Current Search: Gour-Tsyh, Yeh (x)
View All Items
- Title
- A THREE-DIMENSIONAL BAY/ESTUARY MODEL TO SIMULATE WATER QUALITY TRANSPORT.
- Creator
-
Yu, Jing, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
This thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and...
Show moreThis thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and erroneous formulation and parameterization of these reactions, and (2) fast reactions and slow reactions are decoupled, which enables robust numerical integrations. The system of species transport equations is transformed to reaction-extent transport equations, which is then approximated with two subsets: algebraic equations and kinetic-variables transport equations. As a result, the model alleviates the needs of using simple partitions for fast reactions. With the diagonalization strategy, it makes the inclusion of arbitrary number of fast and kinetic reactions relatively easy, and, more importantly, it enables the formulation and parameterization of kinetic reactions one by one. To demonstrate the general paradigm, QAUL2E was recasted in the mode of a reaction network. The model then was applied to the Loxahatchee estuary to study its response to a hypothetical biogeochemical loading from its surrounding drainage. Preliminary results indicated that the model can simulate four interacting biogeochemical processes: algae kinetics, nitrogen cycle, phosphorus cycle, and dissolved oxygen balance.
Show less - Date Issued
- 2006
- Identifier
- CFE0001372, ucf:46991
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001372
- Title
- A NEW PARADIGM OF MODELING WATERSHED WATER QUALITY.
- Creator
-
Zhang, Fan, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
Accurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive...
Show moreAccurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive chemical transport in river/stream networks of watershed systems; (2) sediment and reactive chemical transport in overland shallow water of watershed systems; and (3) reactive chemical transport in three-dimensional subsurface systems. Through the decomposition of the system of species transport equations via Gauss-Jordan column reduction of the reaction network, fast reactions and slow reactions are decoupled, which enables robust numerical integrations. Species reactive transport equations are transformed into two sets: nonlinear algebraic equations representing equilibrium reactions and transport equations of kinetic-variables in terms of kinetically controlled reaction rates. As a result, the model uses kinetic-variables instead of biogeochemical species as primary dependent variables, which reduces the number of transport equations and simplifies reaction terms in these equations. For each time step, we first solve the advective-dispersive transport of kinetic-variables. We then solve the reactive chemical system node by node to yield concentrations of all species. In order to obtain accurate, efficient and robust computations, five numerical options are provided to solve the advective-dispersive transport equations; and three coupling strategies are given to deal with the reactive chemistry. Verification examples are compared with analytical solutions to demonstrate the numerical accuracy of the code and to emphasize the need of implementing various numerical options and coupling strategies to deal with different types of problems for different application circumstances. Validation examples are presented to evaluate the ability of the model to replicate behavior observed in real systems. Hypothetical examples with complex reaction networks are employed to demonstrate the design capability of the model to handle field-scale problems involving both kinetic and equilibrium reactions. The deficiency of current practices in the water quality modeling is discussed and potential improvements over current practices using this model are addressed.
Show less - Date Issued
- 2005
- Identifier
- CFE0000448, ucf:46405
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000448
- Title
- THREE DIMENSIONAL MODELING OF WEKIVA SPRINGSHED WITH WASH123D.
- Creator
-
Paladagu, Sandeep, Gour-Tsyh, Yeh, University of Central Florida
- Abstract / Description
-
This thesis presents a three-dimensional groundwater modeling of Wekia springshed in central Florida using a numerical model, WASH123D. Springs have historically played an important role in Florida's history. The Wekiva River is a spring-fed system associated with about 19 springs connected to the Floridan aquifer. With increased urbanization and population growth in this region, there has been an increased strain on the water levels of Floridan aquifer which is a major source of potable...
Show moreThis thesis presents a three-dimensional groundwater modeling of Wekia springshed in central Florida using a numerical model, WASH123D. Springs have historically played an important role in Florida's history. The Wekiva River is a spring-fed system associated with about 19 springs connected to the Floridan aquifer. With increased urbanization and population growth in this region, there has been an increased strain on the water levels of Floridan aquifer which is a major source of potable water. Maintaining groundwater recharge to the aquifer is a key factor of the viability of the regional water supply as well as Wekiva ecosystem. Hence, the first-principle, physics-based watershed model WASH123D has been applied to conduct the study of Wekiva "springshed", which is the recharge area and watershed contributing groundwater and surface water to the spring. In this work, the hydrogeologic conditions of the Wekiva springshed are discussed followed by the modeling details such as mathematical background, domain discretization and initial and boundary conditions considered. Finally, the results from the model are discussed. The Wekiva WASH123D model was run to evaluate the average, steady state 1995 hydrological conditions. The distribution of simulated Floridan aquifer system groundwater levels using WASH123D shows very good agreement with the field observations at corresponding locations.
