Current Search: Schoenfeld, Winston (x)
View All Items
Pages
- Title
- Electronic, Optical, and Magnetic Properties of Graphene and Single-Layer Transition Metal Dichalcogenides in the Presence of Defects.
- Creator
-
Khan, Mahtab, Leuenberger, Michael, Mucciolo, Eduardo, Saha, Haripada, Tetard, Laurene, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Two-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also...
Show moreTwo-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also observed in surface states of 3D topological insulators and quantum Hall edgestates. My first project deals with the two-dimensional Hong-Ou-Mandel (HOM) type interferenceexperiment for massless Dirac fermions in graphene and 3D topological insulators. Since masslessDirac fermions exhibit linear dispersion, similar to photons in vacuum, they can be used to observethe HOM interference intensity pattern as a function of the delay time between two massless Dirac fermions. My further projects and the major part of this dissertation deal with single-layer (SL) transition metal dichalcogenides (TMDCs), such as MoS$_2$, WS$_2$, MoSe$_2$ and WSe$_2$, which have recently emerged as a new family of two-dimensional (2D) materials with great interest, not only from the fundamental point of view, but also because of their potential application to ultrathin electronic and optoelectronic devices. In contrast to graphene, SL TMDCs are direct band semiconductors and exhibit large intrinsic spin-orbit coupling (SOC), originating from the d orbitals of transition metal atoms. Wafer-scale production of SL TMDCs is required for industrial applications. It has been shown that artificially grown samples of SL TMDCs through various experimental techniques, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and molecular beam epitaxy (MBE), are not perfect, instead certain type of imperfections such as point defects are always found to be present in the grown samples. Defects compromise the crystallinity of the sample, which results in reduced carrier mobility and deteriorated optical efficiency. However, defects are not always unwanted; in fact, defects can play an important role in tailoring electronic, optical, and magnetic properties of materials. Using Density functional theory we investigate the impact of point defects on the electronic, optical, and magnetic properties of SL TMDCs. First, we show that certain vacancy defects lead to localized defect states, which in turn give rise to sharp transitions in in-plane and out-of-plane optical susceptibilities of SL TMDCs. Secondly, we show that a naturally occurring antisite defect Mo$_S$ in PVD grown MoS$_2$ is magnetic in nature with a magneticmoment of 2$\mu_B$, and remarkably exhibit an exceptionally large atomic scale magnetic anisotropy energy (MAE) of ~ 500 eV. Both magnetic moment and MAE can be tuned by shifting the position of the Fermi level which can be achieved either by gate voltage or by chemical doping. Thirdly, we argue that the antisite defect Se$_W$ in WSe$_2$ leads to long lived localized excited states, which can explain the observed single quantum emitters in CVD grown WSe$_2$ samples, with potential application to quantum cryptography.
Show less - Date Issued
- 2018
- Identifier
- CFE0007030, ucf:52047
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007030
- Title
- Hole selective tunneling oxide applications with insight into sophisticated characterization techniques.
- Creator
-
Ogutman, Nizamettin Kortan, Schoenfeld, Winston, Sundaram, Kalpathy, Batarseh, Issa, Davis, Kristopher, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
Tunneling metal oxide layers combined with industrially applicable novel cleaning methods can boost the current efficiency limit, which corresponds to approximately %22 in production, of crystalline silicon (c-Si) solar cells. Within the scope of this dissertation, extremely thin tunneling layers (1-3nm) of aluminum oxide is studied in conjunction with the development of wet cleaning procedures that are feasible in production lines currently exist today. These tunneling stacks are deployed to...
Show moreTunneling metal oxide layers combined with industrially applicable novel cleaning methods can boost the current efficiency limit, which corresponds to approximately %22 in production, of crystalline silicon (c-Si) solar cells. Within the scope of this dissertation, extremely thin tunneling layers (1-3nm) of aluminum oxide is studied in conjunction with the development of wet cleaning procedures that are feasible in production lines currently exist today. These tunneling stacks are deployed to serve as exceptional surface passivation layers due to the inherent built-in charge provided by aluminum oxide. This capability is further strengthened by the introduction of extremely well controlled wet chemical oxide which not only saturates the dangling bonds at the interface but also enables conformal growth of the aforementioned tunneling oxide layers. Therefore, the interplay between aluminum oxide thickness, which effects the passivation quality tremendously, and carrier extraction capability (contact resistance) is also taken into account by the choice of ultimate boron doping profile and the optimization of the cleaning procedure. The resulting hole collecting surface passivation stack applied on doped surfaces provided record values of recombination current densities, with highly applicable contact resistivity values, enabling one-dimensional carrier transport. This dissertation is also concerned with spatially resolved characterization methods of such industrial c-Si solar cells given the importance of defects that can exist in these large area devices. Analytical image processing algorithms pertaining to biased-photoluminescence (PL) measurements are conducted to portray 2D maps of physical significant devices parameters such as dark saturation current density and efficiency. Finally, Fourier analysis is added into the analysis of raw PL images to pick up only the defected regions of the cells.
Show less - Date Issued
- 2018
- Identifier
- CFE0007069, ucf:51980
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007069
- Title
- An investigation of the relationship between visual effects and object identification using eye-tracking.
- Creator
-
Rosch, Jonathan, Schoenfeld, Winston, Likamwa, Patrick, Wu, Shintson, Vogel-Walcutt, Jennifer, University of Central Florida
- Abstract / Description
-
The visual content represented on information displays used in training environments prescribe display attributes as brightness, color, contrast, and motion blur, but considerations regarding cognitive processes corresponding to these visual features require further attention in order to optimize the display for training applications. This dissertation describes an empirical study with which information display features, specifically color and motion blur reduction, were investigated to...
