Current Search: Kauffman, Jeffrey (x)
View All Items
Pages
- Title
- DYNAMIC RESPONSE OF A MULTI-SPAN CURVED BEAM FROM MOVING TRANSVERSE POINT LOADS.
- Creator
-
Alexander, Amanda, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
This thesis describes how to evaluate a first-order approximation of the vibration induced on a beam that is vertically curved and experiences a moving load of non-constant velocity. The curved beam is applicable in the example of a roller coaster. The present research in the field does not consider a curved beam nor can similar research be applied to such a beam. The complexity of the vibration of a curved beam lies primarily in the description of the variable magnitude of the moving load...
Show moreThis thesis describes how to evaluate a first-order approximation of the vibration induced on a beam that is vertically curved and experiences a moving load of non-constant velocity. The curved beam is applicable in the example of a roller coaster. The present research in the field does not consider a curved beam nor can similar research be applied to such a beam. The complexity of the vibration of a curved beam lies primarily in the description of the variable magnitude of the moving load applied. Furthermore, this motion is also variable. This thesis will present how this beam will displace in response to the moving load. The model presented can be easily manipulated as it considers most variables to be functions of time or space. The model will be compared to existing research on linear beams to ensure the unique response of a curved beam.
Show less - Date Issued
- 2015
- Identifier
- CFH0004739, ucf:45349
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004739
- Title
- EFFECTS OF RELAXED ASSUMPTIONS ON THE STATE SWITCHING TECHNIQUE.
- Creator
-
Ilardi, Stephen, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
This thesis explores the effects of two assumptions commonly used in mathematical models related to a piezoelectric damping method known as State Switching. The technique relies on changing the stiffness state of a piezoelectric patch through control of the electrical boundary conditions. The transition between stiffness states is assumed to occur instantaneously and in concurrence with the switch event. In actuality, the transition will occur over a finite time and will trail behind the...
Show moreThis thesis explores the effects of two assumptions commonly used in mathematical models related to a piezoelectric damping method known as State Switching. The technique relies on changing the stiffness state of a piezoelectric patch through control of the electrical boundary conditions. The transition between stiffness states is assumed to occur instantaneously and in concurrence with the switch event. In actuality, the transition will occur over a finite time and will trail behind the switch event by a finite time. For these assumptions to be valid, the effects of switch duration and delay on the performance of the State Switching method must be examined. In this thesis, the vibration reduction for various switch duration/delay values will be calculated using a numerical solver. The results of the simulations will be used to provide a range in which the two aforementioned assumptions produce negligible error, defined here as a 10% decrease in method performance.
Show less - Date Issued
- 2014
- Identifier
- CFH0004658, ucf:45288
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004658
- Title
- SMART MATERIAL ACTUATION AND MORPHING FOR UNMANNED AIRCRAFT SYSTEMS.
- Creator
-
Da Silva Lima, Caio H, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
The intent of this thesis is to outline the design, analysis, and characterization of an axially compressed piezocomposite actuator and, in particular, to determine the correlation and accuracy of two models used to predict deflection of an axially compressed piezocomposite bimorph. Restrictions in material properties lead to vehicle inefficiencies caused by the discontinuous geometry of deflected control surfaces in unmanned aircraft systems. This performance disadvantage in discrete control...
Show moreThe intent of this thesis is to outline the design, analysis, and characterization of an axially compressed piezocomposite actuator and, in particular, to determine the correlation and accuracy of two models used to predict deflection of an axially compressed piezocomposite bimorph. Restrictions in material properties lead to vehicle inefficiencies caused by the discontinuous geometry of deflected control surfaces in unmanned aircraft systems. This performance disadvantage in discrete control surfaces is caused in part by the sharp edges that are formed when the surface is pivoted. Flow continuity over the body of a vehicle is important in minimizing the effects of drag and, in turn, increasing aerodynamic performance. An efficient alternative to discrete control surface actuation is axially compressed piezocomposite actuation which could potentially improve the efficiency of the vehicle in all environments. Bimorph performance in angular deflection and displacement for the PA16N and MFC-M8528-P1 piezocomposites is analyzed using a Classical Laminate Plate Theory (CLPT) model and an Elastica model. Model accuracy is verified through experimental testing of a PA16N bimorph. CLPT model is shown to be accurate to within .05 mm and Elastica model is shown to be accurate to within .04 mm for axial forces below 30 N. Correlation between the mathematical models is confirmed. Experimental results for the PA16N show that a 30 N compression force applied to the bimorph can increase the maximum displacement by approximately 2.5 times the original displacement.
Show less - Date Issued
- 2016
- Identifier
- CFH2000095, ucf:45563
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000095
- Title
- The Effect of Martensite-Fractions Assumptions In Shape Memory Alloy Springs.
- Creator
-
Vazquez, Christian, Kauffman, Jeffrey L., Das, Tuhin, Kwok, Kawai, University of Central Florida
- Abstract / Description
-
This research addresses various models of a spring-mass system that uses a spring made of a shape memory alloy (SMA). The system model describes the martensite fractions, which are values that describe an SMA's crystalline phases, via differential equations. The model admits and this thesis contrasts two commonly used but distinct assumptions: a homogeneous case where the martensite fractions are constant throughout the spring's cross section, and a bilinear case where the evolution of the...