Show less - Date Issued
- 2005
- Identifier
- CFE0000647, ucf:46530
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000647
- Title
- AN INTEGRATED HYDROLOGY/HYDRAULIC AND WATER QUALITY MODEL FOR WATERSHED-SCALE SIMULATIONS.
- Creator
-
Wang, Cheng, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
This dissertation presents the design of an integrated watershed model, WASH123D version 3.0, a first principle, physics-based watershed-scale model of integrated hydrology/hydraulics and water quality transport. This numerical model is comprised of three modules: (1) a one-dimensional (1-D) simulation module that is capable of simulating separated and coupled fluid flow, sediment transport and reaction-based water quality transport in river/stream/canal networks and through control...
Show moreThis dissertation presents the design of an integrated watershed model, WASH123D version 3.0, a first principle, physics-based watershed-scale model of integrated hydrology/hydraulics and water quality transport. This numerical model is comprised of three modules: (1) a one-dimensional (1-D) simulation module that is capable of simulating separated and coupled fluid flow, sediment transport and reaction-based water quality transport in river/stream/canal networks and through control structures; (2) a two-dimensional (2-D) simulation module, capable of simulating separated and coupled fluid flow, sediment transport, and reactive biogeochemical transport and transformation in two-dimensional overland flow systems; and (3) a three-dimensional (3-D) simulation module, capable of simulating separated and coupled fluid flow and reactive geochemical transport and transformation in three-dimensional variably saturated subsurface systems. The Saint Venant equation and its simplified versions, diffusion wave and kinematic wave forms, are employed for surface fluid flow simulations and the modified Richards equation is applied for subsurface flow simulation. The reaction-based advection-dispersion equation is used as the governing equation for water quality transport. Several physically and mathematically based numerical options are provided to solve these governing equations for different application purposes. The surface-subsurface water interactions are considered in the flow module and simulated on the basis of continuity of interface. In the transport simulations, fast/equilibrium reactions are decoupled from slow/kinetic reactions by the decomposition of reaction networks; this enables robust numerical integrations of the governing equation. Kinetic variables are adopted as primary dependent variables rather than biogeochemical species to reduce the number of transport equations and simplify the reaction terms. In each time step, hydrologic/hydraulic variables are solved in the flow module; kinetic variables are then solved in the transport module. This is followed by solving the reactive chemical system node by node to yield concentrations of all species. Application examples are presented to demonstrate the design capability of the model. This model may be of interest to environmental scientists, engineers and decision makers as a comprehensive assessment tool to reliably predict the fluid flow as well as sediment and contaminant transport on watershed scales so as to evaluate the efficacy and impact of alternative watershed management and remediation techniques prior to incurring expense in the field.
Show less - Date Issued
- 2009
- Identifier
- CFE0002947, ucf:47955
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002947
- Title
- NUMERICAL MODELING OF DISSIMILATORY IRON REDUCTION IN SEDIMENTS AT A FIELD SITE.
- Creator
-
Chen, Chun-Wen, Yeh, Gour-Tsyh (George), University of Central Florida
- Abstract / Description
-
The primary purpose of this study is to identify the guniversalh rate formulations with scaled-dependent parameters for the biological reduction of hematite. Three possible rate formulations were proposed to describe the bioreduction rate of hematite, and two kinds of simulation were conducted to validate the formulations and parameters with both batch and column experimental data: a reaction-based biogeochemical (batch) modeling with BIOGEOCHEM 1.0 and a reactive biogeochemical...
Show moreThe primary purpose of this study is to identify the guniversalh rate formulations with scaled-dependent parameters for the biological reduction of hematite. Three possible rate formulations were proposed to describe the bioreduction rate of hematite, and two kinds of simulation were conducted to validate the formulations and parameters with both batch and column experimental data: a reaction-based biogeochemical (batch) modeling with BIOGEOCHEM 1.0 and a reactive biogeochemical transport (column) modeling via HYDROGEOCHEM 4.0. Based on the results of simulations, only the dual Monod kinetic with inhibition rate formulation with respect to the concentrations of lactate, ßFeOOH, and Fe2+ under certain initial concentration of dissimilatory metal-reducing bacterium could fit the experimental data well. Our results also revealed that the equilibrium reaction rate for the surface hydration of hematite may have to be substituted with the kinetic rate formulation.
