Current Search: Hernandez, Florencio (x)
View All Items
Pages
- Title
- THREE-PHOTON ABSORPTION PROCESS IN ORGANIC DYES ENHANCED BY SURFACE PLASMON RESONANCE.
- Creator
-
Cohanoschi, Ion, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when...
Show moreMulti-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of σ3' are small (10-81 cm6s2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the -electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective σ3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds, respectively. We proved that the enhancement is a direct consequence of the electric field enhancement at a metal/buffer interface. Next, motivated by the demands for new materials with enhanced nonlinear optical properties, we studied the 3PA of Hematoporphyrin IX and J-aggregate supramolecular systems. As a result, we were able to propose the use of 3PA in photodynamic therapy using Photofrin, the only drug approved by the FDA for PDT.
Show less - Date Issued
- 2006
- Identifier
- CFE0001362, ucf:46981
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001362
- Title
- TRULY NON INVASIVE GLUCOSE OPTICAL SENSOR BASED ON METAL NANOPARTICLES GENERATION.
- Creator
-
Garcia, Marisol, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Diabetes is a disease that causes many complications in human normal function. This disease represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications can be accomplished through tight control of glucose levels in blood. In the last decades many different glucose sensors have been developed, however, none of them are really non invasive. Herein, we present the study of the application of gold and silver nanoparticles with different shapes and aspect...
Show moreDiabetes is a disease that causes many complications in human normal function. This disease represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications can be accomplished through tight control of glucose levels in blood. In the last decades many different glucose sensors have been developed, however, none of them are really non invasive. Herein, we present the study of the application of gold and silver nanoparticles with different shapes and aspect ratios to detect glucose traces in human fluids such as tears and sweat. This is to our knowledge the first truly non invasive glucose optical sensor, with extraordinary limit of detection and selectivity. The best proven nanoparticles for this application were gold nanospheres. Gold nanospheres were synthesized using chloroauric acid tri-hydrated (HAuCl4.3H2O) in solution, in the presence of glucose and ammonia hydroxide. The higher the glucose concentration, the higher the number of nanoparticles generated, thus the higher the extinction efficiency of the solution. The linear dependence of the extinction efficiency of the gold nanoparticles solution with glucose concentration makes of this new sensor suitable for direct applications in biomedical sensing. Our approach is based on the well known Tollens test.
Show less - Date Issued
- 2006
- Identifier
- CFE0000953, ucf:46736
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000953
- Title
- POLARIZATION DEPENDENT TWO-PHOTON ABSORPTION PROPERTIES OF CHIRAL MOLECULES.
- Creator
-
Toro, Carlos, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Molecules that are non-superimposable on their mirror image are named chiral or optically active compound. Over the years, molecular chirality has played an essential role in the understanding of fundamental aspects associated the origin of life, drug and food technologies and, asymmetric catalysis, among others. Moreover, most of the groundbreaking discoveries and advances made in this field have happened due to the development of spectroscopic techniques based on the natural asymmetry of...
Show moreMolecules that are non-superimposable on their mirror image are named chiral or optically active compound. Over the years, molecular chirality has played an essential role in the understanding of fundamental aspects associated the origin of life, drug and food technologies and, asymmetric catalysis, among others. Moreover, most of the groundbreaking discoveries and advances made in this field have happened due to the development of spectroscopic techniques based on the natural asymmetry of the enantiomers and their ability to preferentially absorb right or left polarized light. For instance, circular dichroism (CD), which measures the difference in absorption between these two states of polarized light, has emerged as one of the most useful spectroscopic methods to identify and characterize chiral compounds. Unfortunately, CD is based on linear absorption which, in most common organic molecules, takes place in the UV region of the spectrum where the majority of organic solvents absorb as well. This certainly imposes limitations in the indiscriminated applicability of this technique to the study of chiral chromophores of biological interest in non-aqueous solutions. Consequently, a systematic and comprehensive characterization of the electronic and optical properties of such molecular entities still remains a major issue to be addressed. On this regard, nonlinear optics offers new alternatives to overcome some of the shortcomings of the standard linear CD-based spectroscopy. In order to surmount the existent limitations in this field and deepen in the fundamental understanding of chiral systems, we have mainly directed the attention of our research to the experimental and theoretical study of the polarization dependent two-photon absorption (2PA) of several chiral azo-compounds and binaphthol derivatives in solution. The first part of this dissertation (Chapters I-IV) covers a full characterization of the linear and nonlinear optical properties of a series of non-chiral and chiral azo derivatives. The combination of experimental techniques such as absorption, fluorescence, excitation anisotropy, circular dichroism, two-photon absorption and two-photon absorption circular-linear dichroism in combination with density functional theory calculations allowed us to unambiguously distinguish and assign the spectral position of the main electronic transitions (n-* and -*) in azobenzene derivatives. Our results represent a major contribution to the understanding of the electronic structure of these organic chromophores which have been reported of potential interest in the design of optoelectronic devices. Then, Chapter V describes the development of a novel experimental technique called the synchronized double L-scan for the study of polarization dependent multiphoton absorption in chiral samples. The high sensitivity of this technique resides in the use of ÃÂ"twinÃÂ" pulses to account for energy and mode fluctuations of the excitation pulse when determining absorption nonlinearities as a function of the light polarization. The robustness of this method was validated by measuring the first ever reported two-photon absorption circular dichroism (2PA-CD) spectrum on a chiral binaphthol derivative in solution. Finally, Chapters VI and VII compile an ample experimental and theoretical investigation of the chirality-dependent 2PA of axial enantiomers in solution. We combined the use of the synchronized double L-scan technique with state-of-the-art density functional theory calculations to provide a precise and reliable description of the contribution of the different electronic excited states to the 2PA-CD and 2PA-CLD spectra. Our findings are foreseen to have a tremendous impact in the comprehension of some of the most fundamental aspects of chiral phenomena.
