Current Search: DeSalvo, Richard (x)
View All Items
- Title
- Noise, Stability, and Linewidth Performance of 10-GHz Optical Frequency Combs Generated from the Nested Cavity Architecture.
- Creator
-
Bagnell, Kristina, Delfyett, Peter, Likamwa, Patrick, Schulzgen, Axel, DeSalvo, Richard, University of Central Florida
- Abstract / Description
-
Optical frequency combs with wide mode spacing and low timing jitter are relied upon for both time domain and frequency domain applications. It has been previously demonstrated that surrounding a low-Q semiconductor laser chip with a long external fiber cavity and inserting a high finesse Fabry(-)P(&)#233;rot etalon into this cavity can produce a mode-locked laser with the desired high repetition rate and narrow optical mode linewidths which are of benefit to applications like photonic analog...
Show moreOptical frequency combs with wide mode spacing and low timing jitter are relied upon for both time domain and frequency domain applications. It has been previously demonstrated that surrounding a low-Q semiconductor laser chip with a long external fiber cavity and inserting a high finesse Fabry(-)P(&)#233;rot etalon into this cavity can produce a mode-locked laser with the desired high repetition rate and narrow optical mode linewidths which are of benefit to applications like photonic analog-to-digital conversion and astronomical spectrograph calibration. With this nested cavity architecture, the quality factor of the resonator is effectively determined by the product of the individual quality factors of the long fiber cavity and the short etalon cavity. Passive cavity Q and intracavity power both influence mode-locked laser mode linewidth, optical frequency stability, and the phase noise of the photodetected output. The nested cavity architecture has been demonstrated at 10-GHz mode spacing a few times with increasing etalon finesse and once with a high saturation power semiconductor gain medium to increase intracavity power. No one system has been fully characterized for long term optical frequency stability, phase noise and timing jitter, and optical mode linewidth. As a result, the trade-offs involved with advancing any one element (e.g. increasing cavity Q by adding fiber length and maintaining a broad spectral region of low dispersion for broad-bandwidth operation) have not been fully examined. In this work, three cavity elements are identified for study to influence cavity Q, effective noise spur suppression, and intracavity power, and the trade-offs of pushing those parameters to new limits are experimentally demonstrated. In the process, we also demonstrate nested cavity systems with fractional frequency instability on the order of 10^-13, timing jitter as low as 20 fs, and Hz-level linewidths.
Show less - Date Issued
- 2017
- Identifier
- CFE0006717, ucf:51883
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006717
- Title
- Broad Bandwidth Optical Frequency Combs from Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers.
- Creator
-
Klee, Anthony, Delfyett, Peter, Vanstryland, Eric, Schulzgen, Axel, DeSalvo, Richard, University of Central Florida
- Abstract / Description
-
Mode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be...
Show moreMode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be engineered to operate in different wavelength bands of interest. However, lasers based on InP/InGaAsP quantum well devices which operate in the important telecom C-band have thus far been relatively limited in bandwidth as compared to competing platforms. Broad bandwidth is critical for increasing information carrying capacity and enabling femtosecond pulse production for coherent continuum generation in offset frequency stabilization. The goal of the work in this dissertation is to maximize the bandwidth of semiconductor lasers, bringing them closer to reaching their full potential as all-purpose sources.Dispersion in the laser cavity is a primary limiter of the achievable bandwidth in the laser architectures covered in this dissertation. In the first part of this dissertation, an accurate self-referenced technique based on multi-heterodyne detection is developed for measuring the spectral phase of a mode-locked laser. This technique is used to characterize the dispersion in several semiconductor laser architectures. In the second part, this knowledge is applied to reduce the dispersion in a laser cavity using a programmable pulse shaper, and thus increase the laser's spectral bandwidth. We demonstrate a 10 GHz frequency comb with bandwidth spanning 5 THz, representing a twofold improvement over the previously achievable bandwidth. Finally, this laser is converted to a stand-alone system by reconfiguring it as a coupled opto-electronic oscillator and a novel stabilization scheme is presented.
Show less - Date Issued
- 2016
- Identifier
- CFE0006129, ucf:51184
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006129
- Title
- Injection Locking of Semiconductor Mode-Locked Lasers for Long-Term Stability of Widely Tunable Frequency Combs.
- Creator
-
Williams, Charles, Delfyett, Peter, Hagan, David, Likamwa, Patrick, Vanstryland, Eric, DeSalvo, Richard, University of Central Florida
- Abstract / Description
-
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall...
Show moreHarmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted modes of 36 dB, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of actively harmonically mode-locked lasers, the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEOs), is also demonstrated and characterized extensively.
Show less - Date Issued
- 2013
- Identifier
- CFE0004774, ucf:49805
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004774