Current Search: Behzadan, Amir (x)
View All Items
- Title
- Construction and Demolition Debris Recovery and Recycling in Orange County, FL.
- Creator
-
Toth, Michael, Reinhart, Debra, Behzadan, Amir, Randall, Andrew, University of Central Florida
- Abstract / Description
-
In 2008, the State of Florida established a recycling goal of 75% to be achieved by 2020. In response to the Florida goal Orange County (OC), Florida has made the development and implementation of an efficient strategy for landfill diversion of its solid waste a top priority. The Florida Department of Environmental Protection (FDEP) estimated that 23% of municipal solid waste was generated by construction and demolition (C&D) activities in 2009, with only 30 percent of C&D debris being...
Show moreIn 2008, the State of Florida established a recycling goal of 75% to be achieved by 2020. In response to the Florida goal Orange County (OC), Florida has made the development and implementation of an efficient strategy for landfill diversion of its solid waste a top priority. The Florida Department of Environmental Protection (FDEP) estimated that 23% of municipal solid waste was generated by construction and demolition (C&D) activities in 2009, with only 30 percent of C&D debris being recycled. Therefore, OC decided to create a solid waste integrated resource plan (SWIRP) initially focused on the recovery and recycling of C&D materials (2010). For SWIRP development, OC decision makers need the best available data regarding C&D debris generation and composition and an understanding of the potential markets available for recycled materials. In this investigation debris generation was estimated over the period of 2001 to 2009 for the largest single governing body within OC, unincorporated OC (UOC), representing 65 percent of county population. The debris generation model was constructed for years 2001-2010 using area values for C&D activities in six sectors obtained from building permits and debris generation multipliers obtained from literature values. The benefit of the model is that as building permit information is received, debris generation estimations can also be expediently updated. Material composition fractions obtained from waste characterization studies of landfills in the Central Florida area were applied to the debris generation model resulting in a material composition for all sectors for years 2001-2010. The material composition of the debris stream was found to be, on average, concrete (53%) drywall (20%), wood (12%), a miscellaneous fraction (8%), asphalt roofing material (4%), metal (2%), cardboard (1%) and carpet and padding (1%). A market analysis was performed for concrete, drywall, wood, asphalt roofing shingles and residual screened materials (RSM). It was found that statewide, markets existed for 100 percent of the materials studied and could replace significant amounts of natural material feedstocks, but that the development of more local markets was vital to meeting OC's diversion goal to minimize the cost of transporting recyclables.
Show less - Date Issued
- 2012
- Identifier
- CFE0004241, ucf:52871
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004241
- Title
- A Framework for Process Data Collection, Analysis, and Visualization in Construction Projects.
- Creator
-
Akhavian, Reza, Behzadan, Amir, Oloufa, Amr, Tatari, Mehmet, University of Central Florida
- Abstract / Description
-
Automated data collection, simulation and visualization can substantially enhance the process of designing, analysis, planning, and control of many engineering processes. In particular, managing processes that are dynamic in nature can significantly benefit from such techniques. Construction projects are good examples of such processes where a variety of equipment and resources constantly interact inside an evolving environment. Management of such settings requires a platform capable of...
Show moreAutomated data collection, simulation and visualization can substantially enhance the process of designing, analysis, planning, and control of many engineering processes. In particular, managing processes that are dynamic in nature can significantly benefit from such techniques. Construction projects are good examples of such processes where a variety of equipment and resources constantly interact inside an evolving environment. Management of such settings requires a platform capable of providing decision-makers with updated information about the status of project entities and assisting site personnel making critical decisions under uncertainty. To this end, the current practice of using historical data or expert judgments as static inputs to create empirical formulations, bar chart schedules, and simulation networks to study project activities, resource operations, and the environment under which a project is taking place does not seem to offer reliable results.The presented research investigates the requirements and applicability of a data-driven modeling framework capable of collecting and analyzing real time field data from construction equipment. In the developed data collection scheme, a stream of real time data is continuously transferred to a data analysis module to calculate the input parameters required to create dynamic 3D visualizations of ongoing engineering activities, and update the contents of a discrete event simulation (DES) model representing the real engineering process. The generated data-driven simulation model is an effective tool for projecting future progress based on existing performance. Ultimately, the developed framework can be used by project decision-makers for short-term project planning and control since the resulting simulation and visualization are completely based on the latest status of project entities.
