Current Search: Chang, Ni-bin (x)
View All Items
Pages
- Title
- MULTISENSOR FUSION REMOTE SENSING TECHNOLOGY FOR ASSESSING MULTITEMPORAL RESPONSES IN ECOHYDROLOGICAL SYSTEMS.
- Creator
-
Makkeasorn, Ammarin, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Earth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements...
Show moreEarth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements over a large region within a very short period of time. Continuous and repeatable measurements are the very indispensable features of RS. Soil moisture is a critical element in the hydrological cycle especially in a semiarid or arid region. Point measurement to comprehend the soil moisture distribution contiguously in a vast watershed is difficult because the soil moisture patterns might greatly vary temporally and spatially. Space-borne radar imaging satellites have been popular because they have the capability to exhibit all weather observations. Yet the estimation methods of soil moisture based on the active or passive satellite imageries remain uncertain. This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme (Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the change detection of riparian buffers significant due to their interception capability of non-point source impacts within the riparian buffer zones and the maintenance of ecosystem integrity region wide. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Soil properties, landscapes, channels, fault lines, erosion/deposition patches, and bedload transport history show geologic and geomorphologic features in a variety of watersheds. In response to these unique watershed characteristics, the hydrology of large-scale watersheds is often very complex. Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are intimately related with each other to form water balance dynamics on the surface of these watersheds. Within this chapter, depicted is an optimal site selection technology using a grey integer programming (GIP) model to assimilate remote sensing-based geo-environmental patterns in an uncertain environment with respect to some technical and resources constraints. It enables us to retrieve the hydrological trends and pinpoint the most critical locations for the deployment of monitoring stations in a vast watershed. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensingbased GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. Effective water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods also have caused so many damages and lives. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction.
Show less - Date Issued
- 2007
- Identifier
- CFE0001767, ucf:47267
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001767
- Title
- A KINETICS STUDY OF SELECTED FILTRATION MEDIA FOR NUTRIENT REMOVAL AT VARIOUS TEMPERATURES.
- Creator
-
Henderson, Elizabeth, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
In recent years the nutrient levels of the Upper Floridan aquifer have been increasing (USGS, 2008). An example of this is found in Ocala, Florida where Silver Springs nitrate concentrations have risen from 0.5 mg/L in the 1960's to approximately 1.0 mg/L in 2003 (Phelps, 2004). Because stormwater is a contributor to surficial and groundwater aquifer recharge, there is an increasing need for methods that decrease nitrogen and phosphorus levels. A laboratory column study was conducted to...
Show moreIn recent years the nutrient levels of the Upper Floridan aquifer have been increasing (USGS, 2008). An example of this is found in Ocala, Florida where Silver Springs nitrate concentrations have risen from 0.5 mg/L in the 1960's to approximately 1.0 mg/L in 2003 (Phelps, 2004). Because stormwater is a contributor to surficial and groundwater aquifer recharge, there is an increasing need for methods that decrease nitrogen and phosphorus levels. A laboratory column study was conducted to simulate a retention pond with saturated soil conditions. The objectives of the column studies reported in this thesis were to investigate the capabilities of a natural soil and soil augmentations to remove nitrogen and phosphorus for a range of concentrations at three different temperatures. An analytical attempt to model the columns through low order reaction kinetics and derive the corresponding temperature conversion constant to relate the rate constants is also presented. The Media Mixes were selected through a process of research, preliminary batch testing and then implemented in column studies. Three columns measuring three feet in length and 6 inches outer diameter were packed with a control and two media mixes. Media Mix 1 consisted of 50% fine sand, 30% tire crumb, 20% sawdust by weight and Media Mix 2 consisted of 50% fine sand, 25% sawdust, 15% tire crumb, 10% limestone by weight. The control column was packed with natural soil from Hunter's Trace retention pond located in Ocala, Florida. The reaction rates for nitrate are best modeled as first order for Media Mix 1, and zero order for the Control and Media Mix 2. The reaction rates for orthophosphate are best modeled as zero order, second order and first order for the Control, Media Mix 1, and Media Mix 2 respectively. The best overall media for both nitrate and orthophosphate removal from this study would be Media Mix 1. Media Mix 2 does have the highest average orthophosphate removal of all the mixes for all of the temperatures; however Media Mix 1 outperforms Mix 2 for the other two temperatures. The best column for Nitrate removal is the Media Mix 1 column. The temperature conversion factors for nitrate were found to be 1.11, 1.1, and 1.01 for Media Mix 1, the Control and Media Mix 2 respectively. The temperature conversion factors for orthophosphate were found to be 1.02, 0.99, and 0.95. As well as temperature conversion factors, the activation energies and frequency factors for the Arrhenius Equation were investigated. Average values corresponding to each column, species, and temperature would be inaccurate due to the large variation in calculated values.
Show less - Date Issued
- 2008
- Identifier
- CFE0002458, ucf:47727
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002458
- Title
- IDENTIFICATION OF SPATIOTEMPORAL NUTRIENT PATTERNS AND ASSOCIATED ECOHYDROLOGICAL TRENDS IN THE TAMPA BAY COASTAL REGION.
- Creator
-
Wimberly, Brent, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
The comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought...
Show moreThe comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought lags the crest of the evapotranspiration and precipitation curve during each year of drought. During the transition year, ET and precipitation appears to start to shift back into the analogous temporal pattern as the 2005 wet year. NDVI shows a flat receding tail for the September crest in 2005 due to the hurricane impact signifying that the hurricane event in October dampening the severity of the winter dry season in which alludes to relative system memory. The k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high colored dissolved organic matter values are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. Such ecohydrological evaluation can be applied for supporting the LULC management of climatic vulnerable regions as well as further enrich the comprehensive assessment techniques for estimating and examining the multi-temporal impacts and dynamic influence of urban land use and land cover. Improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a coastal bay.