Show moreThis research addresses various models of a spring-mass system that uses a spring made of a shape memory alloy (SMA). The system model describes the martensite fractions, which are values that describe an SMA's crystalline phases, via differential equations. The model admits and this thesis contrasts two commonly used but distinct assumptions: a homogeneous case where the martensite fractions are constant throughout the spring's cross section, and a bilinear case where the evolution of the martensite fractions only occurs beyond some critical radius. While previous literature has developed a model of the system dynamics under the homogeneous assumption using the martensite-fractions differential equations, little research has focused on the dynamics when considering the bilinear case, especially using the differential equations. This thesis models the system dynamics under both the homogeneous and bilinear assumptions and determines if the bilinear case is an improvement over the homogeneous case. The research develops a numerical approach of the system dynamics for both martensite-fractions assumptions. For various initial displacements and temperatures, plotting the resulting displacement, velocity, and martensite fractions over time determines the coherence of the assumptions. Not only did the bilinear assumption offer more reasonable plots, but the homogeneous assumption delivered bizarre results for certain temperatures and initial displacements. For future research, a fully nonlinear case can replace the homogeneous and bilinear assumptions. Additionally, future research can utilize other martensite-fractions evolution models, as opposed to differential equations.
Show less - Date Issued
- 2018
- Identifier
- CFE0007381, ucf:52742
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007381
- Title
- Spatial and Temporal Compressive Sensing for Vibration-based Monitoring: Fundamental Studies with Beam Vibrations.
- Creator
-
Ganesan, Vaahini, Das, Tuhin, Kauffman, Jeffrey L., Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high data volume and require powering sensors for prolonged duration. Furthermore, adequate spatial resolution, typically involves instrumenting structures with a large...
Show moreVibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high data volume and require powering sensors for prolonged duration. Furthermore, adequate spatial resolution, typically involves instrumenting structures with a large array of sensors. This research shows that applying Compressive Sensing (CS) can significantly reduce both the volume of data and number of sensors in vibration monitoring applications. Random sampling and the inherent sparsity of vibration signals in the frequency domain enables this reduction. Additionally, by exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors than a traditional approach. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continuous monitoring in case of sensor or computational failures. The scope of this research was to establish CS as a viable method for SHM with application to beam vibrations. Finite element based simulations demonstrated CS-based frequency recovery from free vibration response of simply supported, fixed-fixed and cantilever beams. Specifically, CS was used to detect shift in natural frequencies of vibration due to structural change using considerably less data than required by traditional sampling. Experimental results using a cantilever beam provided further insight into this approach. In the experimental study, impulse response of the beam was used to recover natural frequencies of vibration with CS. It was shown that CS could discern changes in natural frequencies under modified beam parameters. When the basis functions were modified to accommodate the effect of damping, the performance of CS-based recovery further improved. Effect of noise in CS-based frequency recovery was also studied. In addition to incorporating damping, formulating noise-handling as a part of the CS algorithm for beam vibrations facilitated detecting shift in frequencies from even fewer samples. In the spatial domain, CS was primarily developed to focus on image processing applications, where the signals and basis functions are very different from those required for mechanical beam vibrations. Therefore, it mandated reformulation of the CS problem that would handle related challenges and enable the reconstruction of spatial beam response using very few sensor data. Specifically, this research addresses CS-based reconstruction of deflection shape of beams with fixed boundary conditions. Presence of a fixed end makes hyperbolic terms indispensable in the basis, which in turn causes numerical inconsistencies. Two approaches are discussed to mitigate this problem. The first approach is to restrict the hyperbolic terms in the basis to lower frequencies to ensure well conditioning. The second, a more systematic approach, is to generate an augmented basis function that will combine harmonic and hyperbolic terms. At higher frequencies, the combined hyperbolic terms will limit each other's magnitude, thus ensuring boundedness. This research thus lays the foundation for formulating the CS problem for the field of mechanical vibrations. It presents fundamental studies and discusses open-ended challenges while implementing CS to this field that will pave way for further research.
Show less - Date Issued
- 2017
- Identifier
- CFE0007120, ucf:51954
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007120
- Title
- Piezoresistive Behavior of Carbon Nanopaper Polymer Composites for Strain Sensing.
- Creator
-
Beyrooti, Jayden, Kwok, Kawai, Gou, Jihua, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
Carbon nanopapers made of carbon nanotubes (CNTs) or carbon nanofibers (CNFs), possess unique electrical, thermal and mechanical properties and when integrated with a polymer matrix, can become a multifunctional composite capable of strain sensing and heat actuation. Smart structures such as these can be used in many applications including deployable space structures, human motion detection, and structural health monitoring as flexible, sensitive and stable strain sensors in addition to...