Show less - Date Issued
- 2012
- Identifier
- CFE0004347, ucf:49419
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004347
- Title
- Development of the Strategy to Select optimum Reflective Cracking Mitigation Methods for the Hot-Mix Asphalt Overlays in Florida.
- Creator
-
Maherinia, Hamid, Nam, Boo Hyun, Behzadan, Amir, Tatari, Mehmet, University of Central Florida
- Abstract / Description
-
Hot Mix Asphalt (HMA) overlay is a major rehabilitation treatment for the existing deteriorated pavements (both flexible and rigid pavements). Reflective cracking (RC) is the most common distress type appearing in the HMA overlays which structurally and functionally degrades the whole pavement structure, especially under high traffic volume. Although many studies have been conducted to identify the best performing RC mitigation technique, the level of success varies from premature failure to...
Show moreHot Mix Asphalt (HMA) overlay is a major rehabilitation treatment for the existing deteriorated pavements (both flexible and rigid pavements). Reflective cracking (RC) is the most common distress type appearing in the HMA overlays which structurally and functionally degrades the whole pavement structure, especially under high traffic volume. Although many studies have been conducted to identify the best performing RC mitigation technique, the level of success varies from premature failure to good performance in the field. In Florida, Asphalt Rubber Membrane Interlayers (ARMIs) have been used as a RC mitigation technique but its field performance has not been successful. In this study, the best performing means to mitigate RC in the overlays considering Florida's special conditions have been investigated. The research methodology includes (1) extensive literature reviews regarding the RC mechanism and introduced mitigation options, (2) nationwide survey for understanding the current practice of RC management in the U.S., and (3) the development of decision trees for the selection of the best performing RC mitigation method. Extensive literature reviews have been conducted to identify current available RC mitigation techniques and the advantages and disadvantages of each technique were compared. Lesson learned from the collected case studies were used as input for the selection of the best performing RC mitigation techniques for Florida's roads. The key input parameters in selecting optimum mitigation techniques are: 1) overlay characterization, 2) existing pavement condition, 3) base and subgrade structural condition, 4) environmental condition and 5) traffic level. In addition, to understand the current practices how reflective cracking is managed in each state, a nationwide survey was conducted by distributing the survey questionnaire (with the emphasis on flexible pavement) to all other highway agencies. Based on the responses, the most successful method of treatment is to increase the thickness of HMA overlay. Crack arresting layer is considered to be in the second place among its users. Lack of cost analysis and low rate of successful practices raise the necessity of conducting more research on this subject.Considering Florida's special conditions (climate, materials, distress type, and geological conditions) and the RC mechanism, two RC mitigation techniques have been proposed: 1) overlay reinforcement (i.e. geosynthetic reinforcement) for the existing flexible pavements and 2) Stress Absorbing Membrane Interlayer (SAMI) for the existing rigid pavements. As the final products of this study, decision trees to select an optimum RC mitigation technique for both flexible and rigid pavements were developed. The decision trees can provide a detailed guideline to pavement engineer how to consider the affecting parameters in the selection of RC mitigation technique.
Show less - Date Issued
- 2013
- Identifier
- CFE0005108, ucf:50753
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005108
- Title
- Context-Aware Mobile Augmented Reality Visualization in Construction Engineering Education.
- Creator
-
Shirazi, Arezoo, Behzadan, Amir, Oloufa, Amr, Tatari, Mehmet, University of Central Florida
- Abstract / Description
-
Recent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly implemented, instructional technology can enhance student engagement and the quality of learning. Therefore, the main goal of this research is to implement...