Show less - Date Issued
- 2012
- Identifier
- CFH0004132, ucf:44878
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004132
- Title
- THE EFFECTIVENESS OF SPECIFICALLY DESIGNED FILTER MEDIA TO REDUCE NITRATE AND ORTHOPHOSPHATE IN STORMWATER RUNOFF.
- Creator
-
Moberg, Mikhal, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Throughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an...
Show moreThroughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an optimal media blend that may be implemented in detention ponds to reduce Nitrate and Phosphorus. The extensive literature search revealed 32 different media that may be used to remove Nitrate and Phosphorus. Each potential media was qualitatively and quantitatively evaluated based on 5 criteria: 1) relevance, 2) permeability, 3) cost, 4) availability in Florida, and 5) additional environmental benefit. The top 7 performing media: Florida peat, sandy loam, woodchips, crushed oyster shell; crushed limestone, tire crumb and sawdust were selected for batch test experimentation. The aerobic conditions in batch test experimentation prohibited the growth of denitrifying bacteria, therefore media mixes were selected for column test experimentation based on Ammonia and Orthophosphate concentrations. Batch test experimentation showed the most effective media to be 50% sand, 30% tire crumb, 20% sawdust by weight (media mix 1) and 50% sand, 25% sawdust, 15% tire crumb, 10% limestone by weight (media mix 2). Media mix 1, media mix 2 and a control are tested in column test experimentation, where the control is site soil from Hunters Trace development in Ocala, Florida. Column test experimentation models a dry detention pond where water passes through a 48 inch unsaturated zone then a 48 inch saturated zone. To test Nitrate and Orthophosphate removal potential, pond water augmented with Nitrate (0.38, 1.26, 2.5 mg/L NO3-N) and Orthophosphate (0.125, 0.361, 0.785 mg/L PO4-P) was pumped into the columns. Media mix 1 and media mix 2 outperformed the control in both Nitrate and Orthophosphate removal. Media mix 1 and media mix 2 had Nitrate removal efficiencies ranging from 60% to 99% and the control had Nitrate removal efficiencies ranging from 38%-80%. Media mix 1 and media mix 2 averaged Orthophosphate removal efficiencies ranging from approximately 42% to 67%. For every run in every influent Orthophosphate concentration the saturated control added Orthophosphate to the water. The Nitrate and Orthophosphate removal performances for media mix 1 and media mix 2 could not be directly compared because of different influent saturated nutrient concentrations.
Show less - Date Issued
- 2008
- Identifier
- CFE0002240, ucf:47884
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002240
- Title
- REDUCING EFFLUENT PHOSPHORUS AND NITROGEN CONCENTRATIONS FROM A STORMWATER DETENTION POND USING A CHAMBER UPFLOW FILTER AND SKIMMER (CUFS) WITH BLACK AND GOLDTM MEDIA.
- Creator
-
Ryan, Patrick, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Stormwater runoff is a known pollutant source capable of causing surface water degradation, especially in highly populated areas such as Central Florida. Wet detention ponds manage this stormwater, but most of the ponds do not remove enough nutrients, specifically nitrogen and phosphorus, to meet TMDL regulations. This research provides a possible addition to a detention pond in Seminole County, Florida using a Chamber Upflow Filter and Skimmer (CUFS), which can increase the removal of...
Show moreStormwater runoff is a known pollutant source capable of causing surface water degradation, especially in highly populated areas such as Central Florida. Wet detention ponds manage this stormwater, but most of the ponds do not remove enough nutrients, specifically nitrogen and phosphorus, to meet TMDL regulations. This research provides a possible addition to a detention pond in Seminole County, Florida using a Chamber Upflow Filter and Skimmer (CUFS), which can increase the removal of phosphorus and nitrogen by the system. Water enters the system through the skimmer, which floats on the surface of the detention pond. It travels from the skimmer to the bottom of the chamber, where heavier particles settle out before entering the upflow filter. The upflow filter contains twenty-four inches of Black and GoldTM media to remove nitrogen and phosphorus under anoxic conditions. Water flows up through the filter and out of the system, and eventually travels to Lake Jesup, a eutrophic lake. A total of twenty-eight storm events and seven baseflows were sampled from the site in Seminole County, and ten storm events were sampled from a pilot study CUFS. The results of this research show significant reductions by the Seminole County CUFS in turbidity, orthophosphorus, total phosphorus, and total suspended solids when the means were compared at a 95% confidence interval. Reductions also occurred for total nitrogen, but could not be proved by the mean comparison. The pilot scale application of the CUFS significantly reduced total nitrogen at a 95% confidence interval.
Show less - Date Issued
- 2008
- Identifier
- CFE0002235, ucf:47883
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002235
- Title
- COMPARISON OF TRADITIONAL STANDARD DRAINFIELD WITH INNOVATIVE B&G TREATMENT BED FOR NUTRIENT REMOVAL FROM SEPTIC TANK WASTEWATER.
- Creator
-
Hossain, Fahim, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Nowadays people are more alert about conservation of water and water scarcity. The amount of usable water is decreasing due to unavailability of pure water for day to day use. Both surface and groundwater is contaminated by untreated wastewater discharged from improper onsite wastewater treatment system, nutrient laden agricultural runoff and increasing use of fertilizer in fields. This elevated nutrient level is increasing the maintenance and operation cost of water treatment plant. So it is...