Show less - Date Issued
- 2010
- Identifier
- CFE0003284, ucf:48529
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003284
- Title
- A PRELIMINARY STUDY OF A NON-INVASIVE GLUCOSE SENSOR BASED ON A MERCURY SENSOR.
- Creator
-
Wood, Erin, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Diabetes mellitus is a potentially lethal disease that affects 7.6 percent of American people. In the US, it is recognized as the 6th leading cause of death. Failure to control blood glucose levels (BGL) in patients with either type of diabetes can lead to other serious complications as well, such as loss of limb, blindness and other health problems. Controlling and monitoring the BGL in post-op and intensive care patients in the hospital is also vital to their health. Currently the most...
Show moreDiabetes mellitus is a potentially lethal disease that affects 7.6 percent of American people. In the US, it is recognized as the 6th leading cause of death. Failure to control blood glucose levels (BGL) in patients with either type of diabetes can lead to other serious complications as well, such as loss of limb, blindness and other health problems. Controlling and monitoring the BGL in post-op and intensive care patients in the hospital is also vital to their health. Currently the most reliable method of monitoring BGL is through an invasive procedure which monitors the amount of glucose in blood directly. A non-invasive glucose sensor would drastically improve the treatment of sensitive patients, and serve to improve the quality of diabetic patients’ lives. This glucose sensor is strongly based upon the mercury sensor developed by F.E. Hernandez and his colleagues. Glucose is used as a reducing agent to reduce mercury from Hg2+ to Hg0, which will form amalgams with the gold nanorods in solution. The change in aspect ratio of gold nanorods leads to a change in the UV-Visible spectrum of the solution. The blue shift seen was measured and correlated with the glucose concentration of the system. The system was then tested varying conditions such as pH, temperature, gold nanorod concentration, and mercury concentration. A preliminary study of the kinetics of the reaction was also done. The results showed a limit of detection of 1.58x10-13 and a linear dynamic range covering the concentrations of human tear glucose levels that are currently cited in the literature.
Show less - Date Issued
- 2009
- Identifier
- CFE0002754, ucf:48110
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002754
- Title
- Techniques for characterization of third order optical nonlinearities.
- Creator
-
Ferdinandus, Manuel, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
This dissertation describes the development of novel techniques for characterization of nonlinear properties of materials. The dissertation is divided into two parts, a background and theory section and a technique development section.In the background and theory section we explain the origins of the nonlinear optical response of materials across many different spatial and temporal scales. The mechanisms that we are most interested in are the electronic nuclear and reorientational responses,...
Show moreThis dissertation describes the development of novel techniques for characterization of nonlinear properties of materials. The dissertation is divided into two parts, a background and theory section and a technique development section.In the background and theory section we explain the origins of the nonlinear optical response of materials across many different spatial and temporal scales. The mechanisms that we are most interested in are the electronic nuclear and reorientational responses, which occur on the range of sub-femtosecond to several picoseconds. The electronic mechanism is due to the electrons of a material experiencing a non-parabolic potential well due a strong electric field and occurs on the sub-femtosecond timescale. The nuclear or vibrational effect results from the motion of the nuclei of the atoms and typically occurs on the order of a few hundred femtoseconds. Finally the reorientational nonlinearity is due to the alignment of the molecule to the electric field, which alters the polarizability of the molecule and typically occurs on the scale of a few picoseconds. There are other mechanisms can induce nonlinear optical effects such as thermal effects and electrostriction, but these effects typically occur on much larger timescales than we are interested in, and hence will not be a major focus of this dissertation.In the nonlinear characterization techniques section, we describe previous research into the field of nonlinear optical characterization techniques, describing the techniques used to characterize the nonlinear properties of materials, their applications and limitations. We will trace the development of two recently developed techniques for nonlinear spectroscopy ? the Dual Arm Z-Scan and the Beam Deflection techniques. The Dual Arm Z-Scan technique is an enhancement of the standard Z-Scan technique that allows for the measurement of small nonlinear signals in the presence of large background signals. This technique allows for the measurement of materials under certain conditions not previously measureable using the standard Z-Scan technique, such materials with low damage thresholds, poor solubility and thin films.In addition to the Dual Arm Z-Scan, we have developed a new method for characterizing nonlinear refraction, the Beam Deflection technique, which is a variation of the photothermal beam deflection technique previously used to measure very weak absorption signals. This technique offers relative ease of use, the ability to measure the absolute magnitude and sign of both the real and imaginary parts of ?^((3)) simultaneously with high sensitivity. We fully develop the theory for materials with instantaneous and non-instantaneous nonlinearities, with nonlinear absorption and group velocity mismatch. We also demonstrate the power of this technique to separate the isotropic and reorientational contributions of liquids by examining the temporal response and polarization dependences.Lastly, we summarize our conclusions and describe two promising future research directions that would benefit from the Dual Arm Z-Scan and Beam Deflection techniques.
Show less - Date Issued
- 2013
- Identifier
- CFE0005164, ucf:50709
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005164
- Title
- Translocation of a semiflexible polymer through a nanopore.
- Creator
-
Adhikari, Ramesh, Bhattacharya, Aniket, Chen, Bo, Kokoouline, Viatcheslav, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
The transport of a biomolecule through a nanopore occurs in many biological functions such as, DNA or RNA transport across nuclear pores and the translocation of proteins across the eukaryotic endoplasmic reticulum. In addition to the biological processes, it has potential applications in technology such as, drug delivery, gene therapy, and single molecule sensing. The DNA translocation through a synthetic nanopore device is considered as the basis for cheap and fast sequencing technology....