Show moreThe visual content represented on information displays used in training environments prescribe display attributes as brightness, color, contrast, and motion blur, but considerations regarding cognitive processes corresponding to these visual features require further attention in order to optimize the display for training applications. This dissertation describes an empirical study with which information display features, specifically color and motion blur reduction, were investigated to assess their impact in a training scenario involving visual search and threat detection. Presented in this document is a review of the theory and literature describing display technology, its applications to training, and how eye-tracking systems can be used to objectively measure cognitive activity. The experiment required participants to complete a threat identification task, while altering the displays settings beforehand, to assess the utility of the display capabilities. The data obtained led to the conclusion that motion blur had a stronger impact on perceptual load than the addition of color. The increased perceptual load resulted in approximately 8-10% longer fixation durations for all display conditions and a similar decrease in the number of saccades, but only when motion blur reduction was used. No differences were found in terms of threat location or threat identification accuracy, so it was concluded that the effects of perceptual load were independent of germane cognitive load.
Show less - Date Issued
- 2012
- Identifier
- CFE0004591, ucf:49219
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004591
- Title
- Wavelength scale resonant structures for integrated photonic applications.
- Creator
-
Weed, Matthew, Schoenfeld, Winston, Moharam, M., Likamwa, Patrick, Delfyett, Peter, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled...
Show moreAn approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models enables comb-like resonant clusters in systems that otherwise have no such regular resonant landscape (e.g. photonic crystal cavities). Through design, simulation, fabrication and test, the work presented here is a thorough validation for the future potential of coupled-resonator filters in frequency comb laser sources.
Show less - Date Issued
- 2013
- Identifier
- CFE0004957, ucf:49568
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004957
- Title
- Predictive modeling for assessing the reliability of bypass diodes in Photovoltaic modules.
- Creator
-
Shiradkar, Narendra, Sundaram, Kalpathy, Schoenfeld, Winston, Atia, George, Abdolvand, Reza, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Solar Photovoltaics (PV) is one of the most promising renewable energy technologies for mitigating the effect of climate change. Reliability of PV modules directly impacts the Levelized Cost of Energy (LCOE), which is a metric for cost competitiveness of any energy technology. Further reduction in LCOE of PV through assured long term reliability is necessary in order to facilitate widespread use of solar energy without the need for subsidies. This dissertation is focused on frameworks for...
Show moreSolar Photovoltaics (PV) is one of the most promising renewable energy technologies for mitigating the effect of climate change. Reliability of PV modules directly impacts the Levelized Cost of Energy (LCOE), which is a metric for cost competitiveness of any energy technology. Further reduction in LCOE of PV through assured long term reliability is necessary in order to facilitate widespread use of solar energy without the need for subsidies. This dissertation is focused on frameworks for assessing reliability of bypass diodes in PV modules. Bypass diodes are critical components in PV modules that provide protection against shading. Failure of bypass diode in short circuit results in reducing the PV module power by one third, while diode failure in open circuit leaves the module susceptible for extreme hotspot heating and potentially fire hazard. PV modules, along with the bypass diodes are expected to last at least 25 years in field. The various failure mechanisms in bypass diodes such as thermal runaway, high temperature forward bias operation and thermal cycling are discussed. Operation of bypass diode under shading is modeled and method for calculating the module I-V curve under any shading scenario is presented. Frameworks for estimating the diode temperature in field deployed modules based on Typical Meteorological Year (TMY) data are developed. Model for predicting the susceptibility of bypass diodes for thermal runaway is presented. Diode wear out due to High Temperature Forward Bias (HTFB) operation and Thermal Cycling (TC) is studied under custom designed accelerated tests. Overall, this dissertation is an effort towards estimating the lifetime of bypass diodes in field deployed modules, and therefore, reducing the uncertainty in long term reliability of PV modules.
Show less - Date Issued
- 2015
- Identifier
- CFE0006001, ucf:51023
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006001
- Title
- Mid-infrared plasmonics.
- Creator
-
Khalilzadeh Rezaie, Farnood, Peale, Robert, Ishigami, Masa, Schoenfeld, Winston, Buchwald, Walter, Abdolvand, Reza, University of Central Florida
- Abstract / Description
-
This dissertation reports investigations into materials for, and applications of, infrared surface plasmon polaritons (SPP). SPPs are inhomogeneous electromagnetic waves that are bound to the surface of a conductor. Tight confinement of electromagnetic energy, the primary virtue of SPPs for so-called (")plasmonic(") applications, requires plasma frequencies for the conductor near the intended infrared operational frequencies. This requires carrier concentrations that are much less than those...
Show moreThis dissertation reports investigations into materials for, and applications of, infrared surface plasmon polaritons (SPP). SPPs are inhomogeneous electromagnetic waves that are bound to the surface of a conductor. Tight confinement of electromagnetic energy, the primary virtue of SPPs for so-called (")plasmonic(") applications, requires plasma frequencies for the conductor near the intended infrared operational frequencies. This requires carrier concentrations that are much less than those of usual metals such as gold and silver. I have investigated the optical properties and SPP excitation resonances of two materials having infrared plasma frequencies, namely the semimetal bismuth and the transparent conducting fluorine-doped tin-oxide (FTO). The complex permittivity spectra for evaporated films of Bi were found to be distinctly different than earlier reports for crystal or polycrystalline films, and SPP excitation resonances on Bi-coated gratings were found to be disappointingly broad. Permittivity spectra for chemical spray deposited FTO were obtained to long-wave IR wavelengths for the first time, and nano-crystalline FTO-coated silicon lamellar gratings show remarkable conformity. SPP excitation resonances for FTO are more promising than for Bi. Thus, FTO appears to be a promising SPP host for infrared plasmonics, e.g. a planer waveguide plasmonic spectral sensor, whose design was elaborated and investigated as part of my research and which requires SPP-host coating on deep vertical side walls of a trench-like analyte interaction region. Additionally, FTO may serve as a useful conducting oxide for a near-IR plasmonic spectral imager that I have investigated theoretically.
Show less - Date Issued
- 2015
- Identifier
- CFE0006222, ucf:51080
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006222
- Title
- Photoactivatable Organic and Inorganic Nanoparticles in Cancer Therapeutics and Biosensing.
- Creator
-
Mathew, Mona, Gesquiere, Andre, Hickman, James, Ye, Jingdong, Campiglia, Andres, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
In photodynamic therapy a photosensitizer drug is administered and is irradiated with light. Upon absorption of light the photosensitizer goes into its triplet state and transfers energy or an electron to oxygen to form reactive oxygen species (ROS). These ROS react with biomolecules in cells leading to cell damage and cell death. PDT has interested many researchers because of its non-invasiveness as compared to surgery, it leaves little to no scars, it is time and cost effective, it has...