Show moreNowadays people are more alert about conservation of water and water scarcity. The amount of usable water is decreasing due to unavailability of pure water for day to day use. Both surface and groundwater is contaminated by untreated wastewater discharged from improper onsite wastewater treatment system, nutrient laden agricultural runoff and increasing use of fertilizer in fields. This elevated nutrient level is increasing the maintenance and operation cost of water treatment plant. So it is an important task to remove those nutrients from wastewater and other water bodies by applying environmental friendly process. In the USA, about 25% homes are still depending on on-site wastewater treatment (OSWT) due to unavailability of centralized treatment process. In Florida, OSWT is managed by the Florida Department of Health (FDOH). By realizing the importance of water conservation, USEPA already determined the maximum contaminant level (MCL) for nitrate and nitrite in water bodies. Many researches are conducted to evaluate the performance of EPA recommended treatment process (i.e. traditional standard drain field) for OSWT. The UCF research group also performed an experiment to understand the efficiency of traditional standard drain field. At the same time the research group developed an innovative wastewater treatment process named B&G treatment bed as a comparison with traditional standard drain field. This paper mainly focuses on performance of these two treatment processes. The B&G is a novel treatment process by its functionality for nutrient removal. The process generally used a media mixture developed by the research group of UCF. This mixture will act as organic carbon source to support denitrification process while nitrification process does not demand such carbon source. Evan it is observed that this mixture can remove nutrient by physical-chemical process. The recirculation sand filter (RSF) of traditional drain field is also filled by another mixture of media. Both media mixtures are developed by batch experiment in UCF laboratory. The performance of the B&G is compared with the traditional treatment process practiced in USA. These media mixtures can be good supporting media for microorganismsÃÂ' growth and development. All the major nitrogen and phosphorus species removal is observed by collecting sample in a weekly fashion. The pathogens removal efficiency is also observed. The sample is analyzed by a certified laboratory (i.e. Environmental Research and Design, ERD) in Orlando, Florida to maintain the best quality of this research. The presence of microorganisms is identified by using PCR. The B&G drainfield is very effective for removing both nitrogen and phosphorus species from wastewater. It is also very efficient to remove pathogens too. Standard drainfield is very effective for pathogen removal but it cannot remove nutrients effectively. Nitrate removal in B&G drainfield is well compared to standard drainfield.
Show less - Date Issued
- 2010
- Identifier
- CFE0003271, ucf:52842
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003271
- Title
- NUTRIENT REMOVAL FROM URBAN STORMWATER USING FLOATING TREATMENT WETLAND SYSTEM.
- Creator
-
Islam, Md. Kamrul, Chang, Ni-bin, University of Central Florida
- Abstract / Description
-
Despite the technology advancement, degradation of water quality due to stormwater continues to be a significant threat to the water and ecosystems due to the exponential growth of industries and agricultural enterprises that discharge stormwater. These anthropogenic activities are the sources of high nitrogen and phosphorus quantities in stormwater, which is responsible for eutrophication phenomena and deterioration of public health. Floating Treatment Wetlands (FTWs) are a potential...
Show moreDespite the technology advancement, degradation of water quality due to stormwater continues to be a significant threat to the water and ecosystems due to the exponential growth of industries and agricultural enterprises that discharge stormwater. These anthropogenic activities are the sources of high nitrogen and phosphorus quantities in stormwater, which is responsible for eutrophication phenomena and deterioration of public health. Floating Treatment Wetlands (FTWs) are a potential solution to this problem. Both microcosm and mesocosm level studies were conducted for the effective removal of nutrients in stormwater wet detention ponds with different sorption media under varying nutrient concentrations and weather conditions. Water depth, percent area coverage of the FTWs and littoral zone emergent plants were varied in order to determine nutrient removal efficiency before implementing in an actual pond. Focus has also been placed on the observations of macrophyte-epiphyte-phytoplankton interactions in order to understand temporal characteristics of ecological phenomena. Water quality parameters included Total Nitrogen, Total Phosphorus, Orthophosphate, Nitrate-Nitrogen, and Ammonia-Nitrogen in addition to in-situ parameters such as pH, Dissolved Oxygen, Temperature and Chlorophyll-a. Results clearly indicate that an FTW filled with sorption media of 80% expanded clay and 20% tire crumb can significantly promote the biomass growth. Different levels of nutrient concentrations did affect the plants' growth and cold temperature in late winter was detrimental to growth. To make the system more viable irrespective of the seasonal weather conditions, the adoption of mixed vegetation is highly recommended in the FTWs implementation. It is also recommended that, the positioning of the floating wetlands should not be in the vicinity of the outlet of the pond as assimilated nutrient under the mat might increase the nutrient concentration in the discharged water. Finally, One-way ANOVA test is performed to check whether or not these grouped microcosms and mesocosms with differing experimental setup can be deemed statistically significant.
Show less - Date Issued
- 2011
- Identifier
- CFE0004013, ucf:49171
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004013
- Title
- ASSESSMENT OF AQUIFER STORAGE AND RECOVERY IMPACT ON PHOSPHORUS STABILITY IN LAKE SEDIMENT.
- Creator
-
Liu, Sha, Chang, Ni-bin, University of Central Florida
- Abstract / Description
-
Lake Okeechobee, the second largest natural freshwater lake in the United States, had experienced a historical drought in 2007-2008 and the inflow to Lake Okeechobee has been reduced by 40% of the average daily mean between warm phase and cold phase due to the impact of Atlantic Multidecadal Oscillation in the past six decades. To cope with this water resources management problem, the US Army Corps of Engineers (USACE) proposed the largest national implementation plan of aquifer storage and...