Show moreCarbon nanopapers made of carbon nanotubes (CNTs) or carbon nanofibers (CNFs), possess unique electrical, thermal and mechanical properties and when integrated with a polymer matrix, can become a multifunctional composite capable of strain sensing and heat actuation. Smart structures such as these can be used in many applications including deployable space structures, human motion detection, and structural health monitoring as flexible, sensitive and stable strain sensors in addition to providing electrical heat actuation for the shape memory effect in polymers. This study focuses on strain sensing capabilities by developing a numerical model to predict piezoresistive behavior. The piezoresistive effect is a change in resistivity of a conductive network when a deformation is applied. This allows strain to be determined by simply measuring the electrical resistance. An equivalent resistor network can be formed to represent the fiber network. The proposed 2D model generates randomly oriented fibers inside a unit cell, determines their intersection points, and creates a mesh of the network for finite element analysis. Electrical conductivity is found for the initial and deformed fiber states by determining the current through the network for a known voltage. A piezoresistivity experimental study is conducted to investigate the strain sensing abilities of this material and validate model results. This simple model provides an initial framework that can be developed in future work. Despite its 2D nature, the model captures the governing mechanisms of piezoresistivity to a certain extent.
Show less - Date Issued
- 2019
- Identifier
- CFE0007788, ucf:52353
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007788
- Title
- Design and Structural Analysis of Morphing Wings.
- Creator
-
Fernandez, Nicholas, Bhattacharya, Samik, Kauffman, Jeffrey L., Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Many natural flyers and marine swimmers can morph their wings during a number of unsteady maneuverings. With such wing morphing they are able to control the unsteady aerodynamic forces. A number of man-made flyers, such as unmanned aerial vehicles and micro air vehicles, fly in comparable Reynolds number range, but they are yet to acquire similar morphing capabilities as natural flyers or swimmers. Moreover, the knowledge of fluid structural interaction (FSI) of such morphing wings is not...
Show moreMany natural flyers and marine swimmers can morph their wings during a number of unsteady maneuverings. With such wing morphing they are able to control the unsteady aerodynamic forces. A number of man-made flyers, such as unmanned aerial vehicles and micro air vehicles, fly in comparable Reynolds number range, but they are yet to acquire similar morphing capabilities as natural flyers or swimmers. Moreover, the knowledge of fluid structural interaction (FSI) of such morphing wings is not well developed. Hence there is a need to investigate the FSI of morphing wings. In this thesis, a morphing wing was designed and its FSI was investigated. The wing was designed with the help of advanced 3D printing and the morphing capabilities utilized servo driven actuators. The design enabled the wing to execute spanwise bending, twisting and combined bending and twisting during a number of unsteady maneuverings. In the present work, the effect of gradual acceleration on the resultant unsteady forcing was investigated. FEA simulations were performed in order to gauge the response of the wing in different scenarios. A flat plate wing was towed in a 6-m-long towing tank and force data was collected using a 6-dof force sensor. With this method of morphing, future experiments can be performed for different unsteady cases. The analysis performed in this thesis will also be helpful in understanding more complex FSI problems applicable to morphing wings.
Show less - Date Issued
- 2019
- Identifier
- CFE0007802, ucf:52338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007802
- Title
- Vibration Reduction of Mistuned Bladed Disks via Piezoelectric-Based Resonance Frequency Detuning.
- Creator
-
Lopp, Garrett, Kauffman, Jeffrey L., Das, Tuhin, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Recent trends in turbomachinery blade technology have led to increased use of monolithically constructed bladed disks (blisks). Although offering a wealth of performance benefits, this construction removes the blade-attachment interface present in the conventional design, thus unintentionally removing a source of friction-based damping needed to counteract large vibrations during resonance passages. This issue is further exacerbated in the presence of blade mistuning that arises from small...
Show moreRecent trends in turbomachinery blade technology have led to increased use of monolithically constructed bladed disks (blisks). Although offering a wealth of performance benefits, this construction removes the blade-attachment interface present in the conventional design, thus unintentionally removing a source of friction-based damping needed to counteract large vibrations during resonance passages. This issue is further exacerbated in the presence of blade mistuning that arises from small imperfections from otherwise identical blades and are unavoidable as they originate from manufacturing tolerances and operational wear over the lifespan of the engine. Mistuning is known to induce vibration localization with large vibration amplitudes that render blades susceptible to failure induced by high-cycle fatigue. The resonance frequency detuning (RFD) method reduces vibration associated with resonance crossings by selectively altering the blades' structural response. This method utilizes the variable stiffness properties of piezoelectric materials to switch between available stiffness states at some optimal time as the excitation frequency sweeps through a resonance. For a single-degree-of-freedom (SDOF) system, RFD performance is well defined. This research provides the framework to extend RFD to more realistic applications when the SDOF assumption breaks down, such as in cases of blade mistuning. Mistuning is inherently random; thus, a Monte Carlo analysis performed on a computationally cheap lumped-parameter model provides insight into RFD performance for various test parameters. Application of a genetic algorithm reduces the computational expense required to identify the optimal set of stiffness-state switches. This research also develops a low-order blisk model with blade-mounted piezoelectric patches as a tractable first step to apply RFD to more realistic systems. Application of a multi-objective optimization algorithm produces Pareto fronts that aid in the selection of the optimized patch parameters. Experimental tests utilizing the academic blisk with the optimized patches provides validation.
Show less - Date Issued
- 2018
- Identifier
- CFE0007488, ucf:52639
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007488
- Title
- Pressurized Metal Bellows Shock Absorber for Space Applications.
