Current Search: Li, Guifang (x)
View All Items
Pages
- Title
- Mode Evolution in Fiber Based Devices for Optical Communication Systems.
- Creator
-
Huang, Bin, Li, Guifang, Amezcua Correa, Rodrigo, Abouraddy, Ayman, Chen, Haoshuo, University of Central Florida
- Abstract / Description
-
Space division multiplexing (SDM) is the most promising way of increasing the capacity of a single fiber. To enable the few mode fiber (FMF) or multi-mode fiber (MMF) transmission system, several major challenges have to be overcome. One is the urgent need of ideal mode multiplexer, the second is the perfect amplification for all spatial modes, another one is the modal delay spread (MDS) due to group velocity difference of spatial modes. The main subject of this dissertation is to model,...
Show moreSpace division multiplexing (SDM) is the most promising way of increasing the capacity of a single fiber. To enable the few mode fiber (FMF) or multi-mode fiber (MMF) transmission system, several major challenges have to be overcome. One is the urgent need of ideal mode multiplexer, the second is the perfect amplification for all spatial modes, another one is the modal delay spread (MDS) due to group velocity difference of spatial modes. The main subject of this dissertation is to model, fabricate and characterize the mode multiplexer for FMF transmission. First, we designed a novel resonant mode coupler (structured directional coupler pair). After that, we studied the adiabatic mode multiplexer (photonic lantern). 6-mode photonic lantern using graded-index (GI) MMFs is proposed and demonstrated, which alleviates the adiabatic require-ment and improves mode selectivity. Then, 10-mode photonic lantern is demonstrated using novel double cladding micro-structured drilling-hole preform, which alleviates the adiabatic requirement and demonstrate a feasible way to scale up the lantern modes. Also, multi-mode photonic lantern is studied for high order input modes. In addition, for the perfect amplification of the modes, cladding pump method is demonstrated. The mode selective lantern designed and fabricated can be used for the characterization of few mode amplifier with swept wavelength interferometer (SWI). Also, we demonstrated the application of the use of the few mode amplifier for the turbulence-resisted preamplified receiver. Besides, for the reduction of MDS, the long period grating for introducing strong mode mixing is demonstrated.
Show less - Date Issued
- 2017
- Identifier
- CFE0006884, ucf:51720
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006884
- Title
- Mode-Division Multiplexed Transmission in Few-mode Fibers.
- Creator
-
Bai, Neng, Li, Guifang, Christodoulides, Demetrios, Schulzgen, Axel, Abouraddy, Ayman, Phillips, Ronald, Ip, Ezra, University of Central Florida
- Abstract / Description
-
As a promising candidate to break the single-mode fiber capacity limit, mode-division multiplexing (MDM) explores the spatial dimension to increase transmission capacity in fiber-optic communication. Two linear impairments, namely loss and multimode interference, present fundamental challenges to implementing MDM. In this dissertation, techniques to resolve these two issues are presented.To de-multiplex signals subject to multimode interference in MDM, Multiple-Input-Multiple-Output (MIMO)...