Show moreLake Okeechobee, the second largest natural freshwater lake in the United States, had experienced a historical drought in 2007-2008 and the inflow to Lake Okeechobee has been reduced by 40% of the average daily mean between warm phase and cold phase due to the impact of Atlantic Multidecadal Oscillation in the past six decades. To cope with this water resources management problem, the US Army Corps of Engineers (USACE) proposed the largest national implementation plan of aquifer storage and recovery (ASR) project in the Kissimmee River Basin. Routine operation of ASR will deliver recovered water from ASR wells into the lake with different water quality parameters resulting in some concerns about the phosphorus stability issues at the sediment bed, which may lead to eutrophication problems. To explore the potential impacts of ASR operation on phosphorus stability in terms of adsorption, desorption, and diffusion processes, this research presented a systematic assessment based on five different mixing ratios between ASR water and lake water, and explored the sensitivity with respect to the chemical equilibrium between lake water and ASR water to predict the phosphorus stability changes in lake sediment. A series of lab-scale batch and column tests in support of a mechanistic modeling analysis provided a holistic chemical assessment as to how the phosphorus stability may be influenced by different mixing ratios. It led to an observation that the ratio of 1:10 between ASR water and lake water proved to be an optical ratio to avoid eutrophication and bring ecological benefits based on a suite of criteria.
Show less - Date Issued
- 2010
- Identifier
- CFE0003277, ucf:48527
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003277
- Title
- RULE-BASED DECISION SUPPORT SYSTEM FOR SENSOR DEPLOYMENT IN DRINKING WATER NETWORKS.
- Creator
-
Prapinpongsanone, Natthaphon, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Drinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS)...
Show moreDrinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS) to generate sensor deployment strategies with no computational burden as we oftentimes encountered via large-scale optimization analyses. Three rules were derived to address the efficacy and efficiency characteristics and they include: 1) intensity, 2) accessibility, and 3) complexity rules. To retrieve the information of population exposure, the well-calibrated EPANET model was applied for the purpose of demonstration of vulnerability assessment. Graph theory was applied to retrieve the implication of complexity rule eliminating the need to deal with temporal variability. In case study 1, implementation potential was assessed by using a small-scale drinking water network in rural Kentucky, the United States with the sensitivity analysis. The RBDSS was also applied to two networks, a small-scale and large-scale network, in "The Battle of the Water Sensor Network" (BWSN) in order to compare its performances with the other models. In case study 2, the RBDSS has been modified by implementing four objective indexes, the expected time of detection (Z1), the expected population affected prior to detection (Z2), the expected consumption of contaminant water prior to detection, and the detection likelihood (Z4), are being used to evaluate RBDSS's performance and compare to other models in Network 1 analysis in BWSN. Lastly, the implementation of weighted optimization is applied to the large water distribution analysis in case study 3, Network 2 in BWSN.
Show less - Date Issued
- 2011
- Identifier
- CFE0003704, ucf:48825
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003704
- Title
- NUTRIENT AND PATHOGEN REMOVAL IN A SUBSURFACE UPFLOW WETLAND SYSTEM USING GREEN SORPTION MEDIA.
- Creator
-
Xuan, Zhemin, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Due to environmental health and nutrient impact concerns, the conventional on-site sewage collection, treatment, and disposal systems are no longer able to meet the nutrient reduction requirements for wastewater effluent and may represent a large fraction of pollutant loads. The loads include not only nitrogen (N) and phosphorus (P), but also pathogens such as fecal coliform and E. coli which indicate the presence of other disease-causing bacteria flowing into aquatic system that adversely...
Show moreDue to environmental health and nutrient impact concerns, the conventional on-site sewage collection, treatment, and disposal systems are no longer able to meet the nutrient reduction requirements for wastewater effluent and may represent a large fraction of pollutant loads. The loads include not only nitrogen (N) and phosphorus (P), but also pathogens such as fecal coliform and E. coli which indicate the presence of other disease-causing bacteria flowing into aquatic system that adversely affect public health. A subsurface upflow wetland, which is an effective small-scale wastewater treatment system with low energy and maintenance requirements and operational costs, fits the current nutrient and pathogen removal situation having received wide attention throughout the world. Within this research study, a subsurface upflow wetland system (SUW), including four parallel SUW (three planted versus one unplanted), were constructed as a key component of the septic tank system receiving 454 liters per day (120 GPD) influent using the green sorption media along with selected plant species. It was proved effective in removing both nutrients and pathogens. During a one month test run, the planted wetlands achieved a removal efficiency of 84.2%, 97.3 %, 98.93 % and 99.92%, compared to the control wetland, 10.5%, 85.7 %, 99.74 % and 100.0 %, in total nitrogen (TN), total phosphorus (TP), fecal coli and E.Coli, respectively. Denitrification was proved to be the dominant pathway for removing N as evidenced by the mass balance and real-time PCR analyses. A simplified compartmental dynamics simulation model of constructed subsurface upflow wetlands was also developed to provide a dependable reference and tool for design of constructed subsurface upflow wetland.
Show less - Date Issued
- 2009
- Identifier
- CFE0002967, ucf:47964
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002967
- Title
- ANALYSIS OF THE FLORIDAÃÂ'S SHOWCASE GREEN ENVIROHOME WATER/WASTEWATER SYSTEMS AND DEVELOPMENT OF A COST-BENEFIT GREEN ROOF OPTIMIZATION MODEL.
- Creator
-
Rivera, Brian, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
The Florida Showcase Green Envirohome (FSGE) incorporates many green technologies. FSGE is built to meet or exceed 12 green building guidelines and obtain 8 green building certificates. The two-story 3292 ft2 home is a ÃÂ"Near Zero-Loss HomeÃÂÃÂ", ÃÂ"Near Zero-Energy HomeÃÂÃÂ", "Near Zero-Runoff HomeÃÂ", and ÃÂ"Near Zero...