Show moreThe transport of a biomolecule through a nanopore occurs in many biological functions such as, DNA or RNA transport across nuclear pores and the translocation of proteins across the eukaryotic endoplasmic reticulum. In addition to the biological processes, it has potential applications in technology such as, drug delivery, gene therapy, and single molecule sensing. The DNA translocation through a synthetic nanopore device is considered as the basis for cheap and fast sequencing technology. Motivated by the experimental advances, many theoretical models have been developed. In this thesis, we explore the dynamics of driven translocation of a semiflexible polymer through a nanopore in two dimensions (2D) using Langevin dynamics (LD) simulation. By carrying out extensive simulation as a function of different parameters such as, driving force, length and rigidity of the chain, viscosity of the solvent, and diameter of the nanopore, we provide a detailed description of the translocation process. Our studies are relevant for fundamental understanding of the translocation process which is essential for making accurate nano-pore based devices.
Show less - Date Issued
- 2015
- Identifier
- CFE0005915, ucf:50830
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005915
- Title
- Optical and Magnetic properties of nanostructures.
- Creator
-
Nayyar, Neha, Rahman, Talat, Stolbov, Sergey, Ishigami, Marsahir, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms...
Show moreIn this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is larger than 20. In the case of coupled pure chains it was found that the plasmon energy grows as square root of the number of chains, and reaches the visible light energy 1.8eV for the case of three parallel chains. Doping of pure Au chains with transition-metal atoms leads in many cases to formation of additional plasmon peaks close in energy to the undoped chain peak. This peak comes from the local charge oscillations around the potential minima created by the impurity atom. The effect is especially pronounced for Ni-doped chains. In the multiple-chain case, we find an unusual hybridization of the two different (local and collective) plasmon modes. Changing the chain size and chemical composition in the array can be used to tune the absorption properties of nanochains. The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005221, ucf:50650
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005221
- Title
- The physical properties and composition of main-belt asteroids from infrared spectroscopy.
- Creator
-
Landsman, Zoe, Campins, Humberto, Britt, Daniel, Fernandez, Yan, Emery, Joshua, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Asteroids are the remnants of planet formation, and as such, they represent a record of the physical and chemical conditions in the early solar system and its evolution over the past 4.6 billion years. Asteroids are relatively accessible by spacecraft, and thus may be a source of the raw materials necessary for future human exploration and settlement of space. Those on Earth-crossing orbits pose impact hazards for which mitigation strategies must be developed. For these reasons, several...
Show moreAsteroids are the remnants of planet formation, and as such, they represent a record of the physical and chemical conditions in the early solar system and its evolution over the past 4.6 billion years. Asteroids are relatively accessible by spacecraft, and thus may be a source of the raw materials necessary for future human exploration and settlement of space. Those on Earth-crossing orbits pose impact hazards for which mitigation strategies must be developed. For these reasons, several missions to asteroids are in progress or planned with the support of the National Aeronautics and Space Administration (NASA) and other national space agencies. The study of asteroid composition and physical surface properties is vital to both our scientific understanding of the solar system's formation and evolution and to the development of asteroid missions and resource utilization schemes. This dissertation uses infrared spectroscopy to investigate the composition and physical properties of main-belt asteroid surfaces. Our efforts are focused on two populations that are especially relevant to constraining thermal and collisional processes in the asteroid belt: the "M-type" asteroids and primitive asteroid families.To investigate volatiles in the M-type asteroids, we obtained 2-4 micron spectra of six M-type asteroids using NASA's Infrared Telescope Facility. We find spectral signatures of hydrated minerals on all six asteroids, with evidence for rotational variability of hydration in one target. Diversity in the shape of the 3-micron feature in our sampled asteroids suggests there are different modes of hydration in the M-type population. Next, we carried out a thermal and compositional study of M-type asteroid (16) Psyche using 5-14 micron spectra from the Spitzer Space Telescope. Psyche is suspected to be a remnant iron core, and it is the target of an upcoming NASA mission. Using thermophysical modeling, we find that Psyche's surface is smooth and most likely has a thermal inertia of 5-25 J/m^2/K/s^(1/2), and a bolometric emissivity of 0.9, although a scenario with an emissivity of 0.7 and thermal inertia up to 95 J/m^2/K/s^(1/2) is possible if Psyche is somewhat larger than previously determined. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's emissivity spectrum is consistent with the presence of fine-grained ((<)75 micron) silicates. These silicates may include a magnesian pyroxene component. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.Finally, we compared the mid-infrared properties of two primitive asteroids families, ancient Themis (~2.5 Gyr) and young Veritas (~8 Myr). Visible and near-infrared studies show spectral differences between the two families attributed to different degrees of space weathering. To test whether these differences are apparent in the mid-infrared, we analyzed the 5-14 micron Spitzer Space Telescope spectra of 11 Themis-family asteroids and 9 Veritas-family asteroids. We detect a broad 10-micron emission feature, attributed to fine-grained and/or porous silicate regolith, in all 11 Themis-family spectra and six of nine Veritas-family asteroids, with 10-micron spectral contrast ranging from 1% +/- 0.1% to 8.5% +/- 0.9%. Comparison with laboratory spectra of primitive meteorites suggests these asteroids are similar to meteorites with relatively low abundances of phyllosilicates. We used thermal modeling to derive diameters, beaming parameters and albedos for our sample. Asteroids in both families have beaming parameters near unity and geometric albedos in the range 0.031-0.14. Spectral contrast of the 10-micron silicate emission feature is not correlated with asteroid diameter; however, higher 10-micron contrast may be associated with flatter spectral slopes in the near-infrared. There is a slight trend of increasing 10-micron contrast with decreasing albedo in the Veritas asteroids, but not the Themis asteroids. Overall, our results indicate the Themis and Veritas family members show variation in regolith texture and/or structure within both families that is not directly related to family age.
Show less - Date Issued
- 2017
- Identifier
- CFE0007124, ucf:51966
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007124
- Title
- Metastable-State Photoacids: Synthesis, Properties, and Applications.
- Creator
-
Patel, Parth, Chumbimuni Torres, Karin, Hernandez, Florencio, Santra, Swadeshmukul, Beazley, Melanie, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Reversible photochromic compounds have the ability to reversibly change its color when it absorbs photons of a particular wavelength. This process of color change is a consequence of structural changes within the compound, such as cis-trans photo-isomerization. Some examples of photochromic compounds are spiropyrans, spirooxazines, diarylethenes and azobenzenes. These compounds have been extensively studied for decades, and are used in various applications such as biomedicine, chemical...
