Current Search: Atkins, Tracy (x)
View All Items
- Title
- MODELING TRANSMISSION DYNAMICS OF TUBERCULOSIS INCLUDING VARIOUS LATENT PERIODS.
- Creator
-
Atkins, Tracy, Mohapatra, Ram, University of Central Florida
- Abstract / Description
-
The systems of equations created by Blower et al. (1995) and Jia et al. (2007) designed to model the dynamics of Tuberculosis are solved using the computer software SIMULINK. The results are first employed to examine the intrinsic transmission dynamics of the disease through two models developed by Blower et al. (1995). The "simple transmission model" was used primarily to give insight to the behavior of the susceptible, latent, and infectious groups of individuals. Then, we consider a more...
Show moreThe systems of equations created by Blower et al. (1995) and Jia et al. (2007) designed to model the dynamics of Tuberculosis are solved using the computer software SIMULINK. The results are first employed to examine the intrinsic transmission dynamics of the disease through two models developed by Blower et al. (1995). The "simple transmission model" was used primarily to give insight to the behavior of the susceptible, latent, and infectious groups of individuals. Then, we consider a more detailed transmission model which includes several additional factors. This model captures the dynamics of not only the susceptible, latent and infectious groups but also the non-infectious cases and the recovered cases. Using the SIMULINK results, it can be shown that the intrinsic dynamics of the disease contribute to the rise and decline of the disease seen in historical accounts. Next, the simulation results are used to study the equilibrium points of the disease which can be obtained by varying the parameters and therefore changing the value for the basic reproduction ratio (R0 ). Our model uses the system of equations developed by Jia et al. (2007). The SIMULINK results are used to visually confirm the hypothesis proposed by Jia et al. (2007) that the equilibrium behavior of the system when R0 > 1 is globally asymptotically stable.
Show less - Date Issued
- 2008
- Identifier
- CFE0002030, ucf:47606
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002030
- Title
- USING MODELING AND SIMULATION TO EVALUATE DISEASE CONTROL MEASURES.
- Creator
-
Atkins, Tracy, Clarke, Thomas, University of Central Florida
- Abstract / Description
-
This dissertation introduced several issues concerning the analysis of diseases by showing how modeling and simulation could be used to assist in creating health policy by estimating the effects of such policies. The first question posed was how would education, vaccination and a combination of these two programs effect the possible outbreak of meningitis on a college campus. After creating a model representative of the transmission dynamics of meningitis and establishing parameter values...
Show moreThis dissertation introduced several issues concerning the analysis of diseases by showing how modeling and simulation could be used to assist in creating health policy by estimating the effects of such policies. The first question posed was how would education, vaccination and a combination of these two programs effect the possible outbreak of meningitis on a college campus. After creating a model representative of the transmission dynamics of meningitis and establishing parameter values characteristic of the University of Central Florida main campus, the results of a deterministic model were presented in several forms. The result of this model was the combination of education and vaccination would eliminate the possibility of an epidemic on our campus. Next, we used simulation to evaluate how quarantine and treatment would affect an outbreak of influenza on the same population. A mathematical model was created specific to influenza on the UCF campus. Numerical results from this model were then presented in tabular and graphical form. The results comparing the simulations for quarantine and treatment show the best course of action would be to enact a quarantine policy on the campus thus reducing the maximum number of infected while increasing the time to reach this peak. Finally, we addressed the issue of performing the analysis stochastically versus deterministically. Additional models were created with the progression of the disease occurring by chance. Statistical analysis was done on the mean of 100 stochastic simulation runs comparing that value to the one deterministic outcome. The results for this analysis were inconclusive, as the results for meningitis were comparable while those for influenza appeared to be different.
Show less - Date Issued
- 2010
- Identifier
- CFE0003232, ucf:48535
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003232