Current Search: Golsen, Matthew (x)
View All Items
- Title
- INVESTIGATION ON INTERACTIONS OF UNSTEADY WAKES AND FILM COOLING ON AN ANNULAR ENDWALL.
- Creator
-
Golsen, Matthew, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
In recent decades, greater interest in the effect of rotational wakes on gas turbine film cooling applications has produced increasing numbers of studies on these unsteady phenomena. Wakes are primarily shed from upstream components such as transition duct walls, stator vanes, and rotors. Studies have shown that in areas of unsteady flow, the best performing parameters in conventional steady investigations may not be the best for unsteady applications. One common method of modeling the...
Show moreIn recent decades, greater interest in the effect of rotational wakes on gas turbine film cooling applications has produced increasing numbers of studies on these unsteady phenomena. Wakes are primarily shed from upstream components such as transition duct walls, stator vanes, and rotors. Studies have shown that in areas of unsteady flow, the best performing parameters in conventional steady investigations may not be the best for unsteady applications. One common method of modeling the unsteady wake interaction in subsonic flows is the use of spoke wheel type wake generators using cylindrical rods to produce the velocity detriment and local increase in turbulence intensity. Though the impact of wakes have been studied for decades on airfoil losses and boundary layer transition, only recently has the film cooling and wake interaction been investigated. The existing work is primarily on leading edge models and airfoil cascades. The primary parameter characterizing the unsteady wakes is the dimensionless or reduced frequency known as the Strouhal number. The film cooling jet itself has dominant frequencies resulting from the shear and the jet trailing wake shedding, depending on the injectant flow rate. There exist great deficiencies in the fundamental understanding of the interaction of these two frequencies. Heat transfer considerations are also relatively recent being studied only since the early 1990's. Heat transfer coefficients and film cooling effectiveness have been reported for leading edge and linear airfoil cascades. In the case of the linear cascade, no data can be taken near the endwall region due to the varying tangential velocity of wake generating rod. The current work expands on this initiative incorporating a sector annular duct as the test setting for the rotating wakes focusing on this endwall region. Studies in to the effect of the rods in this alternate orientation include film cooling effectiveness using temperature sensitive paint, impact of wake rod to film cooling hole diameter ratio, and time accurate numerical predictions and comparisons with experimental work. Data are shown for a range of momentum flux ratios and Strouhal numbers. The result of this work sets the stage for the complete understanding of the unsteady wake and inclined jet interaction.
Show less - Date Issued
- 2011
- Identifier
- CFH0004094, ucf:44796
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004094
- Title
- Experimental and Numerical Investigation of Aerodynamic Unsteadiness in a Gas Turbine Midframe.
- Creator
-
Golsen, Matthew, Kapat, Jayanta, Vasu Sumathi, Subith, Sultanian, Bijay, University of Central Florida
- Abstract / Description
-
As modern gas turbines implement more and more complex geometry to increase life and efficiency, attention to unsteady aerodynamic behavior becomes more important. Computational optimization schemes are contributing to advanced geometries in order to reduce aerodynamic losses and increase the life of components. These advanced geometries are less representative of cylinder and backward facing steps which have been used as analogous geometries for most aerodynamic unsteadiness research. One...
Show moreAs modern gas turbines implement more and more complex geometry to increase life and efficiency, attention to unsteady aerodynamic behavior becomes more important. Computational optimization schemes are contributing to advanced geometries in order to reduce aerodynamic losses and increase the life of components. These advanced geometries are less representative of cylinder and backward facing steps which have been used as analogous geometries for most aerodynamic unsteadiness research. One region which contains a high degree of flow unsteadiness and a direct influence on engine performance is that of the MidFrame. The MidFrame (or combustor-diffuser system) is the region encompassing the main gas path from the exit of the compressor to the inlet of the first stage turbine. This region contains myriad flow scenarios including diffusion, bluff bodies, direct impingement, high degree of streamline curvature, separated flow, and recirculation. This represents the most complex and diverse flow field in the entire engine. The role of the MidFrame is to redirect the flow from the compressor into the combustion system with minimal pressure loss while supplying high pressure air to the secondary air system. Various casing geometries, compressor exit diffuser shapes, and flow conditioning equipment have been tested to reduce pressure loss and increase uniformity entering the combustors. Much of the current research in this area focuses on aero propulsion geometries with annular combustors or scaled models of the power generation geometries. Due to the complexity and size of the domain accessibility with physical probe measurements becomes challenging. The current work uses additional measurement techniques to measure flow unsteadiness in the domain. The methodology for identifying and quantifying the sources of unsteadiness are developed herein. Sensitivity of MidFrame unsteadiness to compressor exit conditions is shown for three different velocity profiles. The result is an extensive database of measurements which can serve as a benchmark for radical new designs to ensure that the unsteadiness levels do not supersede previous successful levels.
Show less - Date Issued
- 2013
- Identifier
- CFE0004851, ucf:49682
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004851