Show moreReversible photochromic compounds have the ability to reversibly change its color when it absorbs photons of a particular wavelength. This process of color change is a consequence of structural changes within the compound, such as cis-trans photo-isomerization. Some examples of photochromic compounds are spiropyrans, spirooxazines, diarylethenes and azobenzenes. These compounds have been extensively studied for decades, and are used in various applications such as biomedicine, chemical sensors and harvesting solar energy. However, majority of photochromic compounds are initially activated by ultraviolet (UV) light. The use of UV light is harmful for biological applications and photo-degrade the compound over repeated use. To overcome these limitations, a new class of reversible photochromic compound was introduced, called metastable-state photoacid (mPAH). In brief, mPAH is a photochromic compound which can photo-dissociate its protons under visible light and can thermally re-capture the released protons efficiently in the dark. Based on this unique property, in this research, we (1) synthesized different mPAH, and (2) studied and characterized their physicochemical (acidity, kinetics, and optical) properties. Additionally, we (3) applied different visible light activated mPAHs towards light controllable polymeric-based ion-selective optodes for detection of calcium ions and sodium ions, and modulate fluorescence with pH. The research presented herein opens new avenues towards the synthesis of mPAH derivatives and could be applied to any proton-transfer process related applications which requires wireless controllability with high sensitivity.
Show less - Date Issued
- 2019
- Identifier
- CFE0007849, ucf:52769
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007849
- Title
- Quantitative Line Assignment in Optical Emission Spectroscopy.
- Creator
-
Chappell, Jessica, Baudelet, Matthieu, Hernandez, Florencio, Campiglia, Andres, Ni, Liqiang, Sigman, Michael, University of Central Florida
- Abstract / Description
-
Quantitative elemental analysis using Optical Emission Spectroscopy (OES) starts with a high level of confidence in spectral line assignment from reference databases. Spectral interferences caused by instrumental and line broadening decrease the resolution of OES spectra creating uncertainty in the elemental profile of a sample for the first time. An approach has been developed to quantify spectral interferences for individual line assignment in OES. The algorithm calculates a statistical...
Show moreQuantitative elemental analysis using Optical Emission Spectroscopy (OES) starts with a high level of confidence in spectral line assignment from reference databases. Spectral interferences caused by instrumental and line broadening decrease the resolution of OES spectra creating uncertainty in the elemental profile of a sample for the first time. An approach has been developed to quantify spectral interferences for individual line assignment in OES. The algorithm calculates a statistical interference factor (SIF) that combines a physical understanding of plasma emission with a Bayesian analysis of the OES spectrum. It can be used on a single optical spectrum and still address individual lines. Contrary to current methods, quantification of the uncertainty in elemental profiles of OES, leads to more accurate results, higher reliability and validation of the method. The SIF algorithm was evaluated for Laser-Induced Breakdown Spectroscopy (LIBS) on samples with increasing complexity: from silicon to nickel spiked alumina to NIST standards (600 glass series and nickel-chromium alloy). The influence of the user's knowledge of the sample composition was studied and showed that for the majority of spectral lines this information is not changing the line assignment for simple compositions. Nonetheless, the amount of interference could change with this information, as expected. Variance of the SIF results for NIST glass standard was evaluated by the chi-square hypothesis test of variance showing that the results of the SIF algorithm are very reproducible.
Show less - Date Issued
- 2018
- Identifier
- CFE0007564, ucf:52575
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007564
- Title
- Sub-Terahertz Spin Pumping from an Insulating Antiferromagnet.
- Creator
-
Vaidya, Priyanka, Del Barco, Enrique, Neupane, Madhab, Nakajima, Yasuyuki, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
The combination of the spin transfer torque and spin Hall effects, or their reciprocal dynamical spin pumping and inverse spin Hall effects, respectively, enable reading and controlling the magnetization state in spintronics devices which are at the verge of mass commercialization as the next generation of energy-efficient and fast magnetic random-access memory applications with the use of ferromagnetic elements, e.g., the spin valve. However, these effects have remained elusive in...
Show moreThe combination of the spin transfer torque and spin Hall effects, or their reciprocal dynamical spin pumping and inverse spin Hall effects, respectively, enable reading and controlling the magnetization state in spintronics devices which are at the verge of mass commercialization as the next generation of energy-efficient and fast magnetic random-access memory applications with the use of ferromagnetic elements, e.g., the spin valve. However, these effects have remained elusive in antiferromagnetic-based devices up to date, despite the fascinating advantages offered by the absence of stray fields (zero net magnetization), Terahertz spin dynamics, and the widespread availability of metallic, insulating and semiconducting antiferromagnetic materials. In this thesis I report the first demonstration of sub-Terahertz dynamical spin pumping at the interface between an antiferromagnet and a non-magnetic material; more specifically a uniaxial insulating antiferromagnet MnF2 and heavy metal Pt. The measured ISHE signal generated by the corresponding spin-charge current interconversion in the platinum layer is modulated by the handedness of the circularly polarized sub-THz irradiation. This effect results directly from the opposite chirality of each of the fundamental dynamical modes of the antiferromagnet. Contrary to the case of ferromagnets, this observation in an antiferromagnetic system allows unambiguously differentiating coherent spin pumping from incoherent spin Seeback effect, by which electric signals result from thermal activation. A complete study of the generated electric signals at the antiferromagnetic resonances, the spin-flop mode and the transition between the two regimes as the microwave polarization is continuously varied from circular to linear polarizations enabled an understanding of the different phenomena governing interconversion of spin dynamics and charge currents at the MnF2/Pt interface.
Show less - Date Issued
- 2019
- Identifier
- CFE0007870, ucf:52776
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007870
- Title
- Third Order Nonlinearity of Organic Molecules.
