Current Search: Malocha, Donald (x)
View All Items
Pages
- Title
- Multi-transit echo suppression for passive wireless surface acoustic wave sensors using 3rd harmonic unidirectional transducers and Walsh-Hadamard-like reflectors.
- Creator
-
Rodriguez Cordoves, Luis, Malocha, Donald, Weeks, Arthur, Abdolvand, Reza, Moharam, Jim, Youngquist, Robert, University of Central Florida
- Abstract / Description
-
A passive wireless surface acoustic wave sensor of a delay-line type is composed of an antenna, a transducer that converts the EM signal into a surface acoustic wave, and a set of acoustic reflectors that reflect the incoming signal back out through the antenna. A cavity forms between the transducer and the reflectors, trapping energy and causing multiple unwanted echoes. The work in this dissertation aims to reduce the unwanted echoes so that only the main transit signal is left(-)the signal...
Show moreA passive wireless surface acoustic wave sensor of a delay-line type is composed of an antenna, a transducer that converts the EM signal into a surface acoustic wave, and a set of acoustic reflectors that reflect the incoming signal back out through the antenna. A cavity forms between the transducer and the reflectors, trapping energy and causing multiple unwanted echoes. The work in this dissertation aims to reduce the unwanted echoes so that only the main transit signal is left(-)the signal of interest with sensor information.The contributions of this dissertation include reflective delay-line device response in the form of an infinite impulse response (IIR) filter. This may be used in the future to subtract out unwanted echoes via post-processing. However, this dissertation will use a physical approach to echo suppression by using a unidirectional transducer. Thus a unidirectional transducer is used and also optimized for 3rd harmonic operation. Both the directionality and the coupling of the 3rd harmonic optimized SPUDT are improved over a standard electrode width controlled (EWC) SPUDT. New type of reflectors for the reflective delay-line device are also presented. These use BPSK type coding, similar to that of the Walsh-Hadamard codes. Two types are presented, variable reflectivity and variable chip-lengths. The COM model is used to simulate devices and compare the predicted echo suppression level to that of fabricated devices. Finally, a device is mounted on a tunable antenna and the echo is suppressed on a wireless operating device.
Show less - Date Issued
- 2017
- Identifier
- CFE0006912, ucf:51697
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006912
- Title
- Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators.
- Creator
-
Gallagher, Daniel, Malocha, Donald, Delfyett, Peter, Richie, Samuel, Weeks, Arthur, Youngquist, Robert, University of Central Florida
- Abstract / Description
-
Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator...
Show moreUltra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter.Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal.The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq (TM) system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I (&) Q) pairs and upconverted to a 491.52 MHz operational frequency.The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussedwith before and after results showing approximately 10:1 improvement.Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented.
Show less - Date Issued
- 2015
- Identifier
- CFE0005794, ucf:50054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005794
- Title
- Design, Fabrication, and Interrogation of Integrated Wireless SAW Temperature Sensors.
- Creator
-
Gallagher, Mark, Malocha, Donald, Richie, Samuel, Weeks, Arthur, Youngquist, Robert, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
Wireless surface acoustic wave (SAW) sensors offer unique advantages over other sensor technologies because of their inherent ability to operate in harsh environments and completely passive operation, providing a reliable, maintenance-free life cycle. For certain SAW sensor applications the challenge is building a wirelessly interrogatable device with the same lifetime as the SAW substrate. The design of these application intensive sensors is complicated by the degradation of device bond...
Show moreWireless surface acoustic wave (SAW) sensors offer unique advantages over other sensor technologies because of their inherent ability to operate in harsh environments and completely passive operation, providing a reliable, maintenance-free life cycle. For certain SAW sensor applications the challenge is building a wirelessly interrogatable device with the same lifetime as the SAW substrate. The design of these application intensive sensors is complicated by the degradation of device bond wires, die adhesive, and antenna substrate. In an effort to maximize the benefits of the platform, this dissertation demonstrates wafer-level integrated SAW sensors that directly connect the thin film SAW to a thick film on-wafer antenna. Fully integrated device embodiments are presented that operate over a wide range of temperatures using different fabrication techniques, substrates, and coding principles.
Show less - Date Issued
- 2015
- Identifier
- CFE0005795, ucf:50047
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005795
- Title
- External cavity mode-locked semiconductor lasers for the generation of ultra-low noise multi-gigahertz frequency combs and applications in multi-heterodyne detection of arbitrary optical waveforms.
- Creator
-
Davila-Rodriguez, Josue, Delfyett, Peter, Likamwa, Patrick, Li, Guifang, Malocha, Donald, University of Central Florida
- Abstract / Description
-
The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency...
Show moreThe construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-P(&)#233;rot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of (<)2 fs and pulses compressible to (<)1 ps. Amplification of these pulse-trains with an external SCOWA lead to 390 mW of average optical power without evident degradation in phase noise and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using a 10,000 Finesse Fabry-P(&)#233;rot Etalon held in a vacuum chamber. The fluctuations in the optical frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be significantly reduced to (<)100 kHz in a measurement that is limited by the linewidth of the reference source.The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) sampling of phase modulated continuous wave light and 3) periodically filtered white light. The last experiment achieves spectral interferometry with unprecedented resolution.
