Current Search: Cooper, David (x)
View All Items
- Title
- A COMPARATIVE ANALYSIS OF GREEN ROOF DESIGNS INCLUDING DEPTH OF MEDIA, DRAINAGE LAYER MATERIALS, AND POLLUTION CONTROL MEDIA.
- Creator
-
Kelly, Matt, Cooper, C. David, University of Central Florida
- Abstract / Description
-
Population growth has lead to an increase in development and impervious areas in urban settings. Post-development conditions cause several problems for stormwater management such as limited space for stormwater storage systems and the conveyance of pollution picked up by runoff to near by water bodies. Green Roofs with cisterns have been shown to attenuate the peak flow of storm events and reduce the pollution load leaving a site and entering nearby water bodies. The purpose of this research...
Show morePopulation growth has lead to an increase in development and impervious areas in urban settings. Post-development conditions cause several problems for stormwater management such as limited space for stormwater storage systems and the conveyance of pollution picked up by runoff to near by water bodies. Green Roofs with cisterns have been shown to attenuate the peak flow of storm events and reduce the pollution load leaving a site and entering nearby water bodies. The purpose of this research is to expand the available research data on green roofs with cisterns by investigating the water quality and hydrology effects of different green roof designs including depth of media, an additional pollution control layer beneath the growth media, and different drainage layer materials. Furthermore, a comparison study is performed on the cistern water quality, direct filtrate water quality, and control roof filtrate water quality. Results show that phosphorus concentrations are lower when using a pollution control layer beneath the growing media, and that evapotransporation and filtrate factor values from the 4-inch media and the 8-inch media are approximately equal for one year. However, hydrograph results show that the 8-inch media design has a lower peak flow and longer attenuation when compared to the 4-inch media design for a single storm event. Furthermore, the drainage layer material has no significant effect on the water quality or hydrology of the green roof discharge. The data also emphasizes the importance and effectiveness of the incorporation of a cistern into a green roof system.
Show less - Date Issued
- 2008
- Identifier
- CFE0002107, ucf:47552
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002107
- Title
- DETERMINING EMISSIONS FROM LANDFILLS AND CREATING ODOR BUFFER DISTANCES.
- Creator
-
Guarrieloo, Nicholas, Cooper, David, University of Central Florida
- Abstract / Description
-
With population growing every year, more and more people are looking for places to live. This can lead to construction of houses near and around landfills. As homes get closer to landfills, the odors these landfills produce become more of a problem, and lead to an increase in odor complaints. Modeling these odors and recommending odor buffer distances will help determine limits on how close to landfills new homes should be allowed. This should help reduce future odor complaints. To solve this...
Show moreWith population growing every year, more and more people are looking for places to live. This can lead to construction of houses near and around landfills. As homes get closer to landfills, the odors these landfills produce become more of a problem, and lead to an increase in odor complaints. Modeling these odors and recommending odor buffer distances will help determine limits on how close to landfills new homes should be allowed. This should help reduce future odor complaints. To solve this problem one must accurately estimate odorous gas emissions from the landfill. Often odors can be indicated by methane emissions. A new technique using hundreds of ambient VOC concentrations, which are taken from landfills on a quarterly basis, was used to invert and solve the Gaussian dispersion equation for methane emissions. In this technique, Voronoi diagram theory was used to automatically locate numerous point sources for optimal positioning relative to receptors. The newly solved methane emission rates can now be input into a dispersion model, and the resulting methane concentrations used as surrogates for odors around the landfill. One of the most important steps in the analysis is to determine which model is best to use for odor modeling. There are many considerations that go into this decision, such as how much time it takes to run the model, how accurate the model is, and how easy the model is to use. Two current models CALPUFF and AERMOD were compared. In the modeling, methane was used as a surrogate for the odors. Since landfills handle many different combinations of waste, the type of odor may vary from landfill to landfill. In this test case, H2S was assumed to be the main contributor to the odor emitted from the landfill, and the H2S-to-methane ratio was used to estimate downwind H2S concentrations from the modeled methane concentrations. Once an air dispersion model is selected, it can be used to model odors and to develop a graphical screening method to show where these odors are most likely to occur and how strong they will be. This can be used to determine how close to a landfill homes can be built without having significant odor impacts bothering these new residents. Also, this tool can be used for improving landfill gas management. Several example scenarios include the possibility of not enough soil cover placed on the waste, leaks from an aging collection system, or cracks in the collection piping created by the settling of waste.