- Creator
-
Hu, Honghua, Vanstryland, Eric, Hagan, David, Zeldovich, Boris, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (?(3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities....
Show moreThe main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (?(3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties are then analyzed by quantum chemical calculations or other specific quantum mechanical model to understand the origins of the nonlinearities as well as the correlations with their unique molecular structural features. These calculations are performed by collaborators. The 2PA study of organic materials is focused on the structure-2PA property relationships of four groups of dyes with specific molecular design approaches as the following: (1) Acceptor-?-Acceptor dyes for large 2PA cross section, (2) Donor-?-Acceptor dyes for strong solvatochromic effects upon the 2PA spectra, (3) Near-infrared polymethine dyes for a symmetry breaking effect, (4) Sulfur-squaraines vs. oxygen-squaraines to study the role of sulfur atom replacement upon their 2PA spectra. Additionally, the 2PA spectrum of a solid-state single crystal made from a Donor-?-Acceptor dye is measured, and the anisotropic nonlinearity is studied with respect to different incident polarizations. These studies further advance our understanding towards an ultimate goal to a predictive capability for the 2PA properties of organic molecules. The NLR study on molecules is focused on the temporal and spectral dispersion of the nonlinear refraction index, n2, of the molecules. Complicated physical mechanisms, originating from either electronic transitions or nuclei movement, are introduced in general. By adopting a prism compressor / stretcher to control the pulsewidth, an evolution of n2 with respect to incident pulsewidth is measured on a simple inorganic molecule (-)carbon disulfide (CS2) in neat liquid at 700 nm and 1064 nm to demonstrate the pulsewidth dependent nonlinear refraction. The n2 spectra of CS2 and certain organic molecules are measured by femtosecond pulses, which are then analyzed by a 3-level model, a simplified (")Sum-over-states(") quantum mechanical model. These studies can serve as a precursor for future NLR investigations.
Show less - Date Issued
- 2012
- Identifier
- CFE0004387, ucf:49400
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004387
- Title
- Two-Component Covalent Inhibitors (TCCI) of the Human Immunodeficiency Virus Reverse Transcriptase (HIV-RT).
- Creator
-
Ledezma, Carlos, Kolpashchikov, Dmitry, Yestrebsky, Cherie, Hernandez, Florencio, Zhai, Lei, Tatulian, Suren, University of Central Florida
- Abstract / Description
-
The traditional design of nucleoside reverse transcriptase inhibitors (NRTI's) involves the synthesis of chain-terminated nucleoside analogs. HIV-RT has relatively low fidelity which facilitates mutations that confer resistance towards NRTI's, also, drug promiscuity from NRTI's result in various side-effects that lead to poor patient adherence to treatment. We designed and tested two-component covalent inhibitors against HIV-RT. Our inhibitor design results in higher specificity due to its...
Show moreThe traditional design of nucleoside reverse transcriptase inhibitors (NRTI's) involves the synthesis of chain-terminated nucleoside analogs. HIV-RT has relatively low fidelity which facilitates mutations that confer resistance towards NRTI's, also, drug promiscuity from NRTI's result in various side-effects that lead to poor patient adherence to treatment. We designed and tested two-component covalent inhibitors against HIV-RT. Our inhibitor design results in higher specificity due to its binary approach, which has previously been used in biosensing applications, where both components are necessary for therapeutic effect, and lower chances for mutagenesis because of its inhibitory action. The TCCI approach results in up to 93% inhibition of HIV-RT Furthermore, our inhibitor design is highly modular and can be adjusted towards the therapeutic targeting of other biopolymers.
Show less - Date Issued
- 2017
- Identifier
- CFE0006893, ucf:51712
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006893
- Title
- Ultrafast Mechanisms of Nonlinear Refraction and Two-photon Photochromism.
- Creator
-
Zhao, Peng, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Derived from a material's third-order nonlinearity, nonlinear refraction (NLR) occurs at any wavelength in any material, and may exhibit noninstantaneous dynamics depending on its physical origins. The main subject of this dissertation is to investigate the underlying mechanisms responsible for the NLR response in different phases of matter, e.g. liquids, gases, and semiconductors, by extensively using our recently developed ultrafast Beam Deflection (BD) technique. An additional subject...
Show moreDerived from a material's third-order nonlinearity, nonlinear refraction (NLR) occurs at any wavelength in any material, and may exhibit noninstantaneous dynamics depending on its physical origins. The main subject of this dissertation is to investigate the underlying mechanisms responsible for the NLR response in different phases of matter, e.g. liquids, gases, and semiconductors, by extensively using our recently developed ultrafast Beam Deflection (BD) technique. An additional subject includes the characterization of a novel two-photon photochromic molecule.In molecular liquids, the major nonlinear optical (NLO) response can be decomposed into a nearly instantaneous bound-electronic NLR (Kerr effect), originating from the real part the electronic second hyperpolarizability, ?, and noninstantaneous mechanisms due to nuclear motions. By adopting the methodology previously developed for carbon disulfide (CS2), we have measured the NLO response functions of 23 common organic solvents, providing a database of magnitudes and temporal dynamics of each mechanism, which can be used for predicting the outcomes of any other NLR related experiments such as Z-scan. Also, these results provide insight to relate solvent nonlinearities with their molecular structures as well as linear polarizability tensors. In the measurements of air and gaseous CS2, coherent Raman excitation of many rotational states manifests as revivals in the transient NLR, from which we identify N2, O2 and two isotopologues of CS2, and unambiguously determine the dephasing rate, and rotational and centrifugal constants of each constituent. Using the revival signal as a self-reference, ? is directly measured for CS2 molecules in gas phase, which coincides with the ? determined from liquid phase measurements when including the Lorentz-Lorenz local field correction. In semiconductors, the Kerr effect dominates the NLR in the sub-gap regime. Here, we primarily focus on investigating the dispersion of nondegenerate (ND) NLR, namely the refractive index change at frequency ?_a due to the presence of a beam at frequency ?_b. The magnitude and sign of the ND-NLR coefficient n_2 (?_a;?_b ) are determined for ZnO, ZnSe and CdS over a broad spectral range for different values of nondegeneracy, which closely follows our earlier predictions based on nonlinear Kramers-Kronig relations. In the extremely nondegenerate case, n_2 (?_a;?_b ) is positively enhanced near the two-photon absorption (2PA) edge, suggesting applications for nondegenerate all-optical switching. Additionally, n_2 (?_a;?_b ) exhibits a strong anomalous nonlinear dispersion within the ND-2PA spectral region, providing a large phase modulation of a femtosecond pulse with bandwidth centered near the zero-crossing frequency. Another subject of this dissertation is the characterization of a spiro-type two-photon photochromic molecule, in which F(&)#246;rster resonance energy transfer (FRET) is utilized to activate the ring-opening effect from a 2PA-donor chromophore. Evidence of energy transfer is observed via fluorescence measurements of the quantum yield, excitation spectra and anisotropy. The absorption and lifetime of the open form are measured in a dye-doped sol-gel matrix. Transient absorption measurements indicate both ring opening and closing occurs on a several picosecond time scale along with multiple transient photoproducts, from which a high FRET efficiency is measured in agreement with theoretical predictions. This efficient 2PA-FRET photochrome may be implemented into photonic devices such as optical memories. However, with a relatively small open-form absorption cross section and significant ring closing, the photochrome may not be viable for enhancing nonlinear absorption in applications such as optical limiting.
