

of intelligent systems are not being utilized by the "mainstream" corporate applications.

This work serves as an important step in bringing the two camps together.

LITERATURE REVIEW

Research for' this thesis was necessarily performed from two separate but

complimentary viewpoints. Experts from both the database realm and the knowledge base

realm have written extensively on issues similar to the ideas proposed herein.

Databases and knowledge bases share many similarities. Both serve to store the

data necessary to make their respective systems perform. Both have established physical

structures designed to optimize the retrieval of that data. Both have certain relationships

between their logical design and their physical design. The union of databases and

knowledge bases can be divided into three levels: the physical level, the pseudo-

conceptual level, and the conceptual level. While the conceptual and the pseudo-

conceptual levels are the primary concern of this paper, a review of all three levels will

help establish a better baseline for the main premise to be presented later.

The physical level represents the lowest level of abstraction in the integration of

databases and knowledge bases. At the physical level, research has focused on many

areas. Those areas discussed here will consist of:
.

Storingretrieving knowledge inlfrom a database management system (DBMS),

Adding traditional expert system features to DBMSes, and

Interfacing database systems (DBSes) and KBSes.

Frank Anger, Rita Rodriguez and Douglas Dankel have co-authored a series of

papers on organizing expert systems' knowledge bases using databases and database

design techniques. They liave proposed utilizing a commercial relational DBMS

(RDBMS) to store the rules of an expert system's knowledge base (Rodriguez et. al.

1989). Their proposal calls for three RDBMS relations, or tables, to implement the

knowledge base. The first, named IF, consists of the fields rule#, ass&, and assrtdescr.

The second table, THEN, is also made up of the fields rule#, ass&, and assrtdescr. To

,track confidence, an integral part of rule-based systems, the table RULE-CONF is defined

to consist of the fields rule# and con$ These fields are described as such:

rule# - a unique identifier of the rule
assrt# - a unique identifier of an assertion
assrtdescr - the textual description of the assertion
c o d - a number which represents the confidence in the deduction

In this design, both the IF and THEN tables have a composite primary key consisting of
-

the fields rule# and assrt#, while RULE-CONF uses rule# as its primary key (Rodriguez

et. al. 1989).

The same paper also details the addition of procedural knowledge via a Oigger

relation. This table, called TRIGGERS, includes as a foreign key the field assrt#. When

the inference engine fues a rule which involves assertion N, the system queries

TRIGGERS to determine whether any procedures are to be invoked. An additional table,

PROCEDURES (whose primary key pname is also a foreign key in TRIGGERS),

contains the action to be performed (Rodriguez et. al. 1989) (Anger et. al. 1988).

An additional step in this direction has been proposed in (Ito 1991). Ito proposes

a coupling of KBSes and DBMSes. Since the reconstruction of an existing database to

perform the task of knowledge base manager is "burdensome", Ito suggests the

knowledge 'representation scheme (KRS) provide the mechanisms required for coupling.

Called IKD (Interface for integrating a Knowledge-based system and a Database system),

the system serves as the interface between a KRS called KBUS and a relational database.

KBUS is composed of a frame-based system called FKBUS and a production system

called PKBUS, in addition to IKD. FKBUS consists of several frames and sub-frames

which include, among other items, actual SQL (Structured Query Language) code to

retrieve knowledge from the database. In summary, Ito's paper proposes a knowledge-

based system which uses a frame-based subsystem to retrieve knowledge from an SQL-

compliant relational database.

Levent Orman of Cornell University proposed in (Orman 1992) that a three-layer

abstraction ("external ", "conceptual" and "internal" layers) of knowledge bases be

developed, with each layer targeted to a specific user type. At what Orman calls the

"internal level", targeted to system implementers, rules are to be "viewed as data." An

interesting point of Orman's proposal is the case he makes for hierarchical databases to

store rules, as opposed to the relational database approach championed in (Anger et. al.

lYSS), (Rodriguez et. al. 1989) and (Ito 1991). As a discussion of which database model

is most suited for the storage, retrieval and management of knowledge constructs is

beyond the scope of this paper, the point is simply made that (Orman 1992) provides a

strong case for the physical level of abstraction of databasebowledge base integration.