Show moreIn photodynamic therapy a photosensitizer drug is administered and is irradiated with light. Upon absorption of light the photosensitizer goes into its triplet state and transfers energy or an electron to oxygen to form reactive oxygen species (ROS). These ROS react with biomolecules in cells leading to cell damage and cell death. PDT has interested many researchers because of its non-invasiveness as compared to surgery, it leaves little to no scars, it is time and cost effective, it has potential for targeted treatment, and can be repeated as needed. Different photosensitizers such as porphyrines, chlorophylls, and dyes have been used in PDT to treat various cancers, skin diseases, aging and sun-damaged skin. These second generation sensitizers have yielded reduced skin sensitivity and improved extinction coefficients (up to ~ 105 L mol-1 cm-1). While PDT based on small molecule photosensitizers has shown great promise, several problems remain unsolved. The main issues with current sensitizers are (i) hydrophobicity leading to aggregation in aqueous media resulting in reduced efficacy and potential toxicity, (ii) dark toxicity of photosensitizers, (iii) non-selectivity towards malignant tissue resulting in prolonged cutaneous photosensitivity and damage to healthy tissue, (iv) limited light absorption efficiency, and (v) a lack of understanding of where the photosensitizer ends up in the tissue. In this dissertation research program, these issues were addressed by the development of conducting polymer nanoparticles as a next generation of photosensitizers. This choice was motivated by the fact that conducting polymers have large extinction coefficients ((>) 107 L mol-1 cm-1), are able to undergo intersystem crossing to the triplet state, and have triplet energies that are close to that of oxygen. It was therefore hypothesized that such polymers could be effective at generating ROS due to the large excitation rate that can be generated. Conducting polymer nanoparticles (CPNPs) composed of the conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) were fabricated and studied in-vitro for their potential in PDT application. Although not fully selective, the nanoparticles exhibited a strong bias to the cancer cells. The formation of ROS was proven in-vitro by staining of the cells with CellROX Green Reagent, after which PDT results were quantified by MTT assays. Cell mortality was observed to scale with nanoparticle dosage and light dosage. Based on these promising results the MEH-PPV nanoparticles were developed further to allow for surface functionalization, with the aim of targeting these NPs to cancer cell lines. For this work targeting of cancers that overexpress folate receptors (FR) were considered. The functionalized nanoparticles (FNPs) were studied in OVCAR3 (ovarian cancer cell line) as FR+, MIA PaCa2 (pancreatic cell line) as FR-, and A549 (lung cancer cell line) having marginal FR expression. Complete selectivity of the FNPs towards the FR+ cell line was found. Quantification of PDT results by MTS assays and flow cytometry show that PDT treatment was fully selective to the FR+ cell line (OVCAR3). No cell mortality was observed for the other cell lines studied here within experimental error. Finally, the issue of confirming and quantifying small molecule drug delivery to diseased tissue was tackled by developing quantum dot (Qdot) biosensors with the aim of achieving fluorescence reporting of intracellular small molecule/drug delivery. For fluorescence reporting prior expertise in control of the fluorescence state of Qdots was employed, where redox active ligands can place the Qdot in a quenched OFF state. Ligand attachment was accomplished by disulfide linker chemistry. This chemistry is reversible in the presence of sulfur reducing biomolecules, resulting in Qdots in a brightly fluorescent ON state. Glutathione (GSH) is such a biomolecule that is present in the intracellular environment. Experimental in-vitro data shows that this design was successfully implemented.
Show less - Date Issued
- 2014
- Identifier
- CFE0005839, ucf:50923
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005839
- Title
- Fabrication and Characterization of Spatially-Variant Self-Collimating Photonic Crystals.
- Creator
-
Digaum, Jennefir, Kuebler, Stephen, Kik, Pieter, Schoenfeld, Winston, Likamwa, Patrick, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Spatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical...
Show moreSpatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical performance of the SVPCs was characterized using a scanning optical-fiber system that introduced light onto the input face of a structure and measured the intensity of light emanating from the output faces.As a proof-of-concept, SVPCs that can bend a beam at a wavelength of ?0 = 2.94 ?m were fabricated in the photo-polymer SU-8. The SVPCs were shown to direct infrared light of one polarization through a sharp bend, while the other polarization propagated straight through the SVPC, when the volumetric fill-factor is near 50%. The peak-to-peak ratio of intensities of the bent- and straight-through beams was 8:1, and a power efficiency of 8% was achieved. The low efficiency is attributed to optical absorption in SU-8 at ?0 = 2.94 ?m.SVPCs that can bend a beam at telecommunications wavelengths near ?0 = 1.55 ?m were fabricated by multi-photon lithography in the photo-polymer IP-Dip. IP-Dip was chosen over SU 8 to enable fabrication of finer features, as are needed for an SVPC scaled in size to operate at shorter wavelengths. Experimental characterization shows that these particular SVPCs provide effective control of the vertically polarized beam at ?0 = 1.55 ?m, when the volumetric fill-factor is around 46%. The beam bending peak efficiency was found to be 52.5% with a peak-to-peak ratio between the bent- and straight-through beams of 78.7. Additionally, these SVPCs can bend a light beam with a broad bandwidth of 153 nm that encompasses both the C- and S-bands of the telecommunications window. Furthermore, the SVPCs have high tolerance to misalignment, in which an offset of the input beam by as much as 6 ?m causes the beam-bending efficiency to drop no more than 50%. Finally, it is shown that these particular SVPCs can bend beams without significantly distorting the mode profile. This work introduces a new scheme for controlling light that should be useful for integrated photonics.The penultimate chapter discusses nonlinear phenomena that were observed during the optical characterization of the SVPCs using a high peak-power amplified femtosecond laser system. The first of these effects is referred to as "super-collimation", in which the beam bending peak efficiency of certain SVPCs increases with input intensity, reaching as high as 68%. The second effect pertains to nonlinear imaging of light at ?0 = 1.55 ?m scattered from an SVPC and detected using a silicon-CCD camera. This effect enables beam bending within the device to be imaged in real time. The dissertation concludes with an outlook for SVPCs, discussing potential applications and challenges that must be addressed to advance their use in photonics.