Show less - Date Issued
- 2016
- Identifier
- CFE0006517, ucf:51370
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006517
- Title
- Theoretical-Experimental Study of the Two-Photon Circular Dichroism of Helicenes and Aromatic Amino Acids in the UV Region: From the Structure-Property Relationship to the Final Implementation.
- Creator
-
Vesga Prada, Yuly Katherine, Hernandez, Florencio, Huo, Qun, Chumbimuni Torres, Karin, Zou, Shengli, Tatulian, Suren, University of Central Florida
- Abstract / Description
-
Two-photon circular dichroism (TPCD) has been recognized for its exceptional spectroscopic ability for the structural and conformational analysis of chiral systems due to its high sensitivity to small peptide structural distortions. In 2008, Hernandez and co-workers demonstrated TPCD experimentally by the development of the Double L-scan technique. Since then, we have been working on a systematic theoretical-experimental study of chiral molecules using TPCD. In this dissertation, I present my...
Show moreTwo-photon circular dichroism (TPCD) has been recognized for its exceptional spectroscopic ability for the structural and conformational analysis of chiral systems due to its high sensitivity to small peptide structural distortions. In 2008, Hernandez and co-workers demonstrated TPCD experimentally by the development of the Double L-scan technique. Since then, we have been working on a systematic theoretical-experimental study of chiral molecules using TPCD. In this dissertation, I present my contribution to the continuation to the study of the structure-property relationship of TPCD in molecules with axial chirality in solution, as well as the implementation of the TPCD measurements in the near- and far-UV regions. Employing a theoretical-experimental approach I will discuss: 1) the effect of the pulse width of the excitation source on the TPCD spectra of biaryl derivatives, 2) the theoretical study of the TPCD signal in the far-UV on molecular structures simulating aromatic amino acid residues in proteins with secondary structures, and 3) the pros and cons of the implementation of the FUV-TPCD spectrometer. The outcomes of my research reveal the potential of TPCD for the conformational analysis of relatively complex molecular systems such as peptides in the far-UV region, an area never accessed before. Additionally, we exposed the applicability of TPCD as a complimentary method to standard electronic circular dichroism (ECD) for the study of complex structures. Finally, I demonstrate for the very first time experimental evidence of TPCD in the near- to Far-UV region.
Show less - Date Issued
- 2016
- Identifier
- CFE0006514, ucf:51375
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006514
- Title
- Integration of Fundamental Research and CER: The Role of Authenticity in Developing Views on the Nature of Teaching, Learning, and Doing Science.
- Creator
-
Donnelly, Julie, Hernandez, Florencio, Del Barco, Enrique, Saitta, Erin, Yestrebsky, Cherie, Underwood, Sonia, University of Central Florida
- Abstract / Description
-
This dissertation is an integration of fundamental research and chemical education. It begins with two nonlinear spectroscopic studies of compounds important to the study of brain chemistry. In Chapter 2, we present a novel method using quantum mechanics for modelling ligand docking and the potential of nonlinear circular dichroism for elucidating the mechanism of cannabinoids docking to their receptor, a contribution to studies of varying psychological effects of cannabinoids. Considering...
Show moreThis dissertation is an integration of fundamental research and chemical education. It begins with two nonlinear spectroscopic studies of compounds important to the study of brain chemistry. In Chapter 2, we present a novel method using quantum mechanics for modelling ligand docking and the potential of nonlinear circular dichroism for elucidating the mechanism of cannabinoids docking to their receptor, a contribution to studies of varying psychological effects of cannabinoids. Considering existent challenges with measuring this phenomenon, in Chapter 3, we evaluate two-photon absorption properties of Thioflavin T (ThT) in varying glycerol/water content solutions and discuss the enhancement of nonlinear absorption due to small micelle formation. Our results represent the potential to enhance the applications of ThT for imaging Amyloid beta plaques in vitro and ex vivo and its potential application in vivo. Next, we consider the benefits of incorporating modern research into the undergraduate curriculum. In Chapter 4, we describe the integration of nonlinear optics into the physical chemistry laboratory in a course-based undergraduate research experience and the effects on student learning and perceptions. In Chapter 5, we expand our impact to secondary students by describing the development and assessment of the Orlando Chemistry Training, Enrichment, and Tutoring (OCTET) camp and its success in conveying chemistry concepts and inspiring students to pursue chemistry. In Chapter 6, we combine the successes of the previous two studies and incorporate a research component into OCTET. We study the effect on participants' views about science and show the impact on their practical knowledge about doing science. Finally, in Chapter 6, we extend the implementation of authentic learning to the classroom, present the implementation of active learning in physical chemistry, and describe students' perceptions. The results presented in this dissertation demonstrate successful integration of fundamental research into education and the powerful impact on all parties.