- Creator
-
Trautwein, John, Kauffman, Jeffrey, Raghavan, Seetha, Putnam, Shawn, University of Central Florida
- Abstract / Description
-
Numerous spacecraft designs exist for exploring the surfaces of planetary bodies and each have their own advantages and disadvantages. All successful landings have been made by stationary landers or wheeled rovers that rely on one-time use mechanisms, such as crushable aluminum honeycomb shock absorbers or inflatable airbags, to reduce shock loading to the spacecraft during landing. The stationary lander is the simplest type of lander, but can only take data from one location. Wheeled rovers...
Show moreNumerous spacecraft designs exist for exploring the surfaces of planetary bodies and each have their own advantages and disadvantages. All successful landings have been made by stationary landers or wheeled rovers that rely on one-time use mechanisms, such as crushable aluminum honeycomb shock absorbers or inflatable airbags, to reduce shock loading to the spacecraft during landing. The stationary lander is the simplest type of lander, but can only take data from one location. Wheeled rovers add complexity in exchange for mobility to explore different locations. Rovers are limited by the terrain they can traverse; rovers becoming stuck have ended missions. In contrast to rovers and stationary landers, hoppers explore by making multiple launch and landing hops. They have the advantage of being able to avoid terrain that would cause a rover to become stuck. A hopper may require a landing shock absorber that can reliably operate multiple times in harsh environments.Most terrestrial shock absorbers use hydraulic fluid, allowing for compact and inexpensive devices. Hydraulics have been used in space applications, but require thermal controls to maintain the proper fluid viscosity. They also require dynamic seals which, in the case of a leak, can degrade performance, shorten mission life, and contaminate sensitive science equipment. Leakage is also a concern in pressurized systems in space because missions can take decades from when a system is installed to when it actually is used.To address these issues, a pressurized metal bellows shock absorber is proposed. This shock absorber could operate at nearly any expected spacecraft environment. Metal bellows are designed to operate from cryogenic temperatures to several hundred degrees Celsius. A hermetically sealed system eliminates the risks of a system with seals. Metal bellows are in common use for terrestrial harsh environments and vacuum applications. Small metal bellows are used as dampers for pressure control systems with small displacements.Models for the dynamics of this device are developed and presented here. Starting from the ideal gas law, polytropic compression, and compressible flow through an orifice, differential equations of motion and pressure are derived. These equations are nonlinear for the displacements under consideration and are nondimensionalized to help provide insight. Equations for static equilibrium, maximum initial displacement bounds, and estimated natural frequency are presented.Metal bellows can operate as a passive damper with a simple orifice between the control volumes. Optimization is performed for the nondimensional model of a passive damper. Because the response is highly nonlinear, a method is developed to estimate a damping coefficient that is used as the objective function for this optimization. Feasibility of this concept is investigated through an example design problem using data from a metal bellows manufacturer as constraints. An optimal mass configuration is found that meets the design constraints. Performance can be improved over the passive system by adding control. The first control strategy involves a check valve, such that the effective orifice size varies between compression and extension. The next control strategy replaces the orifice with a control valve. Varying the valve opening and closing timing can achieve optimal performance. Finally, using the metal bellows as an actuator to help launch the hopper is investigated. While the valve is closed, the gas in the second volume is compressed. Then the valve is opened the hopper is launched.The results of this research show that a metal bellows device holds promise as a landing shock absorber and launch actuator to extend the range of hopper spacecraft.
Show less - Date Issued
- 2015
- Identifier
- CFE0006015, ucf:51022
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006015
- Title
- Academic Blade Geometries for Baseline Comparisons of Forced Vibration Response Predictions.
- Creator
-
Little, James, Kauffman, Jeffrey, Gordon, Ali, Bai, Yuanli, University of Central Florida
- Abstract / Description
-
Predicting the damping associated with underplatform dampers remains a challenge in turbomachineryblade and friction damper design. Turbomachinery blade forced response analysismethods usually rely on nonlinear codes and reduced order models to predict vibration characteristicsof blades. Two academic blade geometries coupled with underplatform dampers are presentedhere for comparison of these model reduction and forced response simulation techniques. The twoblades are representative of free...
Show morePredicting the damping associated with underplatform dampers remains a challenge in turbomachineryblade and friction damper design. Turbomachinery blade forced response analysismethods usually rely on nonlinear codes and reduced order models to predict vibration characteristicsof blades. Two academic blade geometries coupled with underplatform dampers are presentedhere for comparison of these model reduction and forced response simulation techniques. The twoblades are representative of free-standing turbine blades and exhibit qualitatively similar behavioras highly-complex industrial blades. This thesis fully describes the proposed academic bladegeometries and models; it further analyzes and predicts the blades forced response characteristicsusing the same procedure as industry blades. This analysis classifies the results in terms of resonancefrequency, vibration amplitude, and damping over a range of aerodynamic excitation toexamine the vibration behavior of the blade/damper system. Additionally, the analysis investigatesthe effect variations of the contact parameters (friction coefficient, damper / platform roughnessand damper mass) have on the predicted blade vibration characteristics, with sensitivities to each parameter. Finally, an investigation of the number of modes retained in the reduced order modelshows convergence behavior as well as providing additional data for comparison with alternativemodel reduction and forced response prediction methods. The academic blade models are shownto behave qualitatively similar to high fidelity industry blade models when the number of retained modes in a modal analysis are varied and behave qualitatively similar under sensitives to designparameters.