Show less - Date Issued
- 2016
- Identifier
- CFE0006527, ucf:51371
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006527
- Title
- Advanced Metrology and Diagnostic Loss Analytics for Crystalline Silicon Photovoltaics.
- Creator
-
Schneller, Eric, Schoenfeld, Winston, Thomas, Jayan, Fenton, James, Coffey, Kevin, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Characterization plays a key role in developing a comprehensive understanding of the structure and performance of photovoltaic devices. High quality characterization methods enable researchers to assess material choices and processing steps, ultimately giving way to improved device performance and reduced manufacturing costs. In this work, several aspects of advanced metrology for crystalline silicon photovoltaic are investigated including in-line applications for manufacturing, off-line...
Show moreCharacterization plays a key role in developing a comprehensive understanding of the structure and performance of photovoltaic devices. High quality characterization methods enable researchers to assess material choices and processing steps, ultimately giving way to improved device performance and reduced manufacturing costs. In this work, several aspects of advanced metrology for crystalline silicon photovoltaic are investigated including in-line applications for manufacturing, off-line applications for research and development, and module/system level applications to evaluate long-term reliability. A frame work was developed to assess the cost and potential value of metrology within a manufacturing line. This framework has been published to an on-line calculator in an effort to provide the solar industry with an intuitive and transparent method of evaluating the economics of in-line metrology. One important use of metrology is in evaluating spatial non-uniformities, as localized defects in large area solar cells often reduce overall device performance. Techniques that probe spatial uniformity were explored and analysis algorithms were developed that provide insights regarding process non-uniformity and its impact on device performance. Finally, a comprehensive suite of module level characterization was developed to accurately evaluate performance and identify degradation mechanisms in field deployed photovoltaic modules. For each of these applications, case-studies were used to demonstrate the value of these techniques and to highlight potential use cases.
Show less - Date Issued
- 2016
- Identifier
- CFE0006499, ucf:51386
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006499
- Title
- Study of Surface Passivation Behavior of Crystalline Silicon Solar Cells.
- Creator
-
Ali, Haider, Schoenfeld, Winston, Coffey, Kevin, Gaume, Romain, Thomas, Jayan, Chanda, Debashis, University of Central Florida
- Abstract / Description
-
To achieve efficiencies approaching the theoretical limit of 29.4% for industrially manufactured solar cells based on crystalline silicon, it is essential to have very low surface recombination velocities at both the front and rear surfaces of the silicon substrate. Typically, the substrate surfaces feature contacted and uncontacted regions, and recombination should be limited for both to maximize the energy conversion efficiency.Uncontacted silicon surfaces are often passivated by the...
Show moreTo achieve efficiencies approaching the theoretical limit of 29.4% for industrially manufactured solar cells based on crystalline silicon, it is essential to have very low surface recombination velocities at both the front and rear surfaces of the silicon substrate. Typically, the substrate surfaces feature contacted and uncontacted regions, and recombination should be limited for both to maximize the energy conversion efficiency.Uncontacted silicon surfaces are often passivated by the deposition of silicon nitride (SiNx) or an aluminum oxide film with SiNx as capping layer (Al2O3/SiNx stack). Further, proper surface preparation and cleaning of Si wafers prior to deposition also plays an important role in minimizing surface recombination. In the present work, the effect of various cleans based on different combinations of HCl, HF, HNO3, and ozonated deionized water (DIO3) on surface passivation quality of boron-diffused and undiffused {100} n-type Cz Si wafers was studied. It was observed that for SiNx passivated Si, carrier lifetime was strongly influenced by cleaning variations and that a DIO3-last treatment resulted in higher lifetimes. Moreover, DIO3+HF+HCl?HF?DIO3 and HNO3?HF?HNO3 cleans emerged as potential low-cost alternatives to HCl/HF clean in the photovoltaics industry.Transmission electron microscopy (TEM) studies were carried out to get insight into the origin of variation in carrier lifetimes for different cleans. Changes in the surface cleans used were not found to have a significant impact on Al2O3/SiNx passivation stacks.ivHowever, an oxide-last cleaning step prior to deposition of SiNx passivation layers was found to create a 1-2 nm SiOx tunnel layer resulting in excellent carrier lifetimes.For contacted regions, low surface recombination can be achieved using passivated carrier selective contacts, which not only passivate the silicon surface and improve the open circuit voltage, but are also carrier selective. This means they only allow the majority carrier to be transported to the metal contacts, limiting recombination by reducing the number of minority carriers. Typically, carrier selectivity is achieved using a thin metal oxide layer, such as titanium oxide (TiO2) for electron-selective contacts and molybdenum oxide (MoOx) for hole-selective contacts. This is normally coupled with a very thin passivation layer (e.g., a-Si:H, SiOx) between the silicon wafer and the contact.In the present work, TiO2-based electron-selective passivated rear contacts were investigated for n-type c-Si solar cells. A low efficiency of 9.8% was obtained for cells featuring a-Si:H/TiO2 rear contact, which can be attributed to rapid degradation of surface passivation of a-Si:H upon FGA at 350(&)deg;C due to hydrogen evolution leading to generation of defect states which increases recombination and hence a much lower Voc of 365 mV is obtained. On the other hand, 21.6% efficiency for cells featuring SiO2/TiO2 rear contact is due to excellent passivation of SiO2/TiO2 stack upon FGA anneal, which can be attributed to the presence of 1-2 nm SiO2 layer whose passivation performance improves upon FGA at 350(&)deg;C whereas presence of large number of oxygen vacancies in TiO2-x reduces rear contact resistivity.vLikewise, MoOx-based contacts were investigated as hole-selective front contacts for an n-type cell with a boron-doped emitter. It has been previously reported that cell efficiencies up to 22.5% have been achieved with silicon heterojunction solar cells featuring a front contact wherein MoOx is inserted between a-Si:H(i) and hydrogenated indium oxide (IO:H). However, device performance and FF degrades upon annealing beyond 130(&)deg;C. In this work, contact resistivity measurements by TLM technique in combination with TEM studies revealed that degradation of device performance is due to oxygen diffusion into MoOx upon annealing in air which reduces concentration of oxygen vacancies in MoOx and increases contact resistivity. The increase in contact resistivity reduces FF resulting in deterioration of device performance.