Show less - Date Issued
- 2018
- Identifier
- CFE0006997, ucf:51620
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006997
- Title
- Development of a nano-sensing approach and a portable prototype for real-time detection and quantification of free mercury in stream-flow: combining science and engineering in pro of the environment.
- Creator
-
Chemnasiri, Warinya, Hernandez, Florencio, Kuebler, Stephen, Zou, Shengli, Uribe Romo, Fernando, Huo, Qun, University of Central Florida
- Abstract / Description
-
Mercury (Hg) is a well-known hazardous environmental contaminant existing in several forms, but all are toxic to human in one way or the others. Since Hg usually settles into water polluting the environment and accumulating in living organisms, it is crucial to monitor Hg levels in the aquatic ecosystem. Although there are many well established techniques currently used to detect Hg, most of them require elaborate and time-consuming sample preparation and pre-concentration procedures, as well...
Show moreMercury (Hg) is a well-known hazardous environmental contaminant existing in several forms, but all are toxic to human in one way or the others. Since Hg usually settles into water polluting the environment and accumulating in living organisms, it is crucial to monitor Hg levels in the aquatic ecosystem. Although there are many well established techniques currently used to detect Hg, most of them require elaborate and time-consuming sample preparation and pre-concentration procedures, as well as costly and bulky equipment that limit their practical application in the field. In order to overcome the existent limitations in Hg determination methods, Hernandez and co-workers proposed the first surface Plasmon resonance (SPR) (-) based Hg sensor using gold nanorods (AuNRs) that offers high sensitivity and selectivity, attributed to the strong affinity between Au and Hg. In this dissertation, I first present my contribution to the understanding of the effect of size and aspect ratio of AuNRs on the limit of detection (LOD) and the dynamic range (DR) of the SPR-based Hg sensor using the qualitative model. In this part I demonstrate how both sensitivity and DR can be improved simultaneously via a modified wet chemistry procedure. Then, I show our approach towards the immobilization of AuNRs silane coated glass slides to expand the application of the SPR-based Hg sensor to stream-flow. Finally, I present the design and fabrication of the first real prototype of the SPR-based Hg sensor, and its application in stream-flow detection and speciation of mercury in the environment. The outcomes of my research have resulted in an innovative real-time portable Hg sensor apparatus with the desired high sensitivity, selectivity and DR to be used in stream-flow applications in Oak Ridge National Labs sites.
Show less - Date Issued
- 2015
- Identifier
- CFE0006283, ucf:51589
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006283
- Title
- An Adhesive Vinyl-Acrylic Electrolyte and Electrode Binder for Lithium Batteries.
- Creator
-
Tran, Binh, Zhai, Lei, Zou, Shengli, Kuebler, Stephen, Hernandez, Florencio, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
This dissertation describes a new vinyl-acrylic copolymer that displays great potential for applications in lithium ion batteries by enabling novel, faster, safer and cost-effective processes. Understanding the chemistry of materials and processes related to battery manufacturing allows the design of techniques and methods that can ultimately improve the performance of existing batteries while reducing the cost. The first and second parts of this dissertation focuses on the free radical...
Show moreThis dissertation describes a new vinyl-acrylic copolymer that displays great potential for applications in lithium ion batteries by enabling novel, faster, safer and cost-effective processes. Understanding the chemistry of materials and processes related to battery manufacturing allows the design of techniques and methods that can ultimately improve the performance of existing batteries while reducing the cost. The first and second parts of this dissertation focuses on the free radical polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) monomers to afford a vinyl-acrylic poly(PEGMA-co-MME-co-IBVE) random copolymer and the investigation of its properties as a soluble, amorphous, and adhesive electrolyte that is able to permanently hold 800 times its own weight. Such material properties envision a printable battery manufacturing procedure, since existing electrolytes lack adhesion at a single macromolecular level. Electrolytes can also be used as an electrode binder so long as it has structural integrity and allows ion transfer to and from the active electrode material during insertion/extraction processes. In the third section, the use of this electrolyte as a water-soluble binder for the aqueous fabrication of LiCoO2 cathodes is presented. Results of this study demonstrated the first aqueous process fabrication of thick, flexible, and fully compressed lithium ion battery electrodes by using commercial nickel foam as a supporting current collector. This feat is rather impressive because these properties are far superior to other aqueous binders in terms of material loading per electrode, specific area capacity, durability, and cell resistance. Finally, the fourth section expands on this concept by using the poly(PEGMA-co-MMA-co-IBVE) copolymer for the aqueous fabrication of a low voltage Li4Ti5O12 anode type electrode. Altogether, results demonstrate as a proof of concept that switching the current toxic manufacturing of lithium-ion batteries to an aqueous process is highly feasible. Furthermore, new electrode manufacturing techniques are also deemed possible.
Show less - Date Issued
- 2013
- Identifier
- CFE0004761, ucf:49780
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004761
- Title
- Structure-Property Relationship of the Two-Photon Circular Dichroism of Compounds with Axial and Helical Chirality.
- Creator
-
Diaz, Carlos, Hernandez, Florencio, Uribe Romo, Fernando, Kuebler, Stephen, Masunov, Artem, Del Barco, Enrique, University of Central Florida
- Abstract / Description
-
Back in 1894 Lord Kelvin coined the term (")chiral(") in order to refer to molecules whose mirror images were not superimposable with themselves. Over the years, research has demonstrated the important role that chiral molecules play in life, chemistry, and biology as well as their importance in the development of new drugs and technologies.The efforts to understand chiral systems have been mainly driven by spectroscopic methods that leverage on the opposite responses that enantiomers have to...