Show less - Date Issued
- 2009
- Identifier
- CFE0002527, ucf:47646
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002527
- Title
- REVIEWING THE EFFECTS OF ALTERNATIVE FUELS, AVERAGE SPEED AND IDLING TIME ON EMISSIONS FROM ORANGE COUNTY SCHOOL BUS FLEET.
- Creator
-
Bayat, Ali, Cooper, C. David, University of Central Florida
- Abstract / Description
-
Orange County, FL has been experiencing ozone concentrations in the past several years which in some cases exceeded the national and state standards. The high concentration of ground level ozone can cause a variety of health problems including chest pain, coughing, throat irritation, and congestion or it can worsen bronchitis, emphysema, and asthma. Other effects include reduction of agricultural crop and commercial forest yields, lower growth and survivability of tree seedlings, and higher...
Show moreOrange County, FL has been experiencing ozone concentrations in the past several years which in some cases exceeded the national and state standards. The high concentration of ground level ozone can cause a variety of health problems including chest pain, coughing, throat irritation, and congestion or it can worsen bronchitis, emphysema, and asthma. Other effects include reduction of agricultural crop and commercial forest yields, lower growth and survivability of tree seedlings, and higher susceptibility of plant to diseases, pests and other stresses such as harsh weather. The ozone generation rate is directly related to the ambient concentration of nitrogen oxides (NOx) and volatile organic carbons (VOCs). These two air pollutants, mostly produced from combustion of fossil fuels, react with oxygen to form ozone in presence of sunlight. In urban areas, ozone generation rate can be decreased by reduction of ozone precursors, NOx and VOCs. The Air Quality Research group of University of Central Florida proposed that one of the emission reduction strategies be for school bus fleets in the area. School buses were chosen because of their important impact on ambient air quality in general and on student health in particular. There were about 473,000 school buses in the 2004-05 school year nationwide which traveled for a total mileage of about 4 billion miles in that year. Orange County Public School (OCPS) system owns about 1400 school buses which traveled about 17 million miles in 2005-06 school year, serving 71000 students. The use of diesel fuels, Ultra Low Sulfur Diesel (ULSD, diesel fuel containing 15ppm sulfur) and Biodiesel (B20, a mixture of 20% biodiesel and 80% ULSD), were chosen as the first proposed action to be studied. Also the effects of transportation parameters, average speed and idling time on fleet emissions were selected to be reviewed. This report reviews the fuel option and transportation parameters, effects on school bus fleet emissions and it does a comparison analysis in order to show advantages and disadvantages of each fuel. The Conventional Diesel (CD) and ULSD emissions were estimated by using MOBILE6.2 model, and effects of B20 on emissions were derived from published studies. It was found that using B20 or ULSD can reduce the emissions significantly for the most of major pollutants but in the case of NOx, the percentage changes is not certain yet and more investigation is required. Emissions vary for different average speeds and 27 miles per hour can be defined as the optimum average speed. Also reduction of idling time is an excellent control option for decreasing emissions, and should be considered for OCPS.
Show less - Date Issued
- 2007
- Identifier
- CFE0001726, ucf:47308
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001726
- Title
- QUANTIFICATION OF EMISSIONS FROM LAWN AND GARDEN EQUIPMENT IN CENTRAL FLORIDA.
- Creator
-
Crum, Megan, Cooper, C. David, University of Central Florida
- Abstract / Description
-
The objective of this study was to evaluate the practical limits of EPA s NONROAD 2005 to accurately simulate Central Florida conditions, especially with regard to lawn and garden equipment. In particular we investigated a NONROAD emission inventory using default inputs and then created a locally specific emission inventory. These emission inventories were prepared for Orange, Osceola, and Seminole county and focused only on the VOC and NOx emissions caused by lawn and garden equipment....
Show moreThe objective of this study was to evaluate the practical limits of EPA s NONROAD 2005 to accurately simulate Central Florida conditions, especially with regard to lawn and garden equipment. In particular we investigated a NONROAD emission inventory using default inputs and then created a locally specific emission inventory. These emission inventories were prepared for Orange, Osceola, and Seminole county and focused only on the VOC and NOx emissions caused by lawn and garden equipment. The model was manipulated to assess its ability to represent this specific category of nonroad equipment for a given airshed first by running a base case scenario using default data and then by developing a locally-specific scenario through administration of a survey. The primary purpose of the survey was to evaluate local values for equipment population, equipment characteristics, activity estimates, and other relevant information. To develop these local input estimates, data were collected concerning population and usage statistics in the Central Florida area and were combined with emission factors, load factors, allocation factors, and other needed values that have been previously established by the U.S. EPA. The results of the NONROAD model were compared with the resulting emission estimates calculated from locally derived inputs, and as a result of the analysis an accurate emission estimate was calculated. In addition, several possible air quality action steps were further assessed according to feasibility, cost, and predicted emission benefit. These potential management projects were further investigated by assessing the success of other similar projects in other cities in an effort to establish specific costs and emission benefits as they relate to the tri-county area.