Show less - Date Issued
- 2017
- Identifier
- CFE0006554, ucf:51351
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006554
- Title
- Light Trapping in Thin Film Crystalline Silicon Solar Cells.
- Creator
-
Boroumand Azad, Javaneh, Chanda, Debashis, Peale, Robert, Del Barco, Enrique, Flitsiyan, Elena, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
This dissertation presents numerical and experimental studies of a unified light trapping approach that is extremely important for all practical solar cells. A 2D hexagonal Bravais lattice diffractive pattern is studied in conjunction with the verification of the reflection mechanisms of single and double layer anti-reflective coatings in the broad range of wavelength 400 nm - 1100 nm. By varying thickness and conformity, we obtained the optimal parameters which minimize the broadband...
Show moreThis dissertation presents numerical and experimental studies of a unified light trapping approach that is extremely important for all practical solar cells. A 2D hexagonal Bravais lattice diffractive pattern is studied in conjunction with the verification of the reflection mechanisms of single and double layer anti-reflective coatings in the broad range of wavelength 400 nm - 1100 nm. By varying thickness and conformity, we obtained the optimal parameters which minimize the broadband reflection from the nanostructured crystalline silicon surface over a wide range of angle 0(&)deg;-65(&)deg;. While the analytical design of broadband, angle independent anti-reflection coatings on nanostructured surfaces remains a scientific challenge, numerical optimization proves a viable alternative, paving the path towards practical implementation of the light trapping solar cells. A 3 (&)#181;m thick light trapping solar cell is modeled in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. It is shown that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. Further, 20 (&)#181;m and 100 (&)#181;m thick functional solar cells with the light trapping scheme are studied. The efficiency improvement is observed numerically and experimentally due to photon absorption enhancement in the light trapping cells with respect to a bare cell of same thickness.
Show less - Date Issued
- 2017
- Identifier
- CFE0006936, ucf:51654
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006936
- Title
- Vertical Field Switching Blue Phase Liquid Crystals for Field Sequential Color Displays.
- Creator
-
Cheng, Hui-Chuan, Wu, Shintson, Likamwa, Patrick, Schoenfeld, Winston, Wu, Xinzhang, University of Central Florida
- Abstract / Description
-
Low power consumption is a critical requirement for all liquid crystal display (LCD) devices. A field sequential color (FSC) LCD was proposed by using red (R), green (G) and blue (B) LEDs and removing the lossy component of color filters which only transmits ~30% of the incoming white light. Without color filters, FSC LCDs exhibit a ~3X higher optical efficiency and 3X higher resolution density as compared to the conventional color filters-based LCDs. However, color breakup (CBU) is a most...
Show moreLow power consumption is a critical requirement for all liquid crystal display (LCD) devices. A field sequential color (FSC) LCD was proposed by using red (R), green (G) and blue (B) LEDs and removing the lossy component of color filters which only transmits ~30% of the incoming white light. Without color filters, FSC LCDs exhibit a ~3X higher optical efficiency and 3X higher resolution density as compared to the conventional color filters-based LCDs. However, color breakup (CBU) is a most disturbing defect that degrades the image quality in FSC displays. CBU can be observed in stationary or moving images. It manifests in FSC LCDs when there is a relative speed between the images and observers' eyes, and the observer will see the color splitting patterns or rainbow effect at the boundary between two different colors.In Chapter 2, we introduce a five-primary display by adding additional yellow(Y) and cyan(C) colors. From the analysis and simulations, five primaries can provide wide color gamut and meanwhile the white brightness is increased, as compared to the three-primary. Based on the five-primary theorem, we propose a method to reduce CBU of FSC LCDs by using RGBYC LEDs instead of RGB LEDs in the second section. Without increasing the sub-frame rate as three-primary LCDs, we can reduce the CBU by utilizing proper color sequence and weighting ratios. In addition, the color gamut achieves 140% NTSC and the white brightness increases by more than 13%, as compared to the three-primary FSC LCDs.Another strategy to suppress CBU is using higher field frequency, such as 540 Hz or even up to 1000 Hz. However, this approach needs liquid crystals with a very fast response time ((<)1 ms). Recently, the polymer-stabilized blue-phase liquid crystal (PS-BPLC) draws great attentions because of improved temperature range which enables the applications for photonic devices and displays. PS-BPLC is a good candidate for FSC LCDs because of its submillisecond gray-to-gray response time, no need for alignment layer, and isotropic dark state. So far, almost all the BPLC devices utilize planar or protruded in-plane switching (IPS) electrode configuration. The structure of planar IPS is relatively simple, but the operating voltage is too high for thin-film transistor (TFT) addressing. Moreover, high voltage causes deformation of polymer network and induces a noticeable hysteresis. Protruded IPS is helpful for lowering the operating voltage, but the manufacturing process becomes more sophisticated. In Chapter 3, we propose a vertical field switching (VFS) mode for blue phase LCDs. The simple structure of VFS cell generates uniform vertical fields on the BPLC materials. From our experimental results, the operation voltage can be reduced to ~10Vrms while eliminating the hysteresis. We also defined a critical field below which hysteresis does not occur. Above critical field, lattice distortion and other irreversible phase transition processes would occur. As a result, the associated response time would be slower. Therefore, VFS mode also shows faster response time than IPS mode. The operating voltage can be further reduced by choosing an optimized cell gap and a larger oblique incident angle in VFS blue phase LCDs.In Chapter 4, we propose several compensation mechanisms to improve the viewing angle of VFS blue-phase LCDs. The compensation principles are analyzed and simulation results evaluated. Because VFS blue-phase LCD processes several advantages over IPS blue-phase LCD and conventional LCDs, it could become a strong contender for next-generation display technology.
Show less - Date Issued
- 2012
- Identifier
- CFE0004780, ucf:49772
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004780
- Title
- Role of internal degrees of freedom in the quantum tunneling of the magnetization in single-molecule magnets.