Show moreRecent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly implemented, instructional technology can enhance student engagement and the quality of learning. Therefore, the main goal of this research is to implement and assess effectiveness of augmented reality (AR)-based pedagogical tools on student learning. For this purpose, two sets of experiments were designed and implemented in two different construction and civil engineering undergraduate level courses at the University of Central Florida (UCF). The first experiment was designed to systematically assess the effectiveness of a context-aware mobile AR tool (CAM-ART) in real classroom-scale environment. This tool was used to enhance traditional lecture-based instruction and information delivery by augmenting the contents of an ordinary textbook using computer-generated three-dimensional (3D) objects and other virtual multimedia (e.g. sound, video, graphs). The experiment conducted on two separate control and test groups and pre- and post- performance data as well as student perception of using CAM-ART was collected through several feedback questionnaires. In the second experiment, a building design and assembly task competition was designed and conducted using a mobile AR platform. The pedagogical value of mobile AR-based instruction and information delivery to student learning in a large-scale classroom setting was also assessed and investigated. Similar to the first experiment, students in this experiment were divided into two control and test groups. Students' performance data as well as their feedback, suggestions, and workload were systematically collected and analyzed. Data analysis showed that the mobile AR framework had a measurable and positive impact on students' learning. In particular, it was found that students in the test group (who used the AR tool) performed slightly better with respect to certain measures and spent more time on collaboration, communication, and exchanging ideas in both experiments. Overall, students ranked the effectiveness of the AR tool very high and stated that it has a good potential to reform traditional teaching methods.
Show less - Date Issued
- 2014
- Identifier
- CFE0005257, ucf:50609
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005257
- Title
- Evaluating the Use of Recycled Concrete Aggregate in French Drain Applications.
- Creator
-
Behring, Zachary, Nam, Boo Hyun, Chopra, Manoj, Behzadan, Amir, Kim, Jin-Young, University of Central Florida
- Abstract / Description
-
Recycled concrete aggregate (RCA) is often used as a replacement of virgin aggregate in road foundations (base course), embankments, hot-mix asphalt, and Portland cement concrete. However, the use of RCA in exfiltration drainage systems, such as French drains, is currently prohibited in many states of the U.S. The French drain system collects water runoff from the road pavement and transfers to slotted pipes underground and then filters through coarse aggregate and geotextile. The primary...
Show moreRecycled concrete aggregate (RCA) is often used as a replacement of virgin aggregate in road foundations (base course), embankments, hot-mix asphalt, and Portland cement concrete. However, the use of RCA in exfiltration drainage systems, such as French drains, is currently prohibited in many states of the U.S. The French drain system collects water runoff from the road pavement and transfers to slotted pipes underground and then filters through coarse aggregate and geotextile. The primary concerns with using RCA as a drainage media are the fines content and the precipitation of calcium carbonate to cause a reducing in filter fabric permittivity. Additional concerns include the potential for rehydration of RCA fines.The performance of RCA as drainage material has not been evaluated by many researchers and the limited information limits its use. A literature review has been conducted on the available information related to RCA as drainage material. A survey was issued to the Departments of Transportation across the nation in regards to using RCA particularly in French drains. Some state highway agencies have reported the use of RCA as base course; however, no state reports the use of RCA in exfiltration drainage systems. This thesis describes the investigations on the performance of RCA as backfill material in French drains.RCA was tested for its physical properties including, specific gravity, unit weight, percent voids, absorption, and abrasion resistance. RCA cleaning/washing methods were also applied to evaluate the fines removal processes. The potential for RCA rehydration was evaluated by means of heat of hydration, pH, compressive strength, and setting time. The permeability of RCA was tested using the No. 4 gradation. Long term permeability testing was conducted to evaluate the tendency for geotextile clogging from RCA fines. Calcium carbonate precipitation was also evaluated and a procedure to accelerate the precipitation process was developed.The results show that RCA has a high abrasion value, that is, it is very susceptible to break down from abrasion during aggregate handling such as transportation, stockpiling, or placing. The most effective cleaning method was found to be pressure washing with agitation. RCA has not demonstrated the tendency to rehydrate and harden when mixed with water. The permeability test results show that the No. 4 gradation does not restrict the flow of water; the flow rate is highly dependent on the hydraulic system itself, however excessive fines can cause large reductions in permeability over time. It has been determined that No. 4 gradation of RCA can provide a suitable drainage media providing the RCA is properly treated before its use.