Industry has also conbibuted to the physical level of DBMS/KBS unions. Many

relational databases now supply triggers, which supply a primitive method of supplying

rule-based processing. A trigger is defined to be invoked on a certain action or condition

(cf., trigger relations, (Rodriguez et. al. 1-989) (Anger et. al. 1988)). Unfortunately,

triggers generally must be written in SQL, which doesn't provide the flexibility required to

add true intelligence to a database. Sybase, Inc., an innovator in client-server RDBMS

engines, has included the capability for "stored procedures" which can add a further level

of intelligence to a database by defining certain processing to occur based on user-defined

events.' These stored procediues, which are compiled and execute on the server side of

database applications, allow more efficient processing than triggers. The influx of client-

server database engines has provided another opportunity for DBMSIKBS unions. A

query can be passed through a KBS on the client side before issuing the SQL code to the

server side. ~ngress; the relational DBMS fiom Ask Computer Systems, has improved this

process by supplying a knowledge management module as an add-on. This module allows

for the incorporation of rules into applications which use the database (Jenkins'and

Grygo 1991).

The layer of abstraction referred to here as "pseudo-conceptual" is somewhat

harder to define. In this work, the pseudo-conceptual layer will refer to a level of

integration of knowledge base design and database design in which one particular

knowledge representation scheme is modeled via traditional logical database design

techniques. At this level, the semantic model becomes of more importance than the

syntactic model.

In addition to the physical layer examined above, both (Anger et. al. 1988) and

(Rodriguez et. al. 1989) contain a certain amount of work in the pseudo-conceptual

layer. KBS developers can use E-R diagrams to model rule bases in much the same way

as databases are modeled. More specifically, their proposal states that "simple assertions

of the rule base are viewed as one entity type and the rules as another, with IF and THEN

being relationships between these types." (Rodriguez et. al. 1989) Using this method will

capture "the information contained within the rules.:' (Rodriguez et. al. 1989)

At Orman's "external level", targeted to end-users of KBSes, rules are depicted

graphically (Orman 1992). Orman proposes the use of labeled arcs to represent

relationships between data' items represented by points. Cardinality concepts (e.g.,

SOME, UNIQUE, EACH) are given graphical constructs as well. As in the previous

references, though, the graphical representations are limited to applications to rules, thus

fitting the definition of the pseudo-conceptual level.

The differences between the physical and the pseudo-conceptual layers cited in the

same works are significant. The. first set of references to (Anger et. al. 1988).

(Rodriguez et. al. 1989) and (Orman 1992) examined the proposal to take actual rules

and stbre them in a database. In the second set of references to these same three papers,

emphasis is placed on taking an existing knowledge base (in all three cases, a rule base)

and modeling its semantics via some graphical methodology. Thus, it is the pseudo-

conceptual level of databasebowledge base integration at which one can first see an

attempt to integrate semantic principles of the two techniques.

At the level of abstraction of KBS-DBS integration referred to as the conceptual

level, the particular inferencing technique becomes of secondary importance to the

conceptual knowledge schema, in much the same way as the physical database model is of

less importance than the logical database schema during the logical design phase of

database design. Although previous work has failed to hone in on this level to the extent

it has the other two levels, recent literature has seen a trend of research on this level. One

example is (Mattos 1989), in which semantic data models and knowledge representation

models are characterized as being composed of several abstraction concepts, including

classification, generalization, inheritance, element, and set association, and element and

component aggregation. Mattos further argues that each of these' main concepts

(classification, generalization, association and aggregation) has inherent reasoning

facilities. Additionally, (oebenham 1992) presents an argument for building a

"maintainable" knowledge base around Horn clause logic (essentially, a rule-based system)

which would, by definition, place his methodology at the pseudo-conceptual level.