- Creator
-
Quddusi, Hajrah, Gonzalez Garcia, Enrique, Mucciolo, Eduardo, Klemm, Richard, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
The prominent features of single molecule magnets (SMMs), such as the quantum tunneling of the magnetization (QTM), are conventionally understood through the giant spin approximation (GSA) which considers the molecule as a single rigid spin. This model often requires the inclusion of high order anisotropy terms in the Hamiltonian, a manifestation of admixing of low lying excited states that can be more naturally understood by employing a multi-spin (MS) description i.e. considering the...
Show moreThe prominent features of single molecule magnets (SMMs), such as the quantum tunneling of the magnetization (QTM), are conventionally understood through the giant spin approximation (GSA) which considers the molecule as a single rigid spin. This model often requires the inclusion of high order anisotropy terms in the Hamiltonian, a manifestation of admixing of low lying excited states that can be more naturally understood by employing a multi-spin (MS) description i.e. considering the individual spins and the interactions between ions within the molecule. However, solving the MS Hamiltonian for high nuclearity molecules is not feasible due to the enormous dimensions of the associated Hilbert space that put it beyond the capability of existing computational resources. In contrast, low nuclearity systems permit the complete diagonalization of the MS Hamiltonian required to sample the effect of internal degrees of freedom, such as exchange interactions and single ion anisotropies, on the QTM. This dissertation focuses on the study of low nuclearity SMMs in view of understanding these subtle quantum effects. To accomplish this, we have developed a series of magnetic characterization techniques, such as integrated microchip sensors resulting from the combination of two dimensional electron gas (2DEG) Hall-Effect magnetometers and microstrip resonators, capable of performing measurements of magnetization and EPR spectroscopy simultaneously. The thesis bases on a comparative study of two low nuclearity SMMs with identical magnetic cores (Mn4 dicubane) but differing ligands. Notably, one of these SMMs lacked solvent molecules for crystallization; a characteristic that gives rise to extremely sharp resonances in the magnetization loops and whose basic QTM behavior can be well explained with the GSA. On the contrary, the second SMM exhibited mixed energy levels, making a MS description necessary to explain the observations. We have also examined the role of internal degrees of freedom on more subtle QTM phenomena, leading to the explanation of asymmetric Berry-phase interference patterns observed in a Mn4 SMM in terms of a competition between different intermolecular magnetic interactions, i.e. non-collinear zero-field splitting tensors and intramolecular dipolar interactions, resulting in astonishing manifestations of the structural molecular symmetry on the quantum dynamics of the molecular spin.
Show less - Date Issued
- 2012
- Identifier
- CFE0004790, ucf:49722
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004790
- Title
- Structure, stability, vibrational, thermodynamic, and catalytic properties of metal nanostructures: size, shape, support, and adsorbate effects.
- Creator
-
Behafarid, Farzad, Roldan Cuenya, Beatriz, Chow, Lee, Heinrich, Helge, Kara, Abdelkader, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Recent advances in nanoscience and nanotechnology have provided the scientific community with exciting new opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. In this dissertation, several challenges have been tackled in aspects related to nanoparticle (NP) synthesis and characterization, allowing us to make homogenous, size- and shape-selected NPs via the use of colloidal chemistry,...
Show moreRecent advances in nanoscience and nanotechnology have provided the scientific community with exciting new opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. In this dissertation, several challenges have been tackled in aspects related to nanoparticle (NP) synthesis and characterization, allowing us to make homogenous, size- and shape-selected NPs via the use of colloidal chemistry, and to gain in depth understanding of their distinct physical and chemical properties via the synergistic use of a variety of ex situ, in situ, and operando experimental tools. A variety of phenomena relevant to nanosized materials were investigated, including the role of the NP size and shape in the thermodynamic and electronic properties of NPs, their thermal stability, NP-support interactions, coarsening phenomena, and the evolution of the NP structure and chemical state under different environments and reaction conditions.
Show less - Date Issued
- 2012
- Identifier
- CFE0004779, ucf:49796
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004779
- Title
- Characterization of gold black and its application in un-cooled infrared detectors.
- Creator
-
Panjwani, Deep, Peale, Robert, Chow, Lee, Del Barco, Enrique, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Gold black porous coatings were thermally evaporated in the chamber backfilled with inert gas pressure and their optical properties were studied in near-far-IR wavelengths. The porosities of coatings were found to be extremely high around ~ 99%. Different approaches of effective medium theories such as Maxwell-Garnett, Bruggeman, Landau-Lifshitz-Looyenga and Bergman Formalism were utilized to calculate refractive index (n) and extinction coefficient (k). The aging induced changes on...
Show moreGold black porous coatings were thermally evaporated in the chamber backfilled with inert gas pressure and their optical properties were studied in near-far-IR wavelengths. The porosities of coatings were found to be extremely high around ~ 99%. Different approaches of effective medium theories such as Maxwell-Garnett, Bruggeman, Landau-Lifshitz-Looyenga and Bergman Formalism were utilized to calculate refractive index (n) and extinction coefficient (k). The aging induced changes on electrical and optical properties were studied in regular laboratory conditions using transmission electron microscopy, Fourier transform infrared spectroscopy, and fore-probe electrical measurements. A significant decrease in electrical resistance in as deposited coating was found to be consistent with changes in the granular structure with aging at room temperature. Electrical relaxation model was applied to calculate structural relaxation time in the coatings prepared with different porosities. Interestingly, with aging, absorptance of the coatings improved, which is explained using conductivity form of Bergman Formulism. Underlying aim of this work was to utilize gold blacks to improve sensitivity in un-cooled IR sensors consist of pixel arrays. To achieve this, fragile gold blacks were patterned on sub-mm length scale areas using both stenciling and conventional photolithography. Infrared spectral imaging with sub-micron spatial resolution revealed the spatial distribution of absorption across the gold black patterns produced with both the methods. Initial experiments on VOx-Au bolometers showed that, gold black improved the responsivity by 42%. This work successfully establishes promising role of gold black coatings in commercial un-cooled infrared detectors.