Show less - Date Issued
- 2013
- Identifier
- CFE0004974, ucf:49595
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004974
- Title
- Data-Driven Simulation Modeling of Construction and Infrastructure Operations Using Process Knowledge Discovery.
- Creator
-
Akhavian, Reza, Behzadan, Amir, Oloufa, Amr, Yun, Hae-Bum, Sukthankar, Gita, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
Within the architecture, engineering, and construction (AEC) domain, simulation modeling is mainly used to facilitate decision-making by enabling the assessment of different operational plans and resource arrangements, that are otherwise difficult (if not impossible), expensive, or time consuming to be evaluated in real world settings. The accuracy of such models directly affects their reliability to serve as a basis for important decisions such as project completion time estimation and...
Show moreWithin the architecture, engineering, and construction (AEC) domain, simulation modeling is mainly used to facilitate decision-making by enabling the assessment of different operational plans and resource arrangements, that are otherwise difficult (if not impossible), expensive, or time consuming to be evaluated in real world settings. The accuracy of such models directly affects their reliability to serve as a basis for important decisions such as project completion time estimation and resource allocation. Compared to other industries, this is particularly important in construction and infrastructure projects due to the high resource costs and the societal impacts of these projects. Discrete event simulation (DES) is a decision making tool that can benefit the process of design, control, and management of construction operations. Despite recent advancements, most DES models used in construction are created during the early planning and design stage when the lack of factual information from the project prohibits the use of realistic data in simulation modeling. The resulting models, therefore, are often built using rigid (subjective) assumptions and design parameters (e.g. precedence logic, activity durations). In all such cases and in the absence of an inclusive methodology to incorporate real field data as the project evolves, modelers rely on information from previous projects (a.k.a. secondary data), expert judgments, and subjective assumptions to generate simulations to predict future performance. These and similar shortcomings have to a large extent limited the use of traditional DES tools to preliminary studies and long-term planning of construction projects.In the realm of the business process management, process mining as a relatively new research domain seeks to automatically discover a process model by observing activity records and extracting information about processes. The research presented in this Ph.D. Dissertation was in part inspired by the prospect of construction process mining using sensory data collected from field agents. This enabled the extraction of operational knowledge necessary to generate and maintain the fidelity of simulation models. A preliminary study was conducted to demonstrate the feasibility and applicability of data-driven knowledge-based simulation modeling with focus on data collection using wireless sensor network (WSN) and rule-based taxonomy of activities. The resulting knowledge-based simulation models performed very well in properly predicting key performance measures of real construction systems. Next, a pervasive mobile data collection and mining technique was adopted and an activity recognition framework for construction equipment and worker tasks was developed. Data was collected using smartphone accelerometers and gyroscopes from construction entities to generate significant statistical time- and frequency-domain features. The extracted features served as the input of different types of machine learning algorithms that were applied to various construction activities. The trained predictive algorithms were then used to extract activity durations and calculate probability distributions to be fused into corresponding DES models. Results indicated that the generated data-driven knowledge-based simulation models outperform static models created based upon engineering assumptions and estimations with regard to compatibility of performance measure outputs to reality.
Show less - Date Issued
- 2015
- Identifier
- CFE0006023, ucf:51014
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006023
- Title
- Life Cycle Sustainability Assessment Framework for the U.S. Built Environment.