Show less - Date Issued
- 2007
- Identifier
- CFE0001834, ucf:47357
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001834
- Title
- DETERMINING FLORIDA LANDFILL ODOR BUFFER DISTANCES USING AERMOD.
- Creator
-
Figueroa, Veronica, Cooper, C. David, University of Central Florida
- Abstract / Description
-
As U.S. landfills continue to grow in size, concerns about odorous gas emissions from landfills are increasing. For states that are expanding in population, such as Florida, odors from landfills are a major concern because new housing developments, needed to accommodate the rapid population growth, are creeping closer and closer to the existing landfills. As homes get closer to landfills, odor complaints are likely to become more frequent, causing landfill managers increased problems with...
Show moreAs U.S. landfills continue to grow in size, concerns about odorous gas emissions from landfills are increasing. For states that are expanding in population, such as Florida, odors from landfills are a major concern because new housing developments, needed to accommodate the rapid population growth, are creeping closer and closer to the existing landfills. As homes get closer to landfills, odor complaints are likely to become more frequent, causing landfill managers increased problems with public interactions. Odor buffer zones around landfills need to be established to give municipalities tools to help prevent the building of future homes too close to landfills. Using the latest air dispersion model, AERMOD, research predicted downwind odor concentrations from a Central Florida landfill. Accurate estimates of methane emissions throughout a Central Florida landfill were determined using a new technique developed as part of this research that uses hundreds of ambient air VOC measurements taken within a landfill, as receptors. Hundreds of point sources were placed on the landfill, and the standard Gaussian dispersion equations were solved by matrix inversion methods. The methane emission rates were then used as surrogates for odor emissions to predict downwind odor concentrations via AERMOD. By determining a critical zone around a landfill with regards to odor, stakeholders will be able to meet regulatory issues and assist their communities. Other beneficial uses from this research include: determination of existing gas collection system efficiencies, calculation of fugitive greenhouse gas emissions from municipal solid waste (MSW) landfills, and improved landfill gas management.
Show less - Date Issued
- 2008
- Identifier
- CFE0002200, ucf:47910
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002200
- Title
- A STUDY OF CENTRAL FLORIDA NONROAD VOC AND NOX EMISSIONS AND POTENTIAL ACTIONS TO REDUCE EMISSIONS.
- Creator
-
Radford, Michael, Cooper, C. David, University of Central Florida
- Abstract / Description
-
Ground-level ozone is harmful to the human respiratory system, as well as the environment. The national EPA 8-hour ozone standard for ground-level ozone was reduced from 85 parts per billion (ppb) to 75 ppb in 2008, and trends from previous years show that some of the counties in Central Florida could be in danger of violation. Violation means "non attainment" status; in which the county is ordered by EPA to develop specific implementation plans to reduce its emissions. The objective of this...
Show moreGround-level ozone is harmful to the human respiratory system, as well as the environment. The national EPA 8-hour ozone standard for ground-level ozone was reduced from 85 parts per billion (ppb) to 75 ppb in 2008, and trends from previous years show that some of the counties in Central Florida could be in danger of violation. Violation means "non attainment" status; in which the county is ordered by EPA to develop specific implementation plans to reduce its emissions. The objective of this study was to compile an emissions inventory of volatile organic compounds (VOCs) and nitrogen oxides (NOx) from nonroad equipment in Osceola, Seminole, and Orange Counties (OSO) in Central Florida, and to develop possible action steps to reduce those emissions. This is important because VOC and NOx emissions are precursors to ground-level ozone. Thus, compiling emissions inventories is important to identify high VOC and NOx emitters. Mobile and point sources have long been the highest emitters of VOC and NOx and have therefore been targeted and monitored since the Clean Air Act of 1970, but the nonroad sources (such as construction and lawn equipment) have only been regulated since the 1990s. Using the NONROAD and NMIM modeling programs, the highest nonroad emitters of VOC for Central Florida were found to be lawn/garden equipment, and boating equipment, emitting a combined percentage of 77% of the total nonroad mobile source VOC. Construction equipment contributed 67% of the total nonroad mobile source emissions of NOx in Central Florida. The components of these categories were also analyzed to find the largest individual sources of VOC and NOx. Of the individual sources, lawn mowers and outboard boat engines were found to be the largest sources of VOCs. Of the NOx sources, all the construction equipment components had a relatively similar level of NOx emissions. Next, action steps were developed to reduce emissions, focusing on the high emitters, along with an estimated cost and feasibility for each measure. Of these steps, implementing a ban on leafblowers, and reducing use of lawn mowers, edgers, trimmers, etc. seemed to be the most effective for reducing VOCs. Although these are effective measures, the cost and feasibility of both pose challenges. The best action step for reducing NOx emissions in construction equipment seemed to be by simply reducing idling of equipment on job sites. This also poses challenges in feasibility and enforcement by management. Further, constant on/off cycles could result in decreasing the useful life of the older construction equipment. Finally, a survey was conducted with various construction managers and companies to find out the typical equipment and quantity needed for land clearing/grubbing, as well as the typical use, idling time, and total project time for each piece of equipment on a 10-acre site, under various conditions. The purpose of the study was to develop a rough estimate for the average amount of VOC and NOx emissions that will be produced per acre of land clearing activities, and to estimate the emissions reductions and cost savings if idling of the equipment was reduced.