Show moreThe Florida Showcase Green Envirohome (FSGE) incorporates many green technologies. FSGE is built to meet or exceed 12 green building guidelines and obtain 8 green building certificates. The two-story 3292 ft2 home is a ÃÂ"Near Zero-Loss HomeÃÂÃÂ", ÃÂ"Near Zero-Energy HomeÃÂÃÂ", "Near Zero-Runoff HomeÃÂ", and ÃÂ"Near Zero-Maintenance HomeÃÂÃÂ". It is spawned from the consumer-driven necessity to build a home resistant to hurricanes, tornadoes, floods, fire, mold, termites, impacts, and even earthquakes given up to 500% increase in insurance premiums in natural disaster zones, the dwindling flexibility and coverage of insurance policies, and rising energy, water and maintenance costs (FSGE 2008). The FSGE captures its stormwater runoff from the green roof, metal roof and wood decking area and routes it to the sustainable water cistern. Graywater from the home (after being disinfected using ozone) is also routed to the sustainable water cistern. This water stored in the sustainable water cistern is used for irrigation of the green roof, ground level landscape, and for toilet flushing water. This study was done in two phases. During phase one, only stormwater runoff from the green roof, metal roof and wood decking area is routed to the sustainable water cistern. Then, during phase two, the water from the graywater system is added to the sustainable water cistern. The sustainable water cistern quality is analyzed during both phases to determine if the water is acceptable for irrigation and also if it is suitable for use as toilet flushing water. The water quality of the sustainable cistern is acceptable for irrigation. The intent of the home is to not pollute the environment, so as much nutrients as possible should be removed from the wastewater before it is discharged into the groundwater. Thus, the FSGE design is to evaluate a new on-site sewage treatment and disposal (OSTD) system which consists of a sorption media labeled as Bold and GoldTM filtration media. The Bold and GoldTM filtration media is a mixture of tire crumb and other materials. This new OSTD system has sampling ports through the system to monitor the wastewater quality as it passes through. Also, the effluent wastewater quality is compared to that of a conventional system on the campus of the University of Central Florida. The cost-benefit optimization model focused on designing a residential home which incorporated a green roof, cistern and graywater systems. This model had two forms, the base model and the grey linear model. The base model used current average cost of construction of materials and installation. The grey model used an interval for the cost of construction materials and green roof energy savings. Both models included a probabilistic term to describe the rainfall amount. The cost and energy operation of a typical Florida home was used as a case study for these models. Also, some of the parameters of the model were varied to determine their effect on the results. The modeling showed that the FSGE 4500 gallon cistern design was cost effective in providing irrigation water. Also, the green roof area could have been smaller to be cost effective, because the green roof cost is relatively much higher than the cost of a regular roof.
Show less - Date Issued
- 2010
- Identifier
- CFE0003297, ucf:48499
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003297
- Title
- NUTRIENT REMOVAL FROM STORMWATER BY USING GREEN SORPTION MEDIA.
- Creator
-
HOSSAIN, FAHIM, Chang, Dr. Ni-Bin, University of Central Florida
- Abstract / Description
-
High nitrogen and phosphorus content in storm water runoff has affected groundwater, springs and surface water by impacting ecosystem integrity and human health. Nitrate may be toxic and can cause human health problem such as methemoglobinemia, liver damage and even cancers. Phosphorus may trigger the eutrophication issues in fresh water bodies, which could result in toxic algae and eventually endanger the source of drinking waters. Sorption media with mixes of some recycled materials, such...
Show moreHigh nitrogen and phosphorus content in storm water runoff has affected groundwater, springs and surface water by impacting ecosystem integrity and human health. Nitrate may be toxic and can cause human health problem such as methemoglobinemia, liver damage and even cancers. Phosphorus may trigger the eutrophication issues in fresh water bodies, which could result in toxic algae and eventually endanger the source of drinking waters. Sorption media with mixes of some recycled materials, such as sawdust and tire crumb, combined with sand/silt and limestone, becomes appealing for nutrient removal in environmental management. This paper presented is a specific type of functionalized filtration media, Langmuir and Freundlich isotherms with reaction kinetics for nutrient removal using a suite of batch tests represented. Pollutants of concern include ammonia, nitrite, nitrate, orthophosphate and total dissolved phosphorus. Application potential in storm water management facilities, such as dry ponds, is emphasized in terms of life expectancy and reaction kinetics. As compared to the natural soil that is selected as the control case in the column test, our green sorption media mixture is proved relatively effective in terms of removing most of the target pollutants under various influent waste loads.
Show less - Date Issued
- 2008
- Identifier
- CFE0002370, ucf:47803
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002370
- Title
- REMOTE SENSING WITH COMPUTATIONAL INTELLIGENCE MODELLING FOR MONITORING THE ECOSYSTEM STATE AND HYDRAULIC PATTERN IN A CONSTRUCTED WETLAND.
- Creator
-
Mohiuddin, Golam, Chang, Ni-bin, Lee, Woo Hyoung, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
Monitoring the heterogeneous aquatic environment such as the Stormwater Treatment Areas (STAs) located at the northeast of the Everglades is extremely important in understanding the land processes of the constructed wetland in its capacity to remove nutrient. Direct monitoring and measurements of ecosystem evolution and changing velocities at every single part of the STA are not always feasible. Integrated remote sensing, monitoring, and modeling technique can be a state-of-the-art tool to...
