Current Search: Chew, Larry (x)
View All Items
- Title
- MAPPING OF PRESSURE LOSSES THROUGH MICROCHANNELS WITH SWEEPING-BENDS OF VARIOUS ANGLE AND RADII.
- Creator
-
hansel, chase, Chew, Larry, University of Central Florida
- Abstract / Description
-
MEMS (Micro Electro Mechanical Systems) have received a great deal of attention in both the research and industrial sectors in recent decades. The broad MEMS category, microfluidics, the study of fluid flow through channels measured on the micrometer scale, plays an important role in devices such as compact heat exchangers, chemical and biological sensors, and lab-on-a-chip devices. Most of the research has been focused on how entire systems operate, both experimentally and through simulation...
Show moreMEMS (Micro Electro Mechanical Systems) have received a great deal of attention in both the research and industrial sectors in recent decades. The broad MEMS category, microfluidics, the study of fluid flow through channels measured on the micrometer scale, plays an important role in devices such as compact heat exchangers, chemical and biological sensors, and lab-on-a-chip devices. Most of the research has been focused on how entire systems operate, both experimentally and through simulation. This paper strives, systematically, to map them through experimentation of the previous to untested realm of pressure loss through laminar square-profile sweeping-bend microchannels. Channels were fabricated in silicone and designed so a transducer could detect static pressure across a very specific length of channel with a desired bend. A wide variety of Reynolds numbers, bend radii, and bend angles were repeatedly tested over long periods in order to acquire a complete picture of pressure loss with in the domain of experimentation. Nearly all situations tested were adequately captured with the exception of some very low loss points that were too small to detect accurately. The bends were found to match laminar straight-duct theory at Reynolds numbers below 30. As Reynolds numbers increased, however, minor losses began to build and the total pressure loss across the bend rose above straight-duct predictions. A new loss coefficient equation was produced that properly predicted pressure losses for sweeping-bends at higher Reynolds numbers; while lower flow ranges are left to laminar flow loss for prediction.
Show less - Date Issued
- 2008
- Identifier
- CFE0002091, ucf:47537
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002091
- Title
- SOUNDING ROCKET REDESIGN AND OPTIMIZATION FOR PAYLOAD EXPANSION AND IN FLIGHT TELEMETRY TRANSMITTAL.
- Creator
-
Huffman, Matthew, Chew, Larry, University of Central Florida
- Abstract / Description
-
Due to renewed interest in the sub orbital rocket program of the Florida Space Authority and a surplus of Super Loki Sounding Rockets, an effort to improve the usefulness of this surplus is herein undertaken. Currently, the capacity of the payload compartment in the upper stage of the Super Loki system is very limited. A redesign of the upper stage will allow larger and more versatile payloads to be carried, assuming the appropriate design parameters are met. It has therefore been undertaken...
Show moreDue to renewed interest in the sub orbital rocket program of the Florida Space Authority and a surplus of Super Loki Sounding Rockets, an effort to improve the usefulness of this surplus is herein undertaken. Currently, the capacity of the payload compartment in the upper stage of the Super Loki system is very limited. A redesign of the upper stage will allow larger and more versatile payloads to be carried, assuming the appropriate design parameters are met. It has therefore been undertaken to create a design procedure that is comprehensive in scope in order to affect this redesign. This procedure includes five major components. These are the separation of the upper and lower stages, the stability of the vehicle, the altitude and velocity of the rocket, the mechanical loading and finally the aerodynamic heating. Semi-empirical methods were used whenever possible to allow comparison with experimental data. This procedure revealed that larger diameter upper stages might be used up to a reasonable maximum of four inches. The four-inch modification is found to be stable as were the smaller modifications considered. The altitude and velocity of the rocket were found via a simple Eulerian time stepping scheme resulting in an estimate of approximately 148,000ft for the four-inch dart. The mechanical loading analysis allowed for the material selection for the rocket components. Reinforced steel fins and carbon fiber tubing, for the payload section, are adequate to meet expected mechanical loads, those being, 16000psi for the fin section due to launcher forces, 22800psi for compressive plus torsion forces on the composite section and 18000psi for the ejection stresses. An ablative coating is considered necessary to counteract the 760ºF temperatures along the composite tube.
Show less - Date Issued
- 2005
- Identifier
- CFE0000546, ucf:46440
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000546
- Title
- PRESSURE LOSSES EXPERIENCED BY LIQUID FLOW THROUGH PDMS MICROCHANNELS WITH ABRUPT AREA CHANGES.
- Creator
-
Wehking, Jonathan, Chew, Larry, University of Central Florida
- Abstract / Description
-
Given the surmounting disagreement amongst researchers in the area of liquid flow behavior at the microscale for the past thirty years, this work presents a fundamental approach to analyzing the pressure losses experienced by the laminar flow of water (Re = 7 to Re = 130) through both rectangular straight duct microchannels (of widths ranging from 50 to 130 micrometers), and microchannels with sudden expansions and contractions (with area ratios ranging from 0.4 to 1.0) all with a constant...