Show less - Date Issued
- 2017
- Identifier
- CFE0006616, ucf:51281
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006616
- Title
- Determination of Frequency-Based Switch Triggers for Optimal Vibration Reduction via Resonance Frequency Detuning.
- Creator
-
Lopp, Garrett, Kauffman, Jeffrey, Das, Tuhin, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Resonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach that applies to systems experiencing transient excitation through the system's resonance(-)for example, turbomachinery experiencing changes in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of piezoelectric material and manipulation of its electrical boundary conditions, which control the stiffness of the piezoelectric material. Resonance frequency detuning...
Show moreResonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach that applies to systems experiencing transient excitation through the system's resonance(-)for example, turbomachinery experiencing changes in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of piezoelectric material and manipulation of its electrical boundary conditions, which control the stiffness of the piezoelectric material. Resonance frequency detuning exploits this effect by intelligently switching between the open-circuit (high stiffness) and short-circuit (low stiffness) conditions as the excitation approaches resonance, subsequently shifting the natural frequency to avoid this resonance crossing and limit the response. The peak response dynamics are then determined by the system's sweep rate, modal damping ratio, electromechanical coupling coefficient, and, most importantly, the trigger (represented here in terms of excitation frequency) that initiates the stiffness state switch. This thesis identifies the optimal frequency-based switch trigger over a range of sweep rates, damping ratios, and electromechanical coupling coefficients. With perfect knowledge of the system, the optimal frequency-based switch trigger decreases approximately linearly with the square of the coupling coefficient. Furthermore, phase of vibration at the time of the switch has a very small effect; switching on peak strain energy is marginally optimal. In practice, perfect knowledge is unrealistic and an alternate switch trigger based on an easily measurable parameter is necessary. As such, this thesis also investigates potential methods using the open-circuit piezoelectric voltage response envelope and its derivatives. The optimal switch triggers collapse to a near linear trend when measured against the response envelope derivatives and, subsequently, an empirical control law is extracted. This control law agrees well with and produces a comparable response to that of the optimal control determined using perfect and complete knowledge of the system.
Show less - Date Issued
- 2015
- Identifier
- CFE0005829, ucf:50909
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005829
- Title
- Coordinated Optimal Power Planning of Wind Turbines in an Offshore Wind Farm.
- Creator
-
Vishwakarma, Puneet, Xu, Yunjun, Kapat, Jayanta, Kauffman, Jeffrey, Behal, Aman, University of Central Florida
- Abstract / Description
-
Wind energy is on an upswing due to climate concerns and increasing energy demands on conventional sources. Wind energy is attractive and has the potential to dramatically reduce the dependency on non-renewable energy resources. With the increase in wind farms there is a need to improve the efficiency in power allocation and power generation among wind turbines. Wake interferences among wind turbines can lower the overall efficiency considerably, while offshore conditions pose increased...
Show moreWind energy is on an upswing due to climate concerns and increasing energy demands on conventional sources. Wind energy is attractive and has the potential to dramatically reduce the dependency on non-renewable energy resources. With the increase in wind farms there is a need to improve the efficiency in power allocation and power generation among wind turbines. Wake interferences among wind turbines can lower the overall efficiency considerably, while offshore conditions pose increased loading on wind turbines. In wind farms, wind turbines' wake affects each other depending on their positions and operation modes. Therefore it becomes essential to optimize the wind farm power production as a whole than to just focus on individual wind turbines. The work presented here develops a hierarchical power optimization algorithm for wind farms. The algorithm includes a cooperative level (or higher level) and an individual level (or lower level) for power coordination and planning in a wind farm. The higher level scheme formulates and solves a quadratic constrained programming problem to allocate power to wind turbines in the farm while considering the aerodynamic effect of the wake interaction among the turbines and the power generation capabilities of the wind turbines. In the lower level, optimization algorithm is based on a leader-follower structure driven by the local pursuit strategy. The local pursuit strategy connects the cooperative level power allocation and the individual level power generation in a leader-follower arrangement. The leader, could be a virtual entity and dictates the overall objective, while the followers are real wind turbines considering realistic constraints, such as tower deflection limits. A nonlinear wind turbine dynamics model is adopted for the low level study with loading and other constraints considered in the optimization. The stability of the algorithm in the low level is analyzed for the wind turbine angular velocity. Simulations are used to show the advantages of the method such as the ability to handle non-square input matrix, non-homogenous dynamics, and scalability in computational cost with rise in the number of wind turbines in the wind farm.
Show less - Date Issued
- 2015
- Identifier
- CFE0005899, ucf:50896
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005899
- Title
- Optimal Switch Timing for Piezoelectric-Based Semi-Active Vibration Reduction Techniques.