However, he does defend his approach as being independent of KRS by pointing out that

"as, long as the kno.wledge hasbeen modeled rigorously and...this model of the knowledge

has been normalized," it "really doesn't matter what language is used to actually implement

the knowledge.'' (Debenham 1992) In (Feldman and Fitzgerald 1985) the poht is

made that, while knowledge based systems represent a newer discipline than more

traditional information systems, both share common problems in the area of "knowledge

representation and acquisition", more than in "technical aspects of programming

methods." This common area of concern clearly points to a high level of abstraction in the

marriage of the two areas.

Again, the difference between the conceptual level and the pseudo-conceptual level

is significant: at this higher level of abstraction, any restriction on inference technique is

removed, and the problem becomes one of actually modeling a conceptual base of

knowledge with a semantic data model. In (Borgida 1991), the point is made that in the

database world, more emphasis is placed on "modeling the human conceptualization" of

the knowledge domain, while the knowledge base world has just now begun to investigate

modeling the conceptual schema vice "modeling the physical storage structures."

In summary, previous examinations of the union of DBSes and KBSes can be

separated into three layers of abstraction: physical, pseudo-conceptual and conceptual.

The physical layer is the layer at which databases are used to physically manage

knowledge, and at which intelligent features we added to DBMSes. The pseudo-

conceptual layer begins to examine the use of database design techniques, but generally

limits their use to one specific KRM. The most abstract layer, the conceptual layer,

suggests the use of database design techniques for any and al l KRMs. A combination of

the pseudo-conceptual and conceptual layers will provide the basis for the proposal of this

thesis.

The KADS methodology has become the most notable KBS design methodology

since its origin in 1983 as an ESPIRIT project. Many of the same concerns expressed in

this i o rk are also expressed in (Hick- et. al. 1989), which is probably the definitive

English-language text on the methodology. One such concern is based on the traditional

KBS development method, that of rapid prototyping . "(Rapid proto typing) provides very

little in the way of support for management issues, which are crucial to successful project

control." The authors go on to point to the "deliberate confusion between process and

data" as a deficiency in conventional software development methodologies for KBS

development. The text claims that entity modeling is not appropriate for KBS

development because the process of assigning entities to the real world problem is cliflicult

and the process of assigning attributes to those entities is "very difficult indeed." One item
\

that truly separates the KADS methodology and the other references cited here is that the

KADS' methodology makes no attempt to integrate knowledge bases and databases, nor

does it attempt to separate the knowledge base from the KBS at the logical level.

Knowledge Base M a t e ~ c e I JSiag D m e T-

Additionally, recent research has centered on the area of knowledge base

maintenance, and how database design principles can assist. The importance of

normalizing knowledge and applying constraints, including the referential integrity

constraint, has been discussed in (Debenham 1992). (The concepts will be discussed in

detail later.) Debenham's ' work presents three models: the Lata model, the information

model, and the knowledge model. Basically, the data model is based on the real world

realization of the problem, and corresponds roughly to a semantic data model. The

information model is analogous to the metadata of a relational database schema, while the

knowledge model consists of details about ,the knowledge representation structure. The

data model drives the information model, which in turn drives the knowledge model.

Debenham suggests normalization be performed at the data model as it is the easiest to

normalize. In addition, non-normalized entities at the data model level can cause a

"proliferation" of non-normalized entities at the higher levels. Knowledge base

maintenance becomes more manageable with a normalized model, Debenharn argues, since

all inter-relationships between the component items can be determined more quickly. In a

similar manner, Debenham defends applying constraints to the knowledge base (on al l

three models) as a means to ensure efficiency in the maintenance process.

KNOWLEDGE REPRESENTATION

Just as there are several database models (e.g., relational, network, hierarchical),

likewise 'are there several different knowledge representation models. The most common

knowledge representation models are

Rules

Frames

Semantic, or Associative, Networks

Object Orientation

The inclusion of object orientation as a knowledge representation model could be

somewhat debatable; however, when examined at the very basic level, one can see

similarities between a frame-representation scheme and an object oriented approach. In

addition, object orientation is seen as a means by which intelligence c k be added to

databases; thus it is included herein as a separate model. Each of these models will be

examined $I detail to determine what features a modeling tool must provide in order to
\

model their structures.