Show less - Date Issued
- 2009
- Identifier
- CFE0002850, ucf:48064
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002850
- Title
- THE ACUTE TOXICITY OF GROUND RECYCLED AUTOMOBILE TIRES ON AQUATIC LIFE WITH MODEL SPECIES P. PROMELAS.
- Creator
-
Baldassari, Trillian, Cooper, David, University of Central Florida
- Abstract / Description
-
Used tires have the potential for becoming popular in pollution control media used in stormwater applications including pervious pavement sub bases, green roof growth media, and upflow filters. Using tire crumb to decrease nutrients can minimize impacts on ecology while reducing the human footprint left by used tires. However, if tire crumb is not examined for toxicity, the ecological balance could unknowingly be disrupted. This research tested the acute toxicity of tire crumb in aquatic...
Show moreUsed tires have the potential for becoming popular in pollution control media used in stormwater applications including pervious pavement sub bases, green roof growth media, and upflow filters. Using tire crumb to decrease nutrients can minimize impacts on ecology while reducing the human footprint left by used tires. However, if tire crumb is not examined for toxicity, the ecological balance could unknowingly be disrupted. This research tested the acute toxicity of tire crumb in aquatic systems by finding the Lethal Concentration for 50% kill (LC50). Using an extreme tire crumb load, P. promelas (fathead minnow) were exposed to leachates created with tire crumb and several different types of water including distilled water, tap water, and detention pond water. For distilled and tap water, the addition of tire crumb increased the survival of P. promelas. For detention pond water, the addition of tire crumb decreased the survival of P. promelas, though only enough to find an LC50 for detention pond water influenced immediately by stormwater runoff. An LC50 was found when 100 percent tire crumb filtrate is prepared with 25 grams of tire crumb per liter of detention pond water collected directly after a storm. The LC50 found is resultant of a tire crumb load significantly higher than what can be expected in the environment. Based on this research, tire crumb is considered non-threatening to aquatic fish and safe to use with detention pond water.
Show less - Date Issued
- 2008
- Identifier
- CFE0002282, ucf:47850
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002282
- Title
- A 2009 MOBILE SOURCE EMISSIONS INVENTORY OF THE UNIVERSITY OF CENTRAL FLORIDA.
- Creator
-
Clifford, Johanna, Cooper, David, University of Central Florida
- Abstract / Description
-
This thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non...
Show moreThis thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non-road equipment such as lawnmowers, leaf blowers, small maintenance vehicles, and other such equipment utilized on campus contributes to a significant portion to the total emissions from the university. UCF has recently become the second largest university in the nation (with over 56,000 students enrolled in the fall 2010 semester), and contributes significantly to VOC, NOx, and CO2 emissions in Central Florida area. In this project, students, faculty, staff, and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type, and age distribution of the personal vehicles of students, faculty, administration, and staff as well as their bus, car-pool, and alternate transportation usage. The EPA approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from non-road equipment and on campus UCF fleet vehicles. The results of the UCF mobile source emissions inventory are reported and compared to a recently completed emissions inventory for the entire three-county area in Central Florida.
Show less - Date Issued
- 2011
- Identifier
- CFE0003923, ucf:48704
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003923
- Title
- 2008 EMISSIONS INVENTORY OF CENTRAL FLORIDA.