- Creator
-
Kelley, Christopher, Kauffman, Jeffrey, Das, Tuhin, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Semi-active vibration reduction techniques switch a piezoelectric transducer between an open circuit and a shunt circuit in a way that reduces vibration. The steady-state vibration amplitude is reduced by exploiting the change in stiffness between states, manipulating the converted electrical energy, or both. Semi-active techniques typically require four switches per vibration cycle. Control laws such as state switching and synchronized switch damping require switches to occur at every...
Show moreSemi-active vibration reduction techniques switch a piezoelectric transducer between an open circuit and a shunt circuit in a way that reduces vibration. The steady-state vibration amplitude is reduced by exploiting the change in stiffness between states, manipulating the converted electrical energy, or both. Semi-active techniques typically require four switches per vibration cycle. Control laws such as state switching and synchronized switch damping require switches to occur at every displacement extrema. Due to the complexity of analyzing a system with discrete switches, these control laws were developed based on intuition. The few analyses that attempt to determine an optimal switching law mathematically only evaluate the system at resonance. This thesis investigates the effects of switch timing on vibration reduction and the frequency dependence of the optimal switch timing control law. Regardless of the switch timing, sensing uncertainties, noise, and modeling errors can cause the switches to occur away from the designed moment. Thus, this work also quantifies the expected degradation in vibration reduction performance due to variations in the designed switch time. Experimental, numerical, and analytical solutions agree that the optimal switch timing of these semi-active techniques depends on frequency. A closed-form solution for the optimal switch timing is derived in terms of well-known, non-dimensional parameters.
Show less - Date Issued
- 2016
- Identifier
- CFE0006336, ucf:51555
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006336
- Title
- The Effect of Vibrations on Cryogens Boil Off During Launch, Transfer and Transport.
- Creator
-
Schlichenmaier, Erin, Chow, Louis, Kauffman, Jeffrey, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
Boil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of...
Show moreBoil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of cryogenic fluids is vibrated, it boils off at an increased rate.A series of experiments were performed in which a cryogenic storage Dewar filled with liquid nitrogen was subjected to vibrational input and the rate of boil-off was measured. Based on the results of the testing, it has been determined that the rate of boil-off of a cryogenic fluid increases by a factor of up to five times the resting boil off rate during the application of vibrational energy. The development of advanced cryogenic storage systems capable of reducing vibrational loading of the fluid could significantly decrease the loss of cryogens during procedures such as transporting and storing the fluid or launching a space vehicle.
Show less - Date Issued
- 2016
- Identifier
- CFE0006389, ucf:51529
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006389
- Title
- High Temperature Mechanics of Aerospace Ceramic Composites Characterized via Synchrotron Radiation.
- Creator
-
Manero, Albert, Raghavan, Seetha, Kauffman, Jeffrey L., Gou, Jihua, University of Central Florida
- Abstract / Description
-
This research investigates the mechanics of complex aerospace material systems designed for extreme environments. Ceramics and ceramic matrix composites (CMCs) provide highly sought-after capabilities including the potential to withstand extreme temperatures and heat fluxes, severe oxidation and mechanical stresses. Two important material systems form the basis of the scope for this effort: i) thermal barrier coatings (TBCs) on Ni-superalloys that have enabled dramatic increases in turbine...
Show moreThis research investigates the mechanics of complex aerospace material systems designed for extreme environments. Ceramics and ceramic matrix composites (CMCs) provide highly sought-after capabilities including the potential to withstand extreme temperatures and heat fluxes, severe oxidation and mechanical stresses. Two important material systems form the basis of the scope for this effort: i) thermal barrier coatings (TBCs) on Ni-superalloys that have enabled dramatic increases in turbine inlet temperatures exceeding 1100(&)deg;C; and ii) ceramic matrix composites that have shown capability and promise for hypersonic applications beyond 1300(&)deg;C. Understanding the mechanical and material properties of these materials as they evolve with temperature and load requires in-situ measurements under realistic representative environments, and from these measurements life expectancy and failure mechanisms can be more completely elucidated.In this work, TBCs representative of typical jet engine turbine blade coatings, comprised of a Yttria-stabilized zirconia top coat and NiCoCrAlY bond coat deposited on an IN 100 superalloy substrate were studied. Particular interest was given to the thermally grown oxide (TGO) that develops between the top layer and the bond coat that has a major influence on TBC durability. The oxide scale's development is linked to the typical failure mechanisms observed in application for aircraft engines, and the influence of internal cooling has been shown to vary the behavior and evolution over its lifetime. Tubular specimens coated via electron beam physical vapor deposition (EB-PVD) were investigated with hard synchrotron X-rays at Argonne National Laboratory's Advanced Photon Source, while subjected to realistic mechanical and thermal loading representative of the engine environment. A multi-variable investigation was conducted to determine the influence and magnitude of internal flow cooling, external applied force loading, and thermal exposure in cyclical application. The superposition of all these variables together creates variation spatially across in service turbine blades. Lattice strains for the axial and radial directions were resolved for the YSZ top coat layer and the internal thermally grown oxide scale. The findings revealed that during sufficiently high axial loading the strain condition for both the thermally grown oxide and top coat layers may be reversed in direction, and demonstrated how the internal flow and applied mechanical loading produce opposing effects while showing the magnitude of each variable. This reversal of the strain direction is known to contribute to the failure mechanics in the system. This discovery shows that with increased internal cooling to critical zones that experience higher mechanical loads, it is possible to tune the response of the system and prevent the reversal from compressive to tensile strains (in the axial direction). The impact of the results has the potential to be used in design for enhanced durability of the multi-layer coatings.Ceramic matrix composites are identified to comprise the next generation of turbine blades and high temperature parts. All oxide ceramic matrix composites were investigated for the influence of micro-structure variations and processing on the mechanics of the system. Isolation techniques of the all alumina composite by means of synchrotron diffraction and tomography presented a novel non-destructive method for evaluating the constituent's properties and evolution. The study successfully revealed how variations in grain size and elastic modulus result in a complex strain states. Further tomographical analysis identified system mechanics influenced by porosity and processing effects. CMCs with an yttria based environmental barrier coating were investigated for comparison to uncoated parts to further capture the in service condition, and revealed considerations for how to improve the durability of the inter-laminar strength of environmental barrier coatings interface. Together the research conducted has contributed to the high temperature aerospace materials' community, and the experimental work taken strides to provide validation and support future numerical simulation for developing better lifetime modeling. Resulting high temperature mechanics' information has the potential to enhance the design of aerospace components for substantial increases in durability. The outcomes from this work can be leveraged to continue advancing material characterization for aerospace material systems under complex and extreme environments.