Rule-based systems are the most commonly known of all KRMs. A rule consists

of two parts, a premise and a conclusion. Rules are generally expressed either as an "IF-

THEN" relationship (e.g., IF it is August, THEN we will have a thunderstorm) or vice

versa (We will have a thunderstorm IF it is August.) Any number of ANDs, ORS or

NOTs can be appended to the premise (IF it is August AND we are in Central Florida OR

NOT (I have mowed my yard), THEN we will have a thunderstorm)

A frame-based system collects related knowledge into sets of attribute-value (or
_ _ - -*

slot-filler) pairs called frames. The fillers are often subdivided into facets, each of which

has its own value (Conzalez and Dankel 1993). Facets may include range, default value,

and daemons, procedures which execute upon a pre-defined condition. Frames are ordered

in the knowledge base into a hierarchy with IS-A links between the nodes (Hodgson

1991). inheritance plays a major role in frame-based systems as children frames tend to

inherit values from parent frames. Using the structure set forth in (Gonzalez and Dankel

1993), a frame detailing storm types could be depicted as:

Generic STORM Frame
Specialization-of: WEATHER
Generalization-of: (THUNDERSTORM, HAILSTORM, SNOWSTORM)
Precipitation:

Range: (NONE, RAIN, ICE, SLEET, SNOW, HAIL)
Default: (RAIN)

Wind-Speed:
Range: (0- 150)

Warning-Type:
Range: (NONE, WATCH, WARNING)
If-Needed: (WATCH-WEATHER-CHANNEL)
If-Modified: (ALERT-MEDIA)

Lightning-Presence:
Range: (NONE, LIGHT, MEDIUM, HEAVY)
If-Modified: (CHECK-FOR-THUNDERSTORM)

This example illustrates classification (Specialization-of and Generalization-on,

from which inheritance generally arises, ranges and defaults, and daemons ($Modified, @

Needed). The STORM frame will inherit properties of the WEATHER kame, while

THUNDERSTORM, HAILSTORM and SNOWSTORM will inherit properties of the

STORM frame.

Associative networks, originally termed semantic networks, were developed to

represent knowledge in natural language I sentences. Their use has gown beyond

semantics to encompass physical and causal associations (Gonzalez and Dankel 1993).

Associative networks are basically directed graphs whose nodes represent concepts and
_ - -

whose linksSrepresent associations between the concepts. These associations can take on

many different meanings; classification (instance-of), generalization (is-a) and aggregation

(part-of) are three of the more common and important association types (Mattos 1991).

Object-orientation (00) can arguably be presented as a knowledge representation

scheme: Its inclusion here is an acknowledgment of the capability of 00 to add
. ,

intelligence to databases. The world of objects has grown to include object-oriented

programming (OOP), object-oriented analysis and design (OOA and OOD), and object-

oriented databases management systems (OODBMS). While each of the three has its

own features which are not crucial to this thesis (e.g., the concept of dynamic binding in

OOP), all object-oriented approaches share common features, including inheritance,

polymorphism and encapsulation. Inheritance in 00 is identical to inheritance in frame-

based systems. Polymorphism is similar to the concept of generalization. Encapsulation,

perhaps the cornerstone of the object world is the process by which data structures and

the processes performed upon them (methods) are encapsulated, or combined, into one

entity, called a package, class or object type.

In summary, a design methodology for KBSes must meet the requirements of

several different knowledge representation schemes. These schemes utilih the following

features:

If-Then relationships between premises and conclusions

Inheritance

Generalizatio~Specialization

Classification

Aggregation

Encapsulation

_. -

E-R DIAGRAMS AS A KBSIKBMS DESIGN TOOL

So far, this paper has established the need for a structured design methodology for

knowledge-based systems, presented arguments for the integration of knowledge-base and

database systems, and examined various knowledge representation models. Building on

previous work on the integration of KBSes and DBSes, this chapter will present a design

methodology for KBSes which will satisfy the needs of the various KRMs and overcome

common problems inherent with KBS design and development. It is the primary intent of

this thesis to introduce the use of E-R diagramming as a knowledge base system design

tool, and to defend its use by presenting its advantages to various stages of the knowledge

base lifecycle.

