Current Search: Jordan, Ryan (x)
-
-
Title
-
EQUIBIAXIAL FLEXURAL STRENGTH TESTING OF ADVANCE CERAMICS.
-
Creator
-
Jordan, Ryan T, Orlovskaya, Nina, Kwok, Kawai; Ghosh, Ranajay, University of Central Florida
-
Abstract / Description
-
Ceramics are very important materials with many unique properties used in numerous industrial applications. Ceramics could be very hard and very strong in comparison to metals; however, they are very brittle, thus they are prone to instantaneous and catastrophic failure. Therefore, their reliability is compromised and it is very important to have advanced techniques that allow evaluating their mechanical behavior in many unusual stress states. One of such testing methods is biaxial strength...
Show moreCeramics are very important materials with many unique properties used in numerous industrial applications. Ceramics could be very hard and very strong in comparison to metals; however, they are very brittle, thus they are prone to instantaneous and catastrophic failure. Therefore, their reliability is compromised and it is very important to have advanced techniques that allow evaluating their mechanical behavior in many unusual stress states. One of such testing methods is biaxial strength method, that allows to measure properties not only unidirectional, but also in a biaxial way. The research work for this thesis will be built on design and development of ring-on-ring test jigs that will measure a biaxial strength of thin ceramic disks.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000386, ucf:45700
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000386
-
-
Title
-
Design, Development, and Testing of a Miniature Fixture for Uniaxial Compression of Ceramics Coupled with In-Situ Raman Spectrometer.
-
Creator
-
Jordan, Ryan, Orlovskaya, Nina, Kwok, Kawai, Ghosh, Ranajay, University of Central Florida
-
Abstract / Description
-
This thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to...
Show moreThis thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to apply compressive loads up to 14,137 N, with negligible off axis loading, achieving target stresses of 500 MPa for samples of up to 6.00 mm in diameter. The system will be used in the future to study the structural changes in ceramics and ceramic composites, as well as to study thermal residual stress redistribution under applied compressive loads. A broad variety of Raman active ceramics, including the traditional structural ceramics 3mol%Y2O3-ZrO2, B4C, SiC, Si3N4, as well as exotic materials such as LaCoO3 and other perovskites will be studied using this system. Calibration of the systems load cell was performed in the configured state using MTS universal testing machines. To ensure residual stresses from mounting the load cell did not invalidate the original calibration, the in-situ compression stage was tested once attached to the Renishaw Raman spectrometer using LaCoO3 ceramic samples. The Raman shift of certain peaks in LaCoO3 was detected indicative of the effect of the applied compressive stress on the ceramics understudy.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007824, ucf:52809
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007824