Show moreMonitoring the heterogeneous aquatic environment such as the Stormwater Treatment Areas (STAs) located at the northeast of the Everglades is extremely important in understanding the land processes of the constructed wetland in its capacity to remove nutrient. Direct monitoring and measurements of ecosystem evolution and changing velocities at every single part of the STA are not always feasible. Integrated remote sensing, monitoring, and modeling technique can be a state-of-the-art tool to estimate the spatial and temporal distributions of flow velocity regimes and ecological functioning in such dynamic aquatic environments. In this presentation, comparison between four computational intelligence models including Extreme Learning Machine (ELM), Genetic Programming (GP) and Artificial Neural Network (ANN) models were organized to holistically assess the flow velocity and direction as well as ecosystem states within a vegetative wetland area. First the local sensor network was established using Acoustic Doppler Velocimeter (ADV). Utilizing the local sensor data along with the help of external driving forces parameters, trained models of ELM, GP and ANN were developed, calibrated, validated, and compared to select the best computational capacity of velocity prediction over time. Besides, seasonal images collected by French satellite Pleiades have been analyzed to address the seasonality effect of plant species evolution and biomass changes in the constructed wetland. The key finding of this research is to characterize the interactions between geophysical and geochemical processes in this wetland system based on ground-based monitoring sensors and satellite images to discover insight of hydraulic residence time, plant species variation, and water quality and improve the overall understanding of possible nutrient removal in this constructed wetland.
Show less - Date Issued
- 2014
- Identifier
- CFE0005533, ucf:52864
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005533
- Title
- Design, Synthesis and Characterization of Biomimetic, Bioinspired and Bio-related Functional Polymers for Atmospheric Water Recovery.
- Creator
-
Alqassar, Abdullah, Chang, Ni-bin, Leon, Lorraine, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
Atmospheric water recovery in changing environments has received wide attention in environmental science and engineering communities due to rapid population growth and frequent droughts. This study is focused on the design, synthesis, and characterization of biomimetic, bioinspired, and bio-related functional polymers (b3p) to help resolve the water supply issue especially in arid or semi-arid regions. It is aimed to develop unique synthetic methods to access well-defined polymers with the...
Show moreAtmospheric water recovery in changing environments has received wide attention in environmental science and engineering communities due to rapid population growth and frequent droughts. This study is focused on the design, synthesis, and characterization of biomimetic, bioinspired, and bio-related functional polymers (b3p) to help resolve the water supply issue especially in arid or semi-arid regions. It is aimed to develop unique synthetic methods to access well-defined polymers with the aid of nanomaterials and metal to produce next generation polymer materials for better atmospheric water recovery. The design of such new b3p is bioinspired by some skin materials of biological species such as frogs, beetles, or spiders. Such synthetic efforts are also coupled with fundamental studies of the polymer functions and structures, providing renewed understanding of how molecular structure and processing parameters associated with different nanomaterials impact macroscopic properties. This research was conducted by using a class of cross-linked hydrophilic copolymers known as hydrogels that exhibit a high fluid absorbency, up to 1,000 times to their own weight. Using free radical polymerization to cross-link two different monomers, such as Acrylamide (Am) and Acrylic Acid (Aa) loaded with Calcium Chloride (CaCl2) and coated with gold nanoparticles (Au-Np's), can produce novel thermally-responsive hydrophilic copolymer (e.g. Poly (Am-co-Aa)/Au-Np's/CaCl2) that was placed inside a controlled structure for testing. The new b3p materials can adsorb water vapor in the evening via a swelling process and discharge water vapor in the morning via a deswelling process to harvest the atmospheric water for recovery and reuse. The new b3p materials demonstrated high average swelling percentage of about 3541% when placed in water under a temperature range of [20-30oC] for 5 hours. The hydrogel loaded with 3.3701ivgrams CaCl2 was placed in the furnace under relative humidity percentage (RH) range of [80-90%] and can absorb up to 27% of the atmospheric water undergoing the same time. The research concludes that the proposed synthetic method contributes to solving such contemporary challenge in green chemistry to some extent. Further studies are needed to deeply investigate the ability of this new hydrogel to load more dissolved solids such as CaCl2.
Show less - Date Issued
- 2019
- Identifier
- CFE0007776, ucf:52370
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007776
- Title
- Evaluating Hydrologic Fluxes Through Stormwater Treatment Systems: Implication to Freshwater Springs in a Karst Environment.
- Creator
-
Rice, Nyle, Kibler, Kelly, Wang, Dingbao, Chang, Ni-bin, University of Central Florida
- Abstract / Description
-
In recent years, concentrations of nutrients such as nitrogen and phosphorus have increased in surface and groundwater resources, due in part to non-point source pollution associated with stormwater runoff. The elevated nutrient concentrations found in stormwater runoff have prompted the design of best management practices (BMP's) to mitigate the problem. The overall objective within this thesis is to analyze the performance of innovative surface BMPs and investigate connections between the...
Show moreIn recent years, concentrations of nutrients such as nitrogen and phosphorus have increased in surface and groundwater resources, due in part to non-point source pollution associated with stormwater runoff. The elevated nutrient concentrations found in stormwater runoff have prompted the design of best management practices (BMP's) to mitigate the problem. The overall objective within this thesis is to analyze the performance of innovative surface BMPs and investigate connections between the BMPs and groundwater flows to freshwater springs within a karst environment. The performance of two stormwater BMPs, blanket filters and vertical reactors containing Bio-sorption Activated Media (BAM), are assessed in terms of hydraulic retention time. Capture efficiency is also evaluated for the blanket filters. Blanket filters captured, at minimum 68% of the stormwater runoff entering a stormwater basin in one year. Water content monitoring indicates that BAM is affected by the surrounding water table. The vertical reactors are more appropriate technologies for small contributing areas. Tracking a conservative tracer from an injection point within a stormwater basin to nearby Silver Springs reveals several unique flowpaths and velocities of groundwater. Subsurface velocities observed in the basin ranged from 0.1 m/d to 1.4 m/d, while velocities from the injection well to the spring vary from 2.3 m/d to 13.5 m/d. The fastest travel times observed in the spring may represent flowpaths that include macropore/conduit flow through karst features, while the slower peaks may be more representative of matrix flow. Interaction with karst features may reduce retention time of stormwater in aquifers, altering expected nutrient transformations. Understanding the variable pathways stormwater may take from the surface to spring discharge may assist environmental managers in preserving water quality in springs and other waterbodies in karst systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007241, ucf:52219
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007241
- Title
- Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing.