Show less - Date Issued
- 2016
- Identifier
- CFE0006836, ucf:51794
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006836
- Title
- Implementation of Optical Interferometry and Spectral Reflectometry for High Fidelity Thin Film Measurements.
- Creator
-
Arends-Rodriguez, Armando, Putnam, Shawn, Chow, Louis, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
An in-house reflectometer/interferometer has been built to investigate the varying curvature and thickness profiles in the contact line region of air, acetone, iso-octane, ethanol, and water on various types of substrates. Light intensity measurements were obtained using our reflectometer/interferomter and then analyzed in MATLAB to produce thickness and curvature profiles. The apparatus is based on the principle of a reflectometer, consisting of different optical elements, probe, light...
Show moreAn in-house reflectometer/interferometer has been built to investigate the varying curvature and thickness profiles in the contact line region of air, acetone, iso-octane, ethanol, and water on various types of substrates. Light intensity measurements were obtained using our reflectometer/interferomter and then analyzed in MATLAB to produce thickness and curvature profiles. The apparatus is based on the principle of a reflectometer, consisting of different optical elements, probe, light source, and spectrometer. Our reflectometer/interferomter takes measurements in the UV-Vis-IR range (200nm-1000nm). This range is achieved by using a light source that has both a deuterium light (190nm-800nm), a tungsten halogen light (400nm-1100nm), a Metal-Core Printed Circuit Board LED (800nm-1000nm) and a Metal-Core Printed Circuit board cold white LED (400nm-800nm, 6500 K). A UV-VIS-IR spectrometer reads the light response after light is focused on the region of interest. Then a CCD camera (2448x2048) records the profiles for image analyzing interferometry. The readings were then validated based on results in the literature and studies with cylindrical lens samples.
Show less - Date Issued
- 2017
- Identifier
- CFE0006559, ucf:51328
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006559
- Title
- Geolocation of Diseased Leaves in Strawberry Orchards for a Custom-Designed Octorotor.
- Creator
-
Garcia, Christian, Xu, Yunjun, Lin, Kuo-Chi, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
In recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the...
Show moreIn recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the process of determining global position coordinates of identified diseased regions based on images taken, is investigated. A Kalman filter is designed, based on a linear measurement model derived from an orthographic projection method, to estimate the target position. Simulation, as well as an ad-hoc experiment using flight data, is performed to compare this filter to the extended Kalman filter (EKF), which is based on the commonly used perspective projection method. The filter is embedded onto a CPU board for real-time use aboard the octorotor UAV, and the algorithm structure for this process is presented. In the later part of the thesis, a probabilistic data association method is used, jointly with a proposed logic-based measurement-to-target correlation method, to analyze measurements of different target sources and is incorporated into the Kalman filter. A simulation and an ad-hoc experiment, using video and flight data acquired aboard the octorotor UAV with a gimballed camera in hover flight, are performed to demonstrate the effectiveness of the algorithm and UAV platform.
Show less - Date Issued
- 2016
- Identifier
- CFE0006305, ucf:51597
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006305
- Title
- Analysis of steady state micro-droplet evaporation to enhance heat dissipation from tiny surfaces.
- Creator
-
Voota, Harish, Putnam, Shawn, Kauffman, Jeffrey, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
Steady state droplet evaporation experiments are conducted to understand (1) Droplet contact line influence on evaporation rate and (2) Droplet contact angle correlation to evaporation rate. Experiments are performed on a polymer substrate with a moat like trench (laser patterned) to control droplet contact line dynamics. A bottom-up methodology is implemented for droplet formation on the patterned substrate. Droplet evaporation rates on substrate temperatures 22???T_Substrate?70? and contact...