Show less - Date Issued
- 2005
- Identifier
- CFE0000644, ucf:46538
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000644
- Title
- Incorporating Remotely Sensed Data into Coastal Hydrodynamic Models: Parameterization of Surface Roughness and Spatio-Temporal Validation of Inundation Area.
- Creator
-
Medeiros, Stephen, Hagen, Scott, Weishampel, John, Wang, Dingbao, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
This dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness...
Show moreThis dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness parameterization schemes, an application of a cutting edge remotely sensed inundation detection method to assess the performance of a tidal model, and a preliminary investigation into using 3-dimensional airborne laser scanning data to parameterize surface roughness.A thorough academic review of wetting and drying algorithms employed by contemporary numerical tidal models was conducted. Since nearly all population centers and valuable property are located in the overland regions of the model domain, the coastal models must adequately describe the inundation physics here. This is accomplished by techniques that generally fall into four categories: Thin film, Element removal, Depth extrapolation, and Negative depth. While nearly all wetting and drying algorithms can be classified as one of the four types, each model is distinct and unique in its actual implementation.The use of spatial elevation data is essential to accurate coastal modeling. Remotely sensed LiDAR is the standard data source for constructing topographic digital terrain models (DTM). Hydrographic soundings provide bathymetric elevation information. These data are combined to form a seamless topobathy surface that is the foundation for distributed coastal models. A three-point inverse distance weighting method was developed in order to account for the spatial variability of bathymetry data referenced to tidal datums. This method was applied to the Tampa Bay region of Florida in order to produce a seamless topobathy DTM.Remotely sensed data also contribute to the parameterization of surface roughness. It is used to develop land use / land cover (LULC) data that is in turn used to specify spatially distributed bottom friction and aerodynamic roughness parameters across the model domain. However, these parameters are continuous variables that are a function of the size, shape and density of the terrain and above-ground obstacles. By using LULC data, much of the variation specific to local areas is generalized due to the categorical nature of the data. This was tested by comparing surface roughness parameters computed based on field measurements to those assigned by LULC data at 24 sites across Florida. Using a t-test to quantify the comparison, it was proven that the parameterizations are significantly different. Taking the field measured parameters as ground truth, it is evident that parameterizing surface roughness based on LULC data is deficient.In addition to providing input parameters, remotely sensed data can also be used to assess the performance of coastal models. Traditional methods of model performance testing include harmonic resynthesis of tidal constituents, water level time series analysis, and comparison to measured high water marks. A new performance assessment that measures a model's ability to predict the extent of inundation was applied to a northern Gulf of Mexico tidal model. The new method, termed the synergetic method, is based on detecting inundation area at specific points in time using satellite imagery. This detected inundation area is compared to that predicted by a time-synchronized tidal model to assess the performance of model in this respect. It was shown that the synergetic method produces performance metrics that corroborate the results of traditional methods and is useful in assessing the performance of tidal and storm surge models. It was also shown that the subject tidal model is capable of correctly classifying pixels as wet or dry on over 85% of the sample areas.Lastly, since it has been shown that parameterizing surface roughness using LULC data is deficient, progress toward a new parameterization scheme based on 3-dimensional LiDAR point cloud data is presented. By computing statistics for the entire point cloud along with the implementation of moving window and polynomial fit approaches, empirical relationships were determined that allow the point cloud to estimate surface roughness parameters. A multi-variate regression approach was chosen to investigate the relationship(s) between the predictor variables (LiDAR statistics) and the response variables (surface roughness parameters). It was shown that the empirical fit is weak when comparing the surface roughness parameters to the LiDAR data. The fit was improved by comparing the LiDAR to the more directly measured source terms of the equations used to compute the surface roughness parameters. Future work will involve using these empirical relationships to parameterize a model in the northern Gulf of Mexico and comparing the hydrodynamic results to those of the same model parameterized using contemporary methods. In conclusion, through the work presented herein, it was demonstrated that incorporating remotely sensed data into coastal models provides many benefits including more accurate topobathy descriptions, the potential to provide more accurate surface roughness parameterizations, and more insightful performance assessments. All of these conclusions were achieved using data that is readily available to the scientific community and, with the exception of the Synthetic Aperture Radar (SAR) from the Radarsat-1 project used in the inundation detection method, are available free of charge. Airborne LiDAR data are extremely rich sources of information about the terrain that can be exploited in the context of coastal modeling. The data can be used to construct digital terrain models (DTMs), assist in the analysis of satellite remote sensing data, and describe the roughness of the landscape thereby maximizing the cost effectiveness of the data acquisition.
Show less - Date Issued
- 2012
- Identifier
- CFE0004271, ucf:49506
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004271