- Creator
-
Ross, Jessica, Cooper, Dr. C. David, University of Central Florida
- Abstract / Description
-
An emissions inventory of VOCs, NOx, and CO2 was conducted for three central Florida counties – Orange, Seminole, and Osceola (OSO) – for calendar year 2008. The inventory utilized three programs: MOBILE6, NONROAD2005, and EDMS (Emissions and Dispersion Modeling System) to model on-road mobile, non-road mobile, and airport emissions, respectively. Remaining point and area source data was estimated from the Florida Department of Environmental Protection (FDEP) and the U.S. Environmental...
Show moreAn emissions inventory of VOCs, NOx, and CO2 was conducted for three central Florida counties – Orange, Seminole, and Osceola (OSO) – for calendar year 2008. The inventory utilized three programs: MOBILE6, NONROAD2005, and EDMS (Emissions and Dispersion Modeling System) to model on-road mobile, non-road mobile, and airport emissions, respectively. Remaining point and area source data was estimated from the Florida Department of Environmental Protection (FDEP) and the U.S. Environmental Protection Agency's (U.S. EPA) 2008 emissions inventory. The previous OSO emissions inventory was done in 2002 and in the six years between inventories, there have been changes in population, commerce, and pollution control technology in central Florida which have affected the region's emissions. It is important to model VOC and NOx emissions to determine from where the largest proportions are coming. VOCs and NOx are ozone precursors, and in the presence of heat and sunlight, they react to form ozone (O3). Ozone is regulated by the U.S. Environmental Protection Agency through the FDEP. The current standard is 75 parts per billion (ppb) and Orange County's average is 71 ppb. A new standard (which will likely be about 65 ppb) is being developed and is scheduled to be announced by July 2011. If OSO goes into non-attainment, it will need to prepare a contingency plan for how to reduce emissions to submit to the FDEP for approval. The 2008 inventory determined that approximately 71,300 tons of VOCs and 59,000 tons of NOx were emitted that year. The majority of VOCs came from on-road mobile sources (33%) and area sources (43%), while the majority of NOx came from on-road mobile sources (64%) and non-road mobile sources (17%). Other major sources of VOCs included gasoline powered non-road mobile equipment (lawn and garden equipment), consumer solvents, cooking, and gasoline distribution. With the numbers that could be determined for CO2 emissions, on-road mobile and point sources were responsible for 93%. Of the point source CO2 emissions, almost all of it (87%) came from one large coal-fired power plant in Orange County.
Show less - Date Issued
- 2011
- Identifier
- CFE0003703, ucf:48834
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003703
- Title
- ADDRESSING SCIENTIFIC LITERACY THROUGH CONTENT AREA READING AND PROCESSES OF SCIENTIFIC INQUIRY: WHAT TEACHERS REPORT.
- Creator
-
Cooper, Susan, Boote, David, University of Central Florida
- Abstract / Description
-
The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem...
Show moreThe purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student inquiry. Most of the teachers were actively looking for reading materials and strategies to facilitate student understanding of science concepts, but they did not want to give up limited class time attempting methods that have not been proven to be successful in science classrooms.
Show less - Date Issued
- 2004
- Identifier
- CFE0000266, ucf:46218
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000266
- Title
- The Immaculate Condemnation.
- Creator
-
Robertson, Corey, Raimundi-Ortiz, Wanda, Cooper, Larry, Isenhour, David, University of Central Florida
- Abstract / Description
-
My work is a continuously evolving self portrait formulated by a combination of past experiences and influences. The Immaculate Condemnation body of work is a cathartic reaction that confronts Catholic Sin and rebels against gender conformity. As both a confirmed Catholic and transgender woman, I speak from an authentic voice that seeks open conversation regarding these topics. I also hope to demystify the transsexual body for the non-transgendered viewer. Additionally, I use allegoric...
Show moreMy work is a continuously evolving self portrait formulated by a combination of past experiences and influences. The Immaculate Condemnation body of work is a cathartic reaction that confronts Catholic Sin and rebels against gender conformity. As both a confirmed Catholic and transgender woman, I speak from an authentic voice that seeks open conversation regarding these topics. I also hope to demystify the transsexual body for the non-transgendered viewer. Additionally, I use allegoric imagery to communicate my interpretation of beauty, power, horror, and sex. I combine performance, photography, sculpture, video, audio, and graphic design to execute my installations. I intentionally develop environments that both attract and repulse the viewer in order to mimic the relationship I have with Catholicism and Gender Issues.