- Creator
-
Kucukvar, Murat, Tatari, Mehmet, Oloufa, Amr, Behzadan, Amir, Al-Deek, Haitham, Pazour, Jennifer, University of Central Florida
- Abstract / Description
-
The overall goals of this dissertation are to investigate the sustainability of the built environment, holistically, by assessing its Triple Bottom Line (TBL): environmental, economic, and social impacts, as well as propose cost-effective, socially acceptable, and environmentally benign policies using several decision support models. This research is anticipated to transform life cycle assessment (LCA) of the built environment by using a TBL framework, integrated with economic input-output...
Show moreThe overall goals of this dissertation are to investigate the sustainability of the built environment, holistically, by assessing its Triple Bottom Line (TBL): environmental, economic, and social impacts, as well as propose cost-effective, socially acceptable, and environmentally benign policies using several decision support models. This research is anticipated to transform life cycle assessment (LCA) of the built environment by using a TBL framework, integrated with economic input-output analysis, simulation, and multi-criteria optimization tools. The major objectives of the outlined research are to (1) build a system-based TBL sustainability assessment framework for the sustainable built environment, by (a) advancing a national TBL-LCA model which is not available for the United States of America; (b) extending the integrated sustainability framework through environmental, economic, and social sustainability indicators; and (2) develop a system-based analysis toolbox for sustainable decisions including Monte Carlo simulation and multi-criteria compromise programming. When analyzing the total sustainability impacts by each U.S. construction sector, (")Residential Permanent Single and Multi-Family Structures" and "Other Non-residential Structures" are found to have the highest environmental, economic, and social impacts compared to other construction sectors. The analysis results also show that indirect suppliers of construction sectors have the largest sustainability impacts compared to on-site activities. For example, for all U.S. construction sectors, on-site construction processes are found to be responsible for less than 5 % of total water consumption, whereas about 95 % of total water use can be attributed to indirect suppliers. In addition, Scope 3 emissions are responsible for the highest carbon emissions compared to Scope 1 and 2. Therefore, using narrowly defined system boundaries by ignoring supply chain-related impacts can result in underestimation of TBL sustainability impacts of the U.S. construction industry.Residential buildings have higher shares in the most of the sustainability impact categories compared to other construction sectors. Analysis results revealed that construction phase, electricity use, and commuting played important role in much of the sustainability impact categories. Natural gas and electricity consumption accounted for 72% and 78% of the total energy consumed in the U.S. residential buildings. Also, the electricity use was the most dominant component of the environmental impacts with more than 50% of greenhouse gases emitted and energy used through all life stages. Furthermore, electricity generation was responsible for 60% of the total water withdrawal of residential buildings, which was even greater than the direct water consumption in residential buildings. In addition, construction phase had the largest share in income category with 60% of the total income generated through residential building's life cycle. Residential construction sector and its supply chain were responsible for 36% of the import, 40% of the gross operating surplus, and 50% of the gross domestic product. The most sensitive parameters were construction activities and its multiplier in most the sustainability impact categories.In addition, several emerging pavement types are analyzed using a hybrid TBL-LCA framework. Warm-mix Asphalts (WMAs) did not perform better in terms of environmental impacts compared to Hot-mix Asphalt (HMA). Asphamin(&)#174; WMA was found to have the highest environmental and socio-economic impacts compared to other pavement types. Material extractions and processing phase had the highest contribution to all environmental impact indicators that shows the importance of cleaner production strategies for pavement materials. Based on stochastic compromise programming results, in a balanced weighting situation, Sasobit(&)#174; WMA had the highest percentage of allocation (61%), while only socio-economic aspects matter, Asphamin(&)#174; WMA had the largest share (57%) among the WMA and HMA mixtures. The optimization results also supported the significance of an increased WMA use in the United States for sustainable pavement construction. Consequently, the outcomes of this dissertation will advance the state of the art in built environment sustainability research by investigating novel efficient methodologies capable of offering optimized policy recommendations by taking the TBL impacts of supply chain into account. It is expected that the results of this research would facilitate better sustainability decisions in the adoption of system-based TBL thinking in the construction field.
Show less - Date Issued
- 2013
- Identifier
- CFE0005018, ucf:50007
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005018