- Creator
-
Mostafiz, Chandan, Chang, Ni-bin, Wanielista, Martin, Kibler, Kelly, University of Central Florida
- Abstract / Description
-
Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals. These estuaries also withstand the worst of some natural disasters, especially hurricanes. The estuaries as well as the harbored ecosystems undergo significant changes in terms of water quality, vegetation cover...
Show moreEstuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals. These estuaries also withstand the worst of some natural disasters, especially hurricanes. The estuaries as well as the harbored ecosystems undergo significant changes in terms of water quality, vegetation cover etc. and these components are interrelated. When hurricane makes landfall it is necessary to assess the damages as quickly as possible as restoration and recovery processes are time-sensitive. However, assessment of physical damages through inspection and survey and assessment of chemical and nutrient component changes by laboratory testing are time-consuming processes. This is where remote sensing comes into play. With the help of remote sensing images and regression analysis, it is possible to reconstruct water quality maps of the estuary affected. The damage sustained by the vegetation cover of the adjacent coastal watershed can be assessed using Normalized Difference Vegetation Index (NDVI) The water quality maps together with NDVI maps help observe a dynamic sea-land interaction due to hurricane landfall. The observation of hurricane impacts on a coastal watershed can be further enhanced by use of tasseled cap transformation (TCT). TCT plots provide information on a host of land cover conditions with respect to soil moisture, canopy and vegetation cover. The before and after TCT plots help assess the damage sustained in a hurricane event and also see the progress of recovery. Finally, the use of synthetic images obtained by use of data fusion will help close the gap of low temporal resolution of Landsat satellite and this will create a more robust monitoring system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006900, ucf:51729
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006900
- Title
- Linking Climate Change and Socio-economic Impact for Long-term Urban Growth in Three Mega-cities.
- Creator
-
Lu, Qi, Chang, Ni-bin, Wanielista, Martin, Kibler, Kelly, University of Central Florida
- Abstract / Description
-
Urbanization has become a global trend under the impact of population growth, socio-economic development, and globalization. However, the interactions between climate change and urban growth in the context of economic geography are unclear due to missing links in between the recent planning megacities. This study aims to conduct a multi-temporal change analysis of land use and land cover in New York City, City of London, and Beijing using a cellular automata-based Markov chain model...
Show moreUrbanization has become a global trend under the impact of population growth, socio-economic development, and globalization. However, the interactions between climate change and urban growth in the context of economic geography are unclear due to missing links in between the recent planning megacities. This study aims to conduct a multi-temporal change analysis of land use and land cover in New York City, City of London, and Beijing using a cellular automata-based Markov chain model collaborating with fuzzy set theory and multi-criteria evaluation to predict the city's future land use changes for 2030 and 2050 under the background of climate change.To determine future natural forcing impacts on land use in these megacities, the study highlighted the need for integrating spatiotemporal modeling analyses, such as Statistical Downscale Modeling (SDSM) driven by climate change, and geospatial intelligence techniques, such as remote sensing and geographical information system, in support of urban growth assessment. These SDSM findings along with current land use policies and socio-economic impact were included as either factors or constraints in a cellular automata-based Markov Chain model to simulate and predict land use changes in megacities for 2030 and 2050. Urban expansion is expected in these megacities given the assumption of stationarity in urban growth process, although climate change impacts the land use changes and management. More land use protection should be addressed in order to alleviate the impact of climate change.
Show less - Date Issued
- 2017
- Identifier
- CFE0006761, ucf:51865
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006761
- Title
- Coupling Infrastructure Resilience and Flood Risk Assessment for a Coastal Urban Watershed.
- Creator
-
Joyce, Justin, Chang, Ni-bin, Mayo, Talea, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
This thesis sheds light on coupling potential flood risk and drainage infrastructure resilience of low-lying areas of a coastal urban watershed to flood hazards and subsequent multi-scale impacts of those hazards via detailed modeling frameworks. Physically based models along with statistical models are employed to highlight the complexity for characterizing flood risk while evaluating such risk under various levels of adaptive capacity from traditional flood management techniques to low...
Show moreThis thesis sheds light on coupling potential flood risk and drainage infrastructure resilience of low-lying areas of a coastal urban watershed to flood hazards and subsequent multi-scale impacts of those hazards via detailed modeling frameworks. Physically based models along with statistical models are employed to highlight the complexity for characterizing flood risk while evaluating such risk under various levels of adaptive capacity from traditional flood management techniques to low impact development (LID), as a first step to conduct resilience assessment. Findings indicate that the coupling flood risk and infrastructure resilience is achievable by the careful formulation of flood risk associated with a resilience metric, which is a function of the hazard(s) considered, vulnerability and adaptive capacity. The results also give insights into improving existing methodologies for municipalities in flood management practices such as incorporating multi-criteria flood risk evaluation that includes resilience.
Show less - Date Issued
- 2017
- Identifier
- CFE0006748, ucf:51844
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006748
- Title
- Low Impact Development Analysis and Comparative Assessment of Wet Detention Ponds with Floating Treatment Wetlands.
- Creator
-
Hartshorn, Nicholas, Chang, Ni-bin, Kibler, Kelly, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
The aim of this thesis is to examine, develop, and assess innovative best management practices (BMPs) in stormwater management for pollutant reduction, flood control, and environmental sustainability. Previous research has clearly shown that urban stormwater runoff quickly transports pathogens, metals, sediment, and chemical pollutants to receiving waterbodies, resulting in the degradation of receiving waters and disruption of ecological networks. In response to this growing concern,...