Show moreBack in 1894 Lord Kelvin coined the term (")chiral(") in order to refer to molecules whose mirror images were not superimposable with themselves. Over the years, research has demonstrated the important role that chiral molecules play in life, chemistry, and biology as well as their importance in the development of new drugs and technologies.The efforts to understand chiral systems have been mainly driven by spectroscopic methods that leverage on the opposite responses that enantiomers have to linear or circularly polarized light of both handedness. More specifically, Electronic Circular Dichroism (ECD) which measures the differences in linear absorption of left and right circularly polarized light has been the method par excellence for the spectroscopic characterization of chiral compounds. Unfortunately, the fact that ECD is based on linear absorption severely limits the use of this method in the near to far UV region. This is mainly due to the interferences generated by the strong linear absorption of common organic solvents and buffers in this portion of the light spectrum. Nevertheless, the fact remains that many chiral biomolecules of interest related to deceases like Alzheimer and Parkinson, exhibit most of their linear absorption in the near to far UV region where ECD cannot be employed for their study. Therefore, it has become an urgent necessity to develop spectroscopic methods to study chiral molecules that can circumvent the limitations of ECD at shorter wavelengths. In order to overcome the existent limitations in linear chiral spectroscopy, the nonlinear equivalent of ECD arises as a promising alternative, i.e. Two-Photon Circular Dichroism (TPCD). Although, this phenomenon was theoretically predicted in 1975, it was not until 2008, with the introduction of the double-L scan, that a reliable and versatile method for the measurement of TPCD was introduced. The high sensitivity of this method is based on the use of (")twin(") pulses that allow accounting for fluctuations in the excitation source that prevented the experimental realization of the measurement. The first measurement of a full TPCD spectrum was performed on BINOL enantiomers and the results were supported and discussed with the help of theoretical calculations. After that seminal work, we embarked in expanding the understanding of the structure-property relationship of TPCD by performing, systematically, a series of theoretical-experimental studies in chiral biaryl derivatives and compounds with helical chirality.In Chapter 2 we present the theoretical-experimental study of the effect of the ?-electron delocalization curvature on the TPCD of molecules with axial chirality. The targeted molecules for this part of our investigation were S-BINOL, S-VANOL, and S-VAPOL. Our findings revealed that an increase in the TPCD signal, within this series of compounds, was related to the curvature of the ?(-)electron delocalization. The contributions of the different transition moments to the two-photon rotatory strength support our outcomes. Then, in Chapter 3 we introduce the development of the Fragment-Recombination Approach (FRA) for the calculation of the TPCD spectra of large molecules. This simple but powerful method is based on the additivity of the TPCD signal, and is subject to a strict conditional fragmentation approach. FRA-TPCD is demonstrated, theoretically, in two hypothetical molecular systems from the biaryl derivatives family. Afterward, in Chapter 4 we show the first experimental demonstration of FRA-TPCD through the conformational analysis of an axially-chiral Salen ligand in solution (AXF-155). The FRA-TPCD spectra calculated for the different isomers of AXF-155 allowed narrowing the number of possible isomers of this complex molecule in THF solution to only two. This represents a significant improvement from previously reported results using ECD. Subsequently, in Chapter 5 we present the study of the effect of intramolecular charge transfer (ICT) in S-BINAP, an axially dissymmetric diphosphine ligand with strong ICT. The evaluation of the performance of two different exchange-correlation functional (XCF) confirmed that in order to properly predict the theoretical TPCD spectrum of a molecule exhibiting strong ICT, it is required to use an XCF such as CAM-B3LYP. In addition, our findings revealed the importance of considering an adequate number of excited states in order to be able to fully reproduce the experimental TPCD spectrum, thus avoiding wrong assignments of theoretical transitions to experimental spectral features. Finally, and expanding on our previous study, in Chapter 6 we investigated the effect of the nature of ICT on two hexahelicene derivatives. Our investigation demonstrated that the TPCD signal of chiral molecules with strong ICT does not only depend on the strength of this effect but on its nature, i.e. extension of the ?(-)electronic delocalization increasing beyond (EXO-ICT) or within (ENDO-ICT) the helicene core. In summary, with the results presented in this thesis we closed a first loop in the understanding of the structure-property relationship of TPCD. In the future, we expect to deepen in our knowledge of the structure-property relationship of this phenomenon by studying further helicene derivatives with donor-acceptor motif, and through the application of FRA-TPCD to the conformational analysis of amino acids in peptides. We foresee numerous applications of TPCD for the study of optically active molecules with implications in biology, medicine, and the drug and food industry, and applications in nanotechnology, asymmetric catalysis and photonics.
Show less - Date Issued
- 2015
- Identifier
- CFE0005787, ucf:50067
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005787
- Title
- Electronic transport and correlations in single magnetic molecule devices.
- Creator
-
Romero, Javier, Mucciolo, Eduardo, Del Barco, Enrique, Stolbov, Sergey, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
In this dissertation, we study the most important microscopic aspects that grant molecules such as Single Molecule Magnets (SMMs) their preferential spin direction. We do so by proposing and solving a model that includes correlations between electrons occupying atomic orbitals. In addition, we study the relation between the non-equilibrium electronic transport signatures in a SMM model weakly coupled to a three-terminal single electron transistor device, and the interference features of the...
Show moreIn this dissertation, we study the most important microscopic aspects that grant molecules such as Single Molecule Magnets (SMMs) their preferential spin direction. We do so by proposing and solving a model that includes correlations between electrons occupying atomic orbitals. In addition, we study the relation between the non-equilibrium electronic transport signatures in a SMM model weakly coupled to a three-terminal single electron transistor device, and the interference features of the SMM model in the presence of a magnetic field. Finally, we investigate the equilibrium transport features in a giant-spin model of a SMM in the Kondo regime. We study how the magnetic field modulation of the energy in a highly anisotropic molecule can affect the conductance of the molecule in the Kondo regime.
Show less - Date Issued
- 2014
- Identifier
- CFE0005407, ucf:50420
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005407