Semantic modeling has been defined as "the overall activity of ammpting to

represent meaning." (Date 1990) This definition compliments the view of a KRM as a

scheme to represent knowledge. It has been argued in (Borgida 1991) that semantic data

models and KRMs share many similarities, while their differences tend to revolve around

the :'differing goals to which they subscribe." These similarities include:
3

Object Identity - both KRMs and semantic models subscribe to the notion that an

instance of knowledge or data has its own identity independent of its attribute

values or participating relationships.

Binary Relationships among Objects - both support binary (vs. n-ary)

relationships among objects (e.g., attributes, slots, properties).

Grouping of Individuals into Classes - Chapter I1 discussed generalization; the

concepts of grouping individqls into classes and generalization are practically

identical.

Decomposition of Classes into Subclasses - Chapter IT discussed specialization;
_. . --

the concepts of decomposition of classes into subclasses and specialization are

practically identical.

Constraints - Both KRMs and semantic models provide means of expressing

conditions of validity for attributes.

Derived Classes/Relationships - KRMs and semantic models both have methods

defined to control redundant information and enforce its consistency. (Borgida

1991)

Drawing upon this list, it is safe to say there is a definite parallel between

knowledge representation and semantic modeling. For this reason, this chapter will

promote the concept of semantically modeling the knowledge of a KBS as a design aid for

KBS development.

Peter Chen's classic entity-relationship modeling and diagramming technique

(Chen 1976) is arguably the de facto standard for database design in general, and

relational database design in particular. As databases have become more intelligent in

nature, so too have E-R modeling and diagramming techniques been extended to help

developers better keep track of the inherent intelligence of the database. This research

will demonstrate how the classic E-R diagram, with extensions, can adequately model the

knowledge base of any KBS, regardless of knowledge representation scheme. It will also

bring to light some advantages of performing this modeling.

In the decade and a half since Chen presented his very valuable tool, the E-RD

methodology has undergone many adaptations. Researchers have proposed extensions to

the original model to allow it to model many different types of data and knowledge. The

proceedings of the annual Entity-Relationship Approach conferences provide a wealth of

new E-RD extensions. There are object-oriented E-RDs (Navathe and Pillalamarri

1989), action-mddeling E-RDs (Feldrnan and Fitzgerald 1985), and E-RDs which model

both transactional information and conceptual knowledge (Lazirny 1988), to name but a

few. Elements of many of these "E-RD flavors" will be selected to develop a case for this

paper's proposal: entity-relationship modeling and (in particular) diagramming can be used

to model .the conceptual knowledge base of a knowledge-based system in much the same

way as they presently model the logical database of a traditional information system.

A short review of basic E-R modeling reveals three main concepts: entities,

attributes and relationships. Peter Chen, who originated both the concept of the entity-

relationship model and its graphical partner, the entity-relationship diagram, defines an

entity as "a thing which can be distinctly identified." An attribute is a piece of information

that describes an entity. Finally, a relationship is defined as "an association among

entities." (Chen 1976) An example to illustrate these basics is that of a personnel system

The entities of concern are EMPLOYEE and OFFICE. In this example, employees are

assumed to work for one and only one office. The attributes are as follows:

Table 1

EMPLOYEE and OFFICE entities and attributes

EMPLOYEE
EMPLOYEE - ID

EMPLOYEE - NAME

JOB-CLASS - CODE

DATE - REPORTED

OFFICE
ORGANIZATION-CODE

OFFICE - TITLE

MANAGER-ID

-- - -

Figure 1 shows this example in E-R diagram form.

Employee-ID Organization-Code

Employee-Name
Employee Office Off ice_Title Job-Class-Code

Date-Reported Manag er-ID

Figure 1 - Sample E-R Diagram

The underlined attributes (EMPLOYEE - ID, ORGANIZATION - CODE)

represent the primary keys of their respective entities. The cardinality of the relationship

between the entities is denoted by the "M" and the "1"; in this example, there is a one-to-

many relationship between offices and employees. Although Chen introduced several

other features in his essay, these features constitute the bulk of E-RD basics. Appendix A

presents a more detailed review of E-R concepts.

ions to E-RD8
-

The fiist requirement of a knowledge-modeling tool is to provide a model for if-

then rules between premises and conclusions. In (Rodriguez et. al. 1989), the following

diagram is given as an example of how this can be accomplished with standard E-RDs.