Show less - Date Issued
- 2012
- Identifier
- CFE0004431, ucf:49334
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004431
- Title
- Life-cycle Greenhouse Gas Emissions and Water Footprint of Residential Waste Collection and Management Systems.
- Creator
-
Maimoun, Mousa, Reinhart, Debra, McCauley, Pamela, Cooper, David, University of Central Florida
- Abstract / Description
-
Three troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste...
Show moreThree troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste collection where fuel plays a significant rule. The goal of this study was to select the best RCC program, MSW management practice, and collection fuel. For this study, field data were collected for RCC programs across the State of Florida. The garbage and recyclables generation rates were compared based on garbage collection frequency and use of dual-stream (DS) or single-stream (SS) recyclables collection system. The assessment of the collection programs was evaluated based on GHG emissions, while for the first time, the water footprint (WFP) was calculated for the most commonly used MSW management practices namely landfilling, combustion, and recycling. In comparing alternative collection fuels, two multi-criteria decision analysis (MCDA) tools, TOPSIS and SAW, were used to rank fuel alternatives for the waste collection industry with respect to a multi-level environmental and financial decision matrix. The results showed that SS collection systems exhibited more than a two-fold increase in recyclables generation rates, and a ~2.2-fold greater recycling efficiency compared to DS. The GHG emissions associated with the studied collection programs were estimated to be between 36 and 51 kg CO2eq per metric ton of total household waste (garbage and recyclables), depending on the garbage collection frequency, recyclables collection system (DS or SS) and recyclables compaction. When recyclables offsets were considered, the GHG emissions associated with programs using SS were estimated between -760 and -560, compared to between -270 and -210 kg CO2eq per metric ton of total waste for DS programs. In comparing the WFP of MSW management practices, the results showed that the WFP of waste landfilling can be reduced through implementing bioreactor landfilling. The WFP of electricity generated from waste combustion was less than the electricity from landfill gas. Overall, the WFP of electricity from MSW management practices was drastically less than some renewable energy sources. In comparing the WFP offsets of recyclables, the recycling of renewable commodities, e.g. paper, contributed to the highest WFP offsets compared to other commodities, mainly due to its raw material acquisition high WFPs. This suggests that recycling of renewable goods is the best management practice to reduce the WFP of MSW management. Finally, the MCDA of alternative fuel technologies revealed that diesel is still the best option, followed by hydraulic-hybrid waste collection vehicles (WCVs), then landfill gas (LFG) sourced natural gas, fossil natural gas and biodiesel. The elimination of the fueling station criterion from the financial criteria ranked LFG-sourced natural gas as the best option; suggesting that LFG sourced natural gas is the best alternative to fuel WCV when accessible. In conclusion, field data suggest that RCC system design can significantly impact recyclables generation rate and efficiency, and consequently determine environmental and economic impact of collection systems. The WFP concept was suggested as a method to systematically assess the impact of MSW management practices on water resources. A careful consideration of the WFP of MSW management practices and energy recovered from MSW management facilities is essential for the sustainable appropriation of water resources and development.
Show less - Date Issued
- 2015
- Identifier
- CFE0005656, ucf:50174
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005656
- Title
- Development of a chemical kinetic model for the combustion of a synthesis gas from a fluidized-bed sewage sludge gasifier in a thermal oxidizer.
- Creator
-
Martinez, Luis, Cooper, David, Randall, Andrew, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
The need for sustainability has been on the rise. Municipalities are finding ways of reducing waste, but also finding ways to reduce energy costs. Waste-to-energy is a sustainable method that may reduce bio-solids volume while also producing energy. In this research study bio-solids enters a bubbling bed gasifier and within the gasifier a synthesis gas is produced. This synthesis gas exits through the top of the gasifier and enters a thermal oxidizer for combustion. The thermal oxidizer has...