Show moreAs a promising candidate to break the single-mode fiber capacity limit, mode-division multiplexing (MDM) explores the spatial dimension to increase transmission capacity in fiber-optic communication. Two linear impairments, namely loss and multimode interference, present fundamental challenges to implementing MDM. In this dissertation, techniques to resolve these two issues are presented.To de-multiplex signals subject to multimode interference in MDM, Multiple-Input-Multiple-Output (MIMO) processing using adaptive frequency-domain equalization (FDE) is proposed and investigated. Both simulations and experiments validate that FDE can reduce the algorithmic complexity significantly in comparison with the conventional time-domain equalization (TDE) while achieving similar performance as TDE. To further improve the performance of FDE, two modifications on traditional FDE algorithm are demonstrated. i) normalized adaptive FDE is applied to increase the convergence speed by 5 times; ii) master-slave carrier recovery is proposed to reduce the algorithmic complexity of phase estimation by number of modes.Although FDE can reduce the computational complexity of the MIMO processing, due to large mode group delay (MGD) of FMF link and block processing, the algorithm still requires enormous memory and high hardware complexity. In order to reduce the required tap length (RTL) of the equalizer, differential mode group delay compensated fiber (DMGDC) has been proposed. In this dissertation, the analytical expression for RTL is derived for DMGDC systems under the weak mode coupling assumption. Instead of depending on the overall MGD of the link in DMGD uncompensated (DMGDUC) systems, the RTL of DMGDC systems depend on the MGD of a single DMGDC fiber section. The theoretical and numerical results suggest that by using small compensation step-size, the RTL of DMGDC link can be reduced by 2 orders of magnitude compared to DMGDUC link. To compensate the loss of different modes, multimode EDFAs are presented with re-configurable multimode pumps. By tuning the mode content of the multimode pump, mode-dependent gain (MDG) can be controlled and equalized. A proto-type FM-EDFA which could support 2 LP modes was constructed. The experimental results show that by using high order mode pumps, the modal gain difference can be reduced. By applying both multimode EDFA and equalization techniques, 26.4Tb/s MDM-WDM transmission was successfully demonstrated.A brief summary and several possible future research directions conclude this dissertation.
Show less - Date Issued
- 2013
- Identifier
- CFE0004811, ucf:49751
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004811
- Title
- Dynamic feedback pulse shaping for high power chirped pulse amplification system.
- Creator
-
Nguyen, Dat, Delfyett, Peter, Rahman, Talat, Richardson, Martin, Schulzgen, Axel, Li, Guifang, University of Central Florida
- Abstract / Description
-
The topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic...
Show moreThe topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic pulse shaping approaches. The experimental research addresses the topic of parabolic pulse generation in two distinct ways. First, pulse shaping technique involving a time domain approach is presented, that results in stretched pulses with parabolic profiles with temporal duration of 15 ns. After pulse is shaped into a parabolic intensity profile, the pulse is compressed with DCF fiber spool by 100 times to 80 ps duration at FWHM. A different approach of pulse shaping in frequency domain is performed, in which a spectral processor based on Liquid Crystal on Silicon technology is used. The pulse is stretched to 1.5 ns before intensity mask is applied, resulting in a parabolic intensity profile. Due to frequency to time mapping, its temporal profile is also parabolic. After pulse shaping, the pulse is compressed with a bulk compressor, and subsequently analyzed with a Frequency Resolved Optical Gating (FROG). The spectral content of the compressed pulse is feedback to the spectral processor and used to adjust the spectral phase mask applied on the pulse. The resultant pulse after pulse shaping with feedback mechanism is a Fourier transform, sub-picosecond ultrashort pulse with 5 times increase in peak power.The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Specification and characterization of major components of equipment and devices used in the experiment are present. The description of Matlab algorithms that was used to calculate required signals for pulse shaping are shown. A brief description of the Labview code used to control the spectral processor will also be illustrated.
Show less - Date Issued
- 2013
- Identifier
- CFE0004899, ucf:49642
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004899
- Title
- External cavity mode-locked semiconductor lasers for the generation of ultra-low noise multi-gigahertz frequency combs and applications in multi-heterodyne detection of arbitrary optical waveforms.
- Creator
-
Davila-Rodriguez, Josue, Delfyett, Peter, Likamwa, Patrick, Li, Guifang, Malocha, Donald, University of Central Florida
- Abstract / Description
-
The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency...
Show moreThe construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-P(&)#233;rot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of (<)2 fs and pulses compressible to (<)1 ps. Amplification of these pulse-trains with an external SCOWA lead to 390 mW of average optical power without evident degradation in phase noise and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using a 10,000 Finesse Fabry-P(&)#233;rot Etalon held in a vacuum chamber. The fluctuations in the optical frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be significantly reduced to (<)100 kHz in a measurement that is limited by the linewidth of the reference source.The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) sampling of phase modulated continuous wave light and 3) periodically filtered white light. The last experiment achieves spectral interferometry with unprecedented resolution.
Show less - Date Issued
- 2013
- Identifier
- CFE0004669, ucf:49863
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004669