Show less - Date Issued
- 2015
- Identifier
- CFE0005680, ucf:50197
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005680
- Title
- Two-photon absorption in bulk semiconductors and quantum well structures and its applications.
- Creator
-
Pattanaik, Himansu, Vanstryland, Eric, Hagan, David, Delfyett, Peter, Schoenfeld, Winston, Peale, Robert, University of Central Florida
- Abstract / Description
-
The purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging...
Show moreThe purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging and light detection and ranging (LIDAR) in uncooled direct-gap photodiodes. A theoretical study of degenerate 2PA (D-2PA) in quantum wells, QWs, is presented, along with a new theory of ND 2PA in QWs is developed. Pulsed mid-IR detection of femtosecond pulses is investigated in two different semiconductor p-i-n photodiodes (GaAs and GaN). With the smaller gap materials having larger ND-2PA, it is observed that they have better sensitivity to mid-IR detection, but unwanted background from D-2PA outweighs this advantage. A comparison of responsivity and signal-to-background ratio for GaAs and GaN in END-2PA based detection is presented. END-2PA enhancement is utilized for CW IR detection in uncooled GaAs and GaN p-i-n photodiodes. The pulsed mid-IR detection experiments are further extended to perform mid-IR imaging in uncooled GaN p-i-n photodetectors. A 3-D automated scanning gated imaging system is developed to obtain 3-D mid-IR images of various objects. The gated imaging system allows simultaneous 3-D and 2-D imaging of objects. The 3-D gated imaging system described in the dissertation could be used for examination of buried structures (microchannels, defects etc.) or laser written volumetric structures and could also be suitable for in-vivo imaging applications in biology in the mid-IR spectral region. As an example, 3-D imaging of buried semiconductor structures is presented.A theoretical study of D-2PA of QWs for transverse electric (TE) and transverse magnetic (TM) fields is carried out and an analytical expression for the D-2PA coefficient in QWs using second-order perturbation theory is derived. A theory for ND-2PA in QW semiconductor using second-order perturbation theory is developed for the first time and an analytical expression for the ND-2PA coefficient for TE, TM, and the mixed case of TE and TM is derived. The shape of the 2PA curve for the D-2PA and ND-2PA for QWs in the TE case is similar to that of bulk semiconductors. As governed by the selection rules both the D-2PA and ND-2PA curves for the TE case does not show a step-like signature for the density of states of the QWs whereas 2PA curve for the TM case shows such step like sharp features. The ND-2PA coefficient for TE, TM, and the mixed case is compared with that obtained for bulk semiconductors. Large enhancement in ND-2PA of QW semiconductors for the TM case over bulk semiconductors is predicted.
Show less - Date Issued
- 2015
- Identifier
- CFE0005684, ucf:50164
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005684
- Title
- Novel properties of ferromagnetic p-wave superconductors.
- Creator
-
Lorscher, Christopher, Klemm, Richard, Leuenberger, Michael, Rahman, Talat, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
This thesis investigates the many extraordinary physical properties of the candidate p-wave ferromagnetic superconductors UCoGe and URhGe, and proposes theoretical predictions for p-wave superconductors yet to be discovered. In particular, we carry out angular dependent quantum field theoretical calculations of the thermodynamic H - T phase diagram known as the upper critical field, or more appropriately for ferromagnetic superconductors the upper critical induction, for various p-wave...
Show moreThis thesis investigates the many extraordinary physical properties of the candidate p-wave ferromagnetic superconductors UCoGe and URhGe, and proposes theoretical predictions for p-wave superconductors yet to be discovered. In particular, we carry out angular dependent quantum field theoretical calculations of the thermodynamic H - T phase diagram known as the upper critical field, or more appropriately for ferromagnetic superconductors the upper critical induction, for various p-wave superconducting order parameter symmetries including: The axial Anderson-Brinkman-Morel(ABM) state, the chiral Scharnberg-Klemm (SK) state, and the completely broken symmetry polar state (CBS), as well as for some other states with partially broken symmetry (PBS) superconducting order parameter symmetries. The most notable contribution of the work presented in this thesis is the application of the Klemm-Clem transformations to analytically calculate the full angular and temperature dependencies of the upper critical field for orthorhombic materials, which may prove to be useful to experimentalists in identifying these exotic states of matter experimentally. Second, this work formulates a double spin-split ellipsoidal Fermi surface (FS) model for ferromagnetic superconductors in the normal state, which introduces a field dependence to the effective mass in one crystallographic direction on the dominant Fermi surface and to the chemical potential, and is subsequently applied to the normal state of URhGe to explain theoretically the anomalous specific heat data of Aoki and Flouquet. Extension of this work to understanding the still elusive reentrant high-field superconducting phase of URhGe and the S-shaped upper critical field curve for external magnetic field parallel to the b-axis direction inUCoGe is discussed. Third, this work also presents theoretical fits to the upper critical field data of Kittika et al. for Sr2RuO4 using the helical p-wave states and including Pauli limiting effects of the three components of the triplet pair-spin fixed to the highly conducting layers by strong spin-orbit coupling.
Show less - Date Issued
- 2014
- Identifier
- CFE0005371, ucf:50451
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005371
- Title
- Growth and Characterization of ZnO Based Semiconductor Materials and Devices.
- Creator
-
Wei, Ming, Schoenfeld, Winston, Likamwa, Patrick, Moharam, M., Wu, Shintson, Osinsky, Andrei, University of Central Florida
- Abstract / Description
-
Wide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The...