Show moreThe need for sustainability has been on the rise. Municipalities are finding ways of reducing waste, but also finding ways to reduce energy costs. Waste-to-energy is a sustainable method that may reduce bio-solids volume while also producing energy. In this research study bio-solids enters a bubbling bed gasifier and within the gasifier a synthesis gas is produced. This synthesis gas exits through the top of the gasifier and enters a thermal oxidizer for combustion. The thermal oxidizer has an innovative method of oxidizing the synthesis gas. The thermal oxidizer has two air injection sites and the possibility for aqueous ammonia injection for further NOx reduction. Most thermal oxidizers already include an oxidizer such as air in the fuel before it enters the thermal oxidizer; thus making this research and operation different from many other thermal oxidizers and waste-to-energy plants.The reduction in waste means less volume loads to a landfill. This process significantly reduces the amount of bio-solids to a landfill. The energy produced from the synthesis is beneficial for any municipality, as it may be used to run the waste-to-energy facility. The purpose of this study is to determine methods in which operators may configure future plants to reduce NOx emissions. NOx mixed with volatile organic compounds (VOC) and sunlight, produce ozone (O3) a deadly gas at high concentrations.This study developed a model to determine the best methods to reduce NOx emissions. Results indicate that a fuel-rich then fuel-lean injection scheme results in lower NOx emissions. This is because at fuel-rich conditions not all of the ammonia in the first air ring is converted to NOx, but rather a partial of the ammonia is converted to NOx and N2 and then the second air ring operates at fuel-lean which further oxidizes the remaining ammonia which converts to NOx, but also a fraction to N2. If NOx standards reach more stringency then aqueous ammonia injection is a recommended method for NOx reduction; this method is also known as selective non-catalytic reduction (SNCR).The findings in this study will allow operators to make better judgment in the way that they operate a two air injection scheme thermal oxidizer. The goal of the operator and the organization is to meet air quality standards and this study aims at finding ways to reduce emissions, specifically NOx.
Show less - Date Issued
- 2014
- Identifier
- CFE0005528, ucf:50301
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005528
- Title
- Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions.
- Creator
-
Hardin, Mike, Wanielista, Martin, Cooper, David, Randall, Andrew, University of Central Florida
- Abstract / Description
-
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data...
Show moreStormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model.The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data.The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes.The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005503, ucf:50338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005503
- Title
- An Improved Biosolid Gasifier Model.
- Creator
-
McLean, Hannah, Cooper, David, Randall, Andrew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
As populations increase and cities become denser, the production of waste, both sewage sludge and food biomass, increases exponentially while disposal options for these wastes are limited. Landfills have minimal space for biosolids; countries are now banning ocean disposal methods for fear of the negative environmental impacts. Agricultural application of biosolids cannot keep up with the production rates because of the accumulation of heavy metals in the soils. Gasification can convert...
Show moreAs populations increase and cities become denser, the production of waste, both sewage sludge and food biomass, increases exponentially while disposal options for these wastes are limited. Landfills have minimal space for biosolids; countries are now banning ocean disposal methods for fear of the negative environmental impacts. Agricultural application of biosolids cannot keep up with the production rates because of the accumulation of heavy metals in the soils. Gasification can convert biosolids into a renewable energy source that can reduce the amount of waste heading to the landfills and reduce our dependence on fossil fuels. A recently published chemical kinetic computer model for a fluidized-bed sewage sludge gasifier (Champion, Cooper, Mackie, (&) Cairney, 2014) was improved in this work based on limited experimental results obtained from a bubbling fluidized-bed sewage sludge gasifier at the MaxWest facility in Sanford, Florida and published information from the technical literature. The gasifier processed sewage sludge from the communities surrounding Sanford and was operated at various air equivalence ratios and biosolid feed rates. The temperature profile inside of the gasifier was recorded over the span of four months, and an average profile was used in the base case scenario. The improved model gave reasonable predictions of the axial bed temperature profile, syngas composition, heating value of the syngas, gas flow rate, and carbon conversion. The model was validated by comparing the simulation temperature profile data with the measured temperature profile data. An overall heat loss coefficient was calculated for the gasification unit to provide a more accurate energy balance. Once the model was equipped with a heat loss coefficient, the output syngas temperature closely matched the operational data from the MaxWest facility.The model was exercised at a constant equivalence ratio at varying temperatures, and again using a constant temperature with varying equivalence ratios. The resulting syngas compositions from these exercises were compared to various literature sources. It was decided that some of the reactions kinetics needed to be adjusted so that the change in syngas concentration versus change in bed temperature would more closely match the literature. The reaction kinetics for the Water-Gas Shift and Boudouard reactions were modified back to their original values previously obtained from the literature.
Show less - Date Issued
- 2015
- Identifier
- CFE0005663, ucf:50199
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005663
- Title
- A Comparison of Aluminum and Iron-based Coagulants for Treatment of Surface Water in Sarasota County, Florida.
- Creator
-
Yonge, David, Duranceau, Steven, Randall, Andrew, Cooper, Charles, University of Central Florida
- Abstract / Description
-
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were...
Show moreIn this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.
Show less - Date Issued
- 2012
- Identifier
- CFE0004621, ucf:49936
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004621
- Title
- Keren.