Show moreThe aim of this thesis is to examine, develop, and assess innovative best management practices (BMPs) in stormwater management for pollutant reduction, flood control, and environmental sustainability. Previous research has clearly shown that urban stormwater runoff quickly transports pathogens, metals, sediment, and chemical pollutants to receiving waterbodies, resulting in the degradation of receiving waters and disruption of ecological networks. In response to this growing concern, regulatory agencies, such as the Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP), have set forth regulations aimed at protecting and restoring waterbodies. These regulations include numeric nutrient criteria (NNC) and total maximum daily loads (TMDLs), which enable effective monitoring of a waterbody with regard to nitrogen and phosphorus pollution and help to restore waters not attaining their designated uses. Currently, many stormwater management systems do not provide sufficient nutrient reduction to meet growing regulations; thus, there is a clear need to develop additional BMPs to enhance nutrient reduction.Firstly, this thesis provides an overview of BMPs used in urban regions across the globe to create networks of low impact development (LID), with a focus on policy analysis. Chapter 2 examines the regulatory policies in areas of the United States, Europe, Asia, and Australia from a federal, state, to local perspective in order to pinpoint what policies are supporting the shift from gray cities to green cities. Gray cities are cities comprised mainly of impervious surfaces, with little regard to the ecological health and hydrologic characteristics of the area. Green cities utilize LID to mimic pre-development hydrologic and ecological characteristics, resulting in a city that is both environmentally sustainable and offers many ecosystem services. The results of the global policy analysis identified the policies and other factors, such as funding and public involvement, necessary to facilitate the shift from gray cities to green cities and support the widespread implementation of LID.Secondly, this thesis provides a comparative analysis of three stormwater wet detention ponds, which all contained floating treatment wetlands (FTWs). FTWs are a new BMP, used to enhance nutrient reduction rates in stormwater wet detention ponds. FTWs are a manmade ecosystem, utilizing plants that grow on interlocking floating foam mats, that mimics natural wetlands. Both episodic (storm event) and routine (non-storm event) sampling campaigns were carried out at the three stormwater wet detention ponds located in Gainesville, Ruskin, and Orlando, Florida. The comparative analysis of the three stormwater wet detention ponds was based on two perspectives. The fist analysis, found in Chapter 2, focuses solely on the nutrient reduction potential of FTWs and how the installation of FTWs can be used to improve nutrient reduction rates in stormwater wet detention ponds. The second analysis, found in Chapter 3, focuses on the interaction between nutrients, microcystin, and chlorophyll-a in the stormwater wet detention ponds before and after installation of the FTWs. These two studies provide a holistic understanding of the environmental and ecological aspects of utilizing FTWs as a BMP in stormwater management. FTWs were found to have a significant impact on nutrient reduction rates in the three stormwater wet detention ponds, with total nitrogen (TN) reduction rates reaching 33% at the Ruskin pond during storm events and total phosphorus (TP) reduction rates reaching 71% at the Gainesville pond during storm events. Moreover, microcystin concentrations were found to have a negative correlation with nutrient concentrations, specifically total phosphorus, for both storm and non-storm events across all three ponds.
Show less - Date Issued
- 2016
- Identifier
- CFE0006113, ucf:51206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006113
- Title
- Evaluating Floating Treatment Wetlands to Improve Nitrogen Removal in a Wet Detention Pond.
- Creator
-
Marimon, Zachary, Chang, Ni-bin, Fauth, John, Bohlen, Patrick, University of Central Florida
- Abstract / Description
-
Wet detention ponds are used for stormwater treatment across the United States and reduce most pollutants by at least 60%, but only remove 30% of total nitrogen. Floating Treatment Wetlands (FTWs) are an emerging technology that uses aquatic plants suspended in the pelagic zone to remove nitrogen through vegetative assimilation and microbial denitrification. A before-after field experiment evaluated nitrogen removal in a an existing pond in Orlando, FL, retrofitted with BioHaven(&)#174; FTWs...
Show moreWet detention ponds are used for stormwater treatment across the United States and reduce most pollutants by at least 60%, but only remove 30% of total nitrogen. Floating Treatment Wetlands (FTWs) are an emerging technology that uses aquatic plants suspended in the pelagic zone to remove nitrogen through vegetative assimilation and microbial denitrification. A before-after field experiment evaluated nitrogen removal in a an existing pond in Orlando, FL, retrofitted with BioHaven(&)#174; FTWs planted with the aquatic macrophytes Juncus effusus (Soft Rush) and Pontederia cordata (Pickerelweed). Surface water samples were used to compare the nitrogen-removal performance of the pond under both storm and non-storm conditions during a pre-analysis phase (control) to post-analysis after FTW deployment. The evaluation revealed similar TN removals in non-storm conditions during pre-analysis and post-analysis periods (-1% and -3%, respectively). During storm conditions, there was a negative TN removal of -26% in the pre-analysis compared to the positive 29% removal post-analysis. In addition, nitrogen concentrations for organic-nitrogen, ammonia/ammonium, and nitrites/nitrates were used as input for calibrating and validating a system dynamics model to predict multiple, interacting nitrogen species' transformation and translocation across the abiotic and biotic components of water, sediment, plants, and atmosphere. The validated model created in STELLA v.9.4.1 was used to simulate alternative designs to achieve maximum nitrogen removal based on the treatment efficiency in the evaluation. Simulations predicted 60% FTW coverage at the experimental planting density (22 per square meter) could achieve maximum nitrogen removal. Alternatively, similar nitrogen removal could be achieved at only 15% FTW coverage by increasing plant density. The model can be used as a low-cost tool for designing FTW technology applications and monitoring nitrogen transport.
Show less - Date Issued
- 2016
- Identifier
- CFE0006140, ucf:51168
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006140