Figure 2 - If-Then E-RD from (Rodriguez et. al. 1989)

This E-RD depicts a many-to-many relationship occurring between the entity % RULE and

the entity ASSERTION. This approach differs from more traditional E-R modeling by

viewing the rule base as the real world. In traditional database applications, the subset of

the real world involved in the problem is modeled as the real world.

A more conceptually-oriented approach to semantically model rules is discussed in

(Feldman and Fitzgerald 1985). In that work, the use of "action modeling" is presented.

They propose this action model to be "constructed in analysis after an entity mdel has

.been built," a two-stage approach to howledge base design similar to the approach

espoused in this work. The fact that some sort of behavior modeling must be provided in

order to successfully model a rule excludes the static structure of the entity-relationship
_ _ _--.- - .

model; however, rules do perform their actions on entities, thus some method of depicting

them must be provided.

A rule can be considered as an action which occurs as the result of some state of a

relationship between one or more entities. As such, a rule should be considered to be an

attribute of that relationship. If the rule applies to only one entity, a weak entity and

relationship may be created, although this adds an unnecessary step. In this case, the rule

may be depicted as an attribute of the given entity. The term "attribute" as used here

should not be readily compared to an attribute in a typical database E-RD. Attributes in

database E-RDs will become domains, fields or columns in the physical database, while an

attribute depicting a rule will see a different mapping in the physical knowledge base. This

attribute should be some sort of implementation-independent description of the rule (a

"pseudo-rule", comparable to pseudo-code.) The pseudo-rule should either be attached to

the relationship as written or identified by a unique identifier and written out elsewhere.

This ensures that the relationship between the rule and the entity(ies) the k l e references

can be determined quickly by visual inspection of the E-RD.

Figure 3 depicts a rule in an E-RD.

Age
_ _ - --

Years-Service

Employee.Years-Senrice #I THL.
Invoke RetkementProcess
CONF = .8

Figure 3 - Depicting If-Then (Rule) relationship in ERD

The point is made in (Debenham 1992) that rules do not always tk

traditional "if-then" format of Figure 2. A semantic model should thus not be

if-then relationships simply because the underlying KRM is a rule. However,

single diagramming construct to capture all possible rule relationships isn't practd!. The

method illustrated above allows the designer flexibility in establishing rules.

Classification, generalization, specialization and inheritance all rely on sub- zlndl

super-classes. These classes represent a hierarchy fiom the general (superclass) to d k

specific (subclass). An entity type which is defined as a superclass will, in an E-RD, he

connected to its subclass with a triangle. Multiple subclass entity types each connect to

the triangle, which then connects to the superclass entity type. Figure 4 presents irm

example in which the EMPLOYEE superclass consists of ENGINEER, SECFEI'ARy

and SUPERVISOR subclasses.

-11 EMPAD
SALARY

Figure 4 - E-RD illustrating subclasses, superclasses

The presence of a subclass symbol (triangle) represents subclasses; a subclass is

assumed to inherit any and all attributes from its parent superclass. Sibling subclasses are

not ,assumed to share additionally defined attributes; if two or more subclass entity types

are to share an attribute, that attribute must be explicitly assigned to each entity type.

Thus, in Figure 4, all three subclass entity types inherit the attributes EMP-ID and

SALARY, while only the SUPERVISOR entity type has SUPV-LEVEL and

MGR-BONUS defined.

Generalization and specialization are complimentary concepts, with specialization

defined as "the process of defining a set of subclasses of an entity type." (Elmasri and

Navathe 1989) The process of specialization produces subclasses; likewise,

generalization produces superclasses. There are several constraints on generalization and

specialization which show up in the extended entity-relationship (EER) diagrams defined ,

in (Elmasri and Navathe 1989). These include:

Predicate definition

Disjointness