- Creator
-
Bradon, Shelly, Poindexter, Carla, Cooper, Larry, Isenhour, David, Price, Mark, University of Central Florida
- Abstract / Description
-
The intent of this thesis is to recognize the everyday victories of a child living with physical disabilities. This complicated subject matter has forced the exploration of a variety of media to successfully communicate the story; drawing, painting, china painting, altered books and sculpture have all become part of the process.At the age of 8 months the subject, Keren Hernandez, was diagnosed with Bilateral Closed- lip Schizencephaly, a rare disorder that inhibits development. Since the...
Show moreThe intent of this thesis is to recognize the everyday victories of a child living with physical disabilities. This complicated subject matter has forced the exploration of a variety of media to successfully communicate the story; drawing, painting, china painting, altered books and sculpture have all become part of the process.At the age of 8 months the subject, Keren Hernandez, was diagnosed with Bilateral Closed- lip Schizencephaly, a rare disorder that inhibits development. Since the diagnosis seven years ago her family has struggled to overcome these challenges, committing to avail themselves to every resource possible. I began painting and drawing to incorporate the experiences of Keren's life into a body of work; eventually we began drawing together and collaboration has naturally evolved; she and her family are an integral part of this work.
Show less - Date Issued
- 2014
- Identifier
- CFE0005137, ucf:50719
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005137
- Title
- Assessing Biofiltration Pretreatment for Ultrafiltration Membrane Processes.
- Creator
-
Cumming, Andrea, Duranceau, Steven, Cooper, David, Randall, Andrew, Wang, Dingbao, Yestrebsky, Cherie, University of Central Florida
- Abstract / Description
-
An engineered biological filtration (biofiltration) process treating a nutrient-enriched, low-alkalinity, organic-laden surface water downstream of conventional coagulation-clarification and upstream of an ultrafiltration (UF) membrane process was assessed for its treatment effectiveness. The impact of biofiltration pretreatment on UF membrane performance was evaluated holistically by investigating the native source water chemistry and extending the analysis into the drinking water...
Show moreAn engineered biological filtration (biofiltration) process treating a nutrient-enriched, low-alkalinity, organic-laden surface water downstream of conventional coagulation-clarification and upstream of an ultrafiltration (UF) membrane process was assessed for its treatment effectiveness. The impact of biofiltration pretreatment on UF membrane performance was evaluated holistically by investigating the native source water chemistry and extending the analysis into the drinking water distribution system. The biofiltration process was also compared in treatment performance to two alternative pretreatment technologies, including magnetic ion exchange (MIEX(&)#174;) and granular activated carbon (GAC) adsorption.The MIEX(&)#174;, GAC adsorption, and biologically active carbon (BAC) filtration pretreatments were integrated with conventional pretreatment then compared at the pilot-scale. Comparisons were based on collecting data regarding operational requirements, dissolved organic carbon (DOC) reduction, regulated disinfection byproduct (DBP) formation, and improvement on the downstream UF membrane operating performance. UF performance, as measured by the temperature corrected specific flux or mass transfer coefficient (MTC), was determined by calculating the percent MTC improvement relative to the existing conventional-UF process that served as the control. The pretreatment alternatives were further evaluated based on cost and non-cost considerations.Compared to the MIEX(&)#174; and GAC pretreatment alternatives, which achieved effective DOC removal (40 and 40 percent, respectively) and MTC improvement (14 and 30 percent, respectively), the BAC pretreatment achieved the lowest overall DOC removal (5 percent) and MTC improvement (4.5 percent). While MIEX(&)#174; relies on anion exchange and GAC relies on adsorption to target DOC removal, biofiltration uses microorganisms attached on the filter media to remove biodegradable DOC.Two mathematical models that establish an empirical relationship between the MTC improvement and the dimensionless alkalinity to substrate (ALK/DOC) ratio were developed. By combining the biofiltration results from the present research with findings of previous studies, an empirical relationship between the MTC improvement versus the ALK/DOC ratio was modeled using non-linear regression in Minitab(&)#174;. For surface water sources, UF MTC improvement can be simulated as a quadratic or Gaussian distribution function of the gram C/gram C dimensionless ALK/DOC ratio. According to the newly developed empirical models, biofiltration performance is optimized when the alkalinity to substrate ratio is between 10 and 14. For the first time a model has thus been developed that allows for a predictive means to optimize the operation of biofiltration as a pretreatment prior to UF membrane processes treating surface water.
Show less - Date Issued
- 2015
- Identifier
- CFE0005595, ucf:50260
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005595