Show moreSteady state droplet evaporation experiments are conducted to understand (1) Droplet contact line influence on evaporation rate and (2) Droplet contact angle correlation to evaporation rate. Experiments are performed on a polymer substrate with a moat like trench (laser patterned) to control droplet contact line dynamics. A bottom-up methodology is implemented for droplet formation on the patterned substrate. Droplet evaporation rates on substrate temperatures 22???T_Substrate?70? and contact angles 80(&)deg;???110(&)deg; are measured. For a pinned microdroplet (CCR), volumetric infuse rate influences droplet contact angle. Results illustrate droplet contact line impact on evaporation rate . Moreover, these results coincide with previously published results and affirm that evaporation rate efficiency reduces with contact line depinning. Additionally, from all the analyzed experimental cases, evaporation rate scales proportional to the microdroplet contact angle (i.e. ?_(LG )??). In conclusion, these experiments shed new light on steady state evaporation of a microdroplet and its corresponding observations. Vital research findings can be used to enhance heat dissipation from tiny surfaces.
Show less - Date Issued
- 2015
- Identifier
- CFE0006235, ucf:51067
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006235
- Title
- Continuous Oscillation: Vibrational Effects and Acceptable Frequency Ranges of Small Bore Piping in Field Applications.
- Creator
-
Kasprzyk, Marie, Kauffman, Jeffrey L., Bai, Yuanli, Gordon, Ali, University of Central Florida
- Abstract / Description
-
In turbomachinery, a common failure mode is cracking of welds at the equipment and piping connection point. Each incidence of these cracks causes a forced shutdown to perform repairs that cost millions of dollars. This type of failure is predominately seen in small bore piping, which has a nominal diameter of 2 inches and smaller. This thesis addresses the failure prediction analysis of small bore piping, specifically in turbomachinery applications. Performing failure analysis to predict the...
Show moreIn turbomachinery, a common failure mode is cracking of welds at the equipment and piping connection point. Each incidence of these cracks causes a forced shutdown to perform repairs that cost millions of dollars. This type of failure is predominately seen in small bore piping, which has a nominal diameter of 2 inches and smaller. This thesis addresses the failure prediction analysis of small bore piping, specifically in turbomachinery applications. Performing failure analysis to predict the potential cracking of welds will allow for replacement of the piping during a planned shutdown which in the long term saves money due to costs such as expediting materials, overtime pay, and extended downtime. This analysis uses real-world applications of a chemical plant in Louisiana. The piping analyzed was connected to centrifugal compressors. The data used from these pieces of equipment included the material of construction, the piping schedule, lengths, nominal diameter, and running speeds. Based on research that shows welding the connection point with a full penetration weld greatly increases the life expectancy of the connection, this thesis uses full penetration welds in the analysis. The piping was analyzed using the software ANSYS to perform a finite element analysis, specifically examining the stress due to the induced harmonic forces. It is a common fact that having fewer supports on a vibrating pipe induces greater stresses and strains on the weld connections. Supports installed 12" from the equipment only show one to two ranges of frequencies to avoid compared to the longer piping which has four to five ranges of unacceptable frequencies. Tables are developed to relay acceptable frequencies based on observed stresses of the welds in the model.
Show less - Date Issued
- 2017
- Identifier
- CFE0006749, ucf:51862
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006749
- Title
- Development and Implementation of a Streamlined Process for the Creation and Mechanization of Negative Poisson's Ratio Meso-Scale Patterns.
- Creator
-
Shuler, Matthew, Gordon, Ali, Kauffman, Jeffrey L., Ghosh, Ranajay, University of Central Florida
- Abstract / Description
-
This thesis focuses on the development a streamlined process used to create novel meso-scale pattern used to induce negative Poisson's ratio (NPR) behavior at the bulk scale. This process includes, the development, optimization, and implementation of a candidate pattern. Currently, the majority of NPR structures are too porous to be utilized in conventional applications. For others, manufacturing methods have yet to realize the meso-scale pattern. Consequently, new NPR meta-materials must be...
Show moreThis thesis focuses on the development a streamlined process used to create novel meso-scale pattern used to induce negative Poisson's ratio (NPR) behavior at the bulk scale. This process includes, the development, optimization, and implementation of a candidate pattern. Currently, the majority of NPR structures are too porous to be utilized in conventional applications. For others, manufacturing methods have yet to realize the meso-scale pattern. Consequently, new NPR meta-materials must be developed in order to confer transformative thermomechanical responses to structures where transverse expansion is more desirable than contraction. For example, materials at high temperature. Additionally, patterns that take into account manufacturing limitations, while maintaining the properties characteristically attached to negative Poisson's Ratio materials, are ideal in order to utilize the potential of NPR structures. A novel NPR pattern is developed, numerically analyzed, and optimized via design of experiments. The parameters of the meso-structure are varied, and the bulk response is studied using finite element analysis (FEA). The candidate material for the study is Medium-Density Fiberboard (MDF). This material is relevant to a variety of applications where multiaxial stresses, particularly compressive, lead to mechanical fatigue. Samples are fabricated through a laser cutting process, and a comparison is drawn through the use of experimental means, including traditional tensile loading tests and digital image correlation (DIC). Various attributes of the elasto-plasticity responses of the bulk structure are used as objectives to guide the optimization process.
Show less - Date Issued
- 2017
- Identifier
- CFE0006795, ucf:51830
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006795