Show moreWide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The critical growth conditions were discussed to obtain a high quality film: the sequence of Zn and O sources for initial growth of nucleation layer, growth temperatures for both ZnO nucleation and growth layers, and Zn/O ratio. By tuning Mg/Zn flux ratio, wurtzite MgxZn1-xO thin films with Mg composition as high as x=0.46 were obtained without phase segregation. The steep optical absorption edges were shown with a cut-off wavelength as short as 278nm, indicating of suitability of such material for solar blind photo detectors. Consequently, Metal-Semiconductor-Metal photoconductive and Schottky barrier devices with interdigital electrode geometry and active surface area of 1 mm2 were fabricated and characterized. Photoconductor based on showed ~100 A/W peak responsivity at wavelength of ~260nm. ZnO homoepitaxial growth was also demonstrated which has the potential to achieve very low dislocation densities and high efficiency LEDs. Two types of Zn-polar ZnO substrates were chosen in this study: one with 0.5(&)deg; miscut angle toward the [1-100] direction and the other without any miscut angle. We have demonstrated high quality films on both substrates with a low growth temperature (610(&)deg;C) compared to most of other reported work on homoepitaxial growth. An atomically flat surface with one or two monolayer step height along the [0001] direction was achieved. By detail discussions about several impact factors for the epitaxial films, ZnO films with high crystallinity verified by XRD in different crystal orientations, high PL lifetime (~0.35 ns), and not obvious threading dislocations were achieved.Due to the difficulty of conventional p-type doping with p dopant, we have explored the possibility of p-type doping with the assistance of other novel method, i.e. polarization induced effect. The idea is the sheet layer of two dimensional hole gases (2DHG) caused by the wurtzite structure's intrinsic polarization effect can be expanded to three dimension hole distribution by growing a MgZnO layer with a Mg concentration gradient. By simulation of LED structure with gradient MgZnO structure, the polarization effect was found not intense as that for III-nitrides because the difference of spontaneous polarization between ZnO and MgO is smaller than that of GaN and AlN, and the piezoelectric polarization effect may even cancel the spontaneous polarization induced effect. We have grown the linear gradient MgZnO structure with Mg composition grading from 0% to 43%, confirmed by SIMS. Hall measurement did not show any p-type conductivity, which further indicates MgZnO's weak polarization doping effect. However, the gradient MgZnO layer could act as an electron blocking layer without blocking holes injected from p layer, which is useful for high efficiency light emitters.
Show less - Date Issued
- 2013
- Identifier
- CFE0005275, ucf:50544
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005275
- Title
- Silicon photonic devices for optical delay lines and mid infrared applications.
- Creator
-
Khan, Saeed, Fathpour, Sasan, Likamwa, Patrick, Gong, Xun, Delfyett, Peter, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Silicon photonics has been a rapidly growing subfield of integrated optics and optoelectronic in the last decade and is currently considered a mature technology. The main thrust behind the growth is its compatibility with the mature and low-cost microelectronic integrated circuits fabrication process. In recent years, several active and passive photonic devices and circuits have been demonstrated on silicon. Optical delay lines are among important silicon photonic devices, which are essential...
Show moreSilicon photonics has been a rapidly growing subfield of integrated optics and optoelectronic in the last decade and is currently considered a mature technology. The main thrust behind the growth is its compatibility with the mature and low-cost microelectronic integrated circuits fabrication process. In recent years, several active and passive photonic devices and circuits have been demonstrated on silicon. Optical delay lines are among important silicon photonic devices, which are essential for a variety of photonic system applications including optical beam-forming for controlling phased-array antennas, optical communication and networking systems and optical coherence tomography. In this thesis, several types of delay lines based on apodized grating waveguides are proposed and demonstrated. Simulation and experimental results suggest that these novel devices can provide high optical delay and tunability at very high bit rate. While most of silicon photonics research has focused in the near-infrared wavelengths, extending the operating wavelength range of the technology into in the 3(-)5 (&)#181;m, or the mid-wave infrared regime, is a more recent field of research. A key challenge has been that the standard silicon-on-insulator waveguides are not suitable for the mid-infrared, since the material loss of the buried oxide layer becomes substantially high. Here, the silicon-on-sapphire waveguide technology, which can extend silicon's operating wavelength range up to 4.4 (&)#181;m, is investigated. Furthermore, silicon-on-nitride waveguides, boasting a wide transparent range of 1.2(-)6.7 ?m, are demonstrated and characterized for the first time at both mid-infrared (3.39 ?m) and near-infrared (1.55 ?m) wavelengths.
Show less - Date Issued
- 2013
- Identifier
- CFE0005014, ucf:49996
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005014
- Title
- Large Area Conformal Infrared Frequency Selective Surfaces.
- Creator
-
Darchangel, Jeffrey, Schoenfeld, Winston, Boreman, Glenn, Likamwa, Patrick, Kik, Pieter, Lail, Brian, University of Central Florida
- Abstract / Description
-
Frequency selective surfaces (FSS) were originally developed for electromagnetic filtering applications at microwave frequencies. Electron-beam lithography has enabled the extension of FSS to infrared frequencies; however, these techniques create sample sizes that are seldom appropriate for real world applications due to the size and rigidity of the substrate. A new method of fabricating large area conformal infrared FSS is introduced, which involves releasing miniature FSS arrays from a...
Show moreFrequency selective surfaces (FSS) were originally developed for electromagnetic filtering applications at microwave frequencies. Electron-beam lithography has enabled the extension of FSS to infrared frequencies; however, these techniques create sample sizes that are seldom appropriate for real world applications due to the size and rigidity of the substrate. A new method of fabricating large area conformal infrared FSS is introduced, which involves releasing miniature FSS arrays from a substrate for implementation in a coating. A selective etching process is proposed and executed to create FSS particles from crossed-dipole and square-loop FSS arrays. When the fill-factor of the particles in the measurement area is accounted for, the spectral properties of the FSS flakes are similar to the full array from which they were created. As a step toward scalability of the process, a square-patch design is presented and formed into FSS flakes with geometry within the capability of ultraviolet optical lithography.Square-loop infrared FSS designs are investigated both in quasi-infinite arrays and in truncated sub-arrays. First, scattering-scanning near-field optical microscopy (s-SNOM) is introduced as a characterization method for square-loop arrays, and the near-field amplitude and phase results are discussed in terms of the resonant behavior observed in far-field measurements. Since the creation of FSS particles toward a large area coating inherently truncates the arrays, array truncation effects are investigated for square-loop arrays both in the near- and far-field. As an extension of the truncation study, small geometric changes in the design of square-loop arrays are introduced as a method to tune the resonant far-field wavelength back to that of the quasi-infinite arrays.
Show less - Date Issued
- 2014
- Identifier
- CFE0005476, ucf:50348
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005476