Show moreGiven the surmounting disagreement amongst researchers in the area of liquid flow behavior at the microscale for the past thirty years, this work presents a fundamental approach to analyzing the pressure losses experienced by the laminar flow of water (Re = 7 to Re = 130) through both rectangular straight duct microchannels (of widths ranging from 50 to 130 micrometers), and microchannels with sudden expansions and contractions (with area ratios ranging from 0.4 to 1.0) all with a constant depth of 104 micrometers. The simplified Bernoulli equations for uniform, steady, incompressible, internal duct flow were used to compare flow through these microchannels to macroscale theory predictions for pressure drop. One major advantage of the channel design (and subsequent experimental set-up) was that pressure measurements could be taken locally, directly before and after the test section of interest, instead of globally which requires extensive corrections to the pressure measurements before an accurate result can be obtained. Bernoulli's equation adjusted for major head loses (using Darcy friction factors) and minor head losses (using appropriate K values) was found to predict the flow behavior within the calculated theoretical uncertainty (~12%) for all 150+ microchannels tested, except for sizes that pushed the aspect ratio limits of the manufacturing process capabilities (microchannels fabricated via soft lithography using PDMS). The analysis produced conclusive evidence that liquid flow through microchannels at these relative channel sizes and Reynolds numbers follow macroscale predictions without experiencing any of the reported anomalies expressed in other microfluidics research. This work also perfected the delicate technique required to pierce through the PDMS material and into the microchannel inlets, exit and pressure ports without damaging the microchannel. Finally, two verified explanations for why prior researchers have obtained poor agreement between macroscale theory predictions and tests at the microscale were due to the presence of bubbles in the microchannel test section (producing higher than expected pressure drops), and the occurrence of localized separation between the PDMS slabs and thus, the microchannel itself (producing lower than expected pressure drops).
Show less - Date Issued
- 2008
- Identifier
- CFE0002289, ucf:47865
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002289
- Title
- LOW REYNOLDS NUMBER WATER FLOW CHARACTERISTICS THROUGH RECTANGULAR MICRO DIFFUSERS/NOZZLES WITH A PRIMARY FOCUS ON MAJOR/MINOR PRESSURE LOSS, STATIC PRESSURE RECOVERY, AND FLOW SEPARATION.
- Creator
-
Hallenbeck, Kyle, Chew, Larry, University of Central Florida
- Abstract / Description
-
The field of microfluidics has recently been gathering a lot of attention due to the enormous demand for devices that work in the micro scale. The problem facing many researchers and designers is the uncertainty in using macro scaled theory, as it seems in some situations they are incorrect. The general idea of this work was to decide whether or not the flow through micro diffusers and nozzles follow the same trends seen in macro scale theory. Four testing wafers were fabricated using PDMS...
Show moreThe field of microfluidics has recently been gathering a lot of attention due to the enormous demand for devices that work in the micro scale. The problem facing many researchers and designers is the uncertainty in using macro scaled theory, as it seems in some situations they are incorrect. The general idea of this work was to decide whether or not the flow through micro diffusers and nozzles follow the same trends seen in macro scale theory. Four testing wafers were fabricated using PDMS soft lithography including 38 diffuser/nozzle channels a piece. Each nozzle and diffuser consisted of a throat dimension of 100μm x 50μm, leg lengths of 142μm, and half angles varying from 0o 90o in increments of 5o. The flow speeds tested included throat Reynolds numbers of 8.9 89 in increments of 8.9 using distilled water as the fluid. The static pressure difference was measured from the entrance to the exit of both the diffusers and the nozzles and the collected data was plotted against a fully attached macro theory as well as Idelchik's approximations. Data for diffusers and nozzles up to HA = 50o hints at the idea that the flow is neither separating nor creating a vena contracta. In this region, static pressure recovery within diffuser flow is observed as less than macro theory would predict and the losses that occur within a nozzle are also less than macro theory would predict. Approaching a 50o HA and beyond shows evidence of unstable separation and vena contracta formation. In general, it appears that there is a micro scaled phenomenon happening in which flow gains available energy when the flow area is increased and looses available energy when the flow area decreases. These new micro scaled phenomenon observations seem to lead to a larger and smaller magnitude of pressure loss respectively.
Show less - Date Issued
- 2008
- Identifier
- CFE0002391, ucf:47772
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002391
- Title
- STRESS SHIELDING MINIMIZED IN FEMORAL HIP IMPLANTS: A FINITE ELEMENT MODEL OPTIMIZED BY VIRTUAL COMPATIBILITY.
- Creator
-
feldt, christian, Chew, Larry, University of Central Florida
- Abstract / Description
-
Bone mechanics and traditional implant materials produce a recurring problem for patients of total hip arthroplasty (THA): the bone is "shielded" from the loading it has become accustomed to over many years of development. Bone adheres to what is called "Wolff's Law", meaning it is an adaptive structure which adjusts its geometry based on the loads experienced over its life. As the new femoral hip implant transmits reduced stresses to the remaining bone, bone tissue atrophies at the interface...
Show moreBone mechanics and traditional implant materials produce a recurring problem for patients of total hip arthroplasty (THA): the bone is "shielded" from the loading it has become accustomed to over many years of development. Bone adheres to what is called "Wolff's Law", meaning it is an adaptive structure which adjusts its geometry based on the loads experienced over its life. As the new femoral hip implant transmits reduced stresses to the remaining bone, bone tissue atrophies at the interface, permitting loosening of the implant, pain, and thereby obliging additional surgery to correct the issue. In the present work, a methodology is endeavored for creating an innovative design for femoral hip implants. The approach uncouples the finite element implant model from the bone model, in order to focus solely on expected behavior within the implant while considering the varying material behavior in unique directions and locations. The implant's internal geometry is optimized in order to better match typical, intact bone conditions. The eventual design reduces extreme changes in stresses within remnant bone such that the implant will remain implanted for greater periods of time without additional surgical attention.
Show less - Date Issued
- 2011
- Identifier
- CFE0004051, ucf:52891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004051