Show less - Date Issued
- 2013
- Identifier
- CFE0004669, ucf:49863
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004669
- Title
- Polymer Optical Fibers for Luminescent Solar Concentration.
- Creator
-
Banaei, Seyed Esmaeil, Fathpour, Sasan, Gong, Xun, Sundaram, Kalpathy, Malocha, Donald, Abouraddy, Ayman, University of Central Florida
- Abstract / Description
-
Luminescent solar concentrators (LSC's) are promising candidates for reducing the cost of solar power generation. Conventional LSC's are slab waveguides coated or doped with luminescence materials for absorption and guiding of light to the slab edges in order to convert optical energy into electricity via attached photovoltaic (PV) cells. Exploiting the advantages of optical fiber production, a fiber LSC (FLSC) is presented in this thesis, in which the waveguide is a polymeric optical fiber....
Show moreLuminescent solar concentrators (LSC's) are promising candidates for reducing the cost of solar power generation. Conventional LSC's are slab waveguides coated or doped with luminescence materials for absorption and guiding of light to the slab edges in order to convert optical energy into electricity via attached photovoltaic (PV) cells. Exploiting the advantages of optical fiber production, a fiber LSC (FLSC) is presented in this thesis, in which the waveguide is a polymeric optical fiber. A hybrid fiber structure is proposed for an efficient two-stage concentration of incident light, first into a small doped core using a cylindrical micro-lens that extends along the fiber, and second to the fiber ends by guiding the fluoresced light from the active dopants. Flexible sheets are assembled with fibers that can be bundled and attached to small-area PV cells. Small dimensions and directional guiding of the fibers allow for approximately one order of magnitude geometrical gain improvement over that of existing flat LSC's. In addition, the undesired limit of LSC size is eliminated in one direction.Modeling and optimization of an FLSC design is presented using polarization-ray tracing under realistic conditions with solar spectrum radiation and broad-band absorption and emission spectra of fluorescence materials with their inevitable self-absorption effect.Methods and results of fabrication and accurate optical characterization of such FLSC using two off-the-shelf organic dyes and a commercially available polymer, COP, are discussed in detail. Fiber preforms, fabricated under optimized conditions for low light transport loss, are thermally drawn into sub-millimeter-size fibers. Characterization of several samples with various concentrations of the two dyes shows an optical-to-optical conversion efficiency of 9.1% for a tandem combination of two 2.5-cm-long fibers with the efficiency gradually decreasing to 4.9% with increase in fiber length to 10 cm.
Show less - Date Issued
- 2013
- Identifier
- CFE0005083, ucf:50733
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005083
- Title
- Uncooled Infrared Detector Featuring Silicon based Nanoscale Thermocouple.
- Creator
-
Modarres-Zadeh, Mohammad, Abdolvand, Reza, Sundaram, Kalpathy, Yuan, Jiann-Shiun, Malocha, Donald, Cho, Hyoung Jin, University of Central Florida
- Abstract / Description
-
The main focus of this dissertation is to improve the performance of thermoelectric (TE)infrared (IR) detectors. TE IR detectors are part of uncooled detectors that can operate at roomtemperature. These detectors have been around for many years, however, their performance hasbeen lower than their contesting technologies. A novel high-responsivity uncooled thermoelectricinfrared detector is designed, fabricated, and characterized. This detector features a single standalonepolysilicon-based...
Show moreThe main focus of this dissertation is to improve the performance of thermoelectric (TE)infrared (IR) detectors. TE IR detectors are part of uncooled detectors that can operate at roomtemperature. These detectors have been around for many years, however, their performance hasbeen lower than their contesting technologies. A novel high-responsivity uncooled thermoelectricinfrared detector is designed, fabricated, and characterized. This detector features a single standalonepolysilicon-based thermocouple (without a supporting membrane) covered by an umbrellalikeoptical-cavity IR absorber. It is proved that the highest responsivity in the developed detectorscan be achieved with only one thermocouple. Since the sub-micrometer polysilicon TE wires arethe only heat path from the hot junction to the substrate, a superior thermal isolation is achieved.A responsivity of 1800 V/W and a detectivity of 2 ? 10^8 (cm. sqrt(Hz)W^?1) are measured from a20?m x 20?m detector comparable to the performance of detectors used in commercial focalplanar arrays. This performance in a compact and manufacturable design elevates the position ofthermoelectric IR sensors as a candidate for low-power, high performance, and inexpensive focalplanar arrays. The improvement in performance is mostly due to low thermal conductivity of thinpolysilicon wires. A feature is designed and fabricated to characterize the thermal conductivity ofsuch a wire and it is shown for the first time that the thermal conductivity of thin polysilicon filmscan be much lower than that of the bulk. Thermal conductivity of ~110nm LPCVD polysilicondeposited at 620C is measured to be ~3.5W/m.K.
Show less - Date Issued
- 2016
- Identifier
- CFE0006537, ucf:51321
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006537