Current Search: Knipe, Kevin (x)
View All Items
- Title
- STRUCTURAL ANALYSIS AND ACTIVE VIBRATION CONTROL OF TETRAFORM SPACE FRAME FOR USE IN MICRO-SCALE MACHINING.
- Creator
-
Knipe, Kevin, Xu, Chengying, University of Central Florida
- Abstract / Description
-
This research thesis aims to achieve the structural analysis and active vibration damping of the Tetraform machining structure. The Tetraform is a space frame made up of four equilateral triangles with spherical masses at the four vertices. This frame was originally developed for grinding of optical lenses and is now being adapted for use in micro-precision milling. The Tetraform is beneficial to the milling process due to its exceptionally high dynamic stiffness characteristics, which...
Show moreThis research thesis aims to achieve the structural analysis and active vibration damping of the Tetraform machining structure. The Tetraform is a space frame made up of four equilateral triangles with spherical masses at the four vertices. This frame was originally developed for grinding of optical lenses and is now being adapted for use in micro-precision milling. The Tetraform is beneficial to the milling process due to its exceptionally high dynamic stiffness characteristics, which increases the machining stability and allows for higher material removal rates and accuracy. However, there are still some modes of vibration that are critical to the milling process and need to be dampened out. Under operating conditions of many structures, resonant modes of vibration can easily be excited which often lead to structural failure or significant reduction in operating performance. For the milling application, resonant frequencies of the machining structure can severely limit the milling process. The goal of the presented research is to increase surface and subsurface integrity with optimal material removal rate and least possible machining vibration, while maintaining accurate precision and surface finish. The vibrations from the machine tool not only affect the quality of the machined part but also the machine tool itself, since the cutting tool is susceptible to break or wear quickly when operating at high vibration modes, thus inevitably decreasing tool life. Vibration control has gained considerable attention in many areas including aerospace, automotive, structural, and manufacturing. Positive Position Feedback (PPF) is a vibration control scheme that is commonly used for its robust stability properties. A PPF controller works as a low pass filter, eliminating instability from unmodeled higher-frequency modes. The PPF controller concept is used in developing an active vibration control scheme to target the critical frequencies of the Tetraform. The controller is implemented with use of piezoelectric actuators and sensors, where the sensors are bonded to the opposing sides of the beams as the actuators, allowing for the assumption of collocation. The sensor/actuator pairs are placed at an optimal location on the Tetraform with high modal displacements for all the critical frequencies. Multiple finite element models are developed in order to analyze the structural dynamics and allow for controller design. A model is developed in the finite element software ANSYS and is used to obtain the Tetraform's dynamic characteristics, which include natural frequencies and mode shapes. This model is also used to visualize the changes in mode shapes due to structural modifications or different material selections. Other models are also developed in Matlab and Simulink. This consists of the creation of a finite element model which is then converted to state space. The piezoelectric transducers are included in this model for the input and output of the state space model. This model can be used for controller design where the goal is to create maximum decibel reduction at critical frequencies while attempting to minimize controller effort.
Show less - Date Issued
- 2009
- Identifier
- CFE0002962, ucf:47976
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002962
- Title
- In-situ synchrotron studies of turbine blade thermal barrier coatings under extreme environments.
- Creator
-
Knipe, Kevin, Raghavan, Seetha, Gordon, Ali, Kapat, Jayanta, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
Thermal Barrier Coatings have been used for decades to impose a thermal gradient between the hot combustion gases and the underlying superalloy substrate in engine turbine blades. Yttria Stabilized Zirconia (YSZ) is an industry standard high temperature ceramic for turbine applications. The protective coating is adhered to the substrate using a nickel based alloy bond coat. Through exposure to high temperature, a Thermally Grown Oxide (TGO) layer develops at the bond coat-YSZ interface. Large...
Show moreThermal Barrier Coatings have been used for decades to impose a thermal gradient between the hot combustion gases and the underlying superalloy substrate in engine turbine blades. Yttria Stabilized Zirconia (YSZ) is an industry standard high temperature ceramic for turbine applications. The protective coating is adhered to the substrate using a nickel based alloy bond coat. Through exposure to high temperature, a Thermally Grown Oxide (TGO) layer develops at the bond coat-YSZ interface. Large residual stresses develop in these layers due to thermal expansion mismatch that occurs during cool down from high temperature spraying and cyclic operating conditions. Despite their standard use, much is to be determined as to how these residual stresses are linked to the various failure modes. This study developed techniques to monitor the strain and stress in these internal layers during thermal gradient and mechanical conditions representing operating conditions. The thermal gradient is applied across the coating thickness of the tubular samples from infrared heating of the outer coating and forced air internal cooling of the substrate. While thermal and mechanical loading conditions are applied, 2-dimensional diffraction measurements are taken using the high-energy Synchrotron X-Rays and analyzed to provide high-resolution depth-resolved strain. This study will include fatigue comparisons through use of samples, which are both 'as-coated' as well as aged to various stages in a TBC lifespan. Studies reveal that variations in thermal gradients and mechanical loads create corresponding trends in depth resolved strains with the largest effects displayed at or near the bond coat/TBC interface. Single cycles as well as experiments targeting thermal gradient and mechanical effects were conducted to capture these trends. Inelastic behavior such as creep was observed and quantified for the different layers at high temperatures. From these studies more accurate lifespan predictions, material behaviors, and causes of failure modes can be determined. The work further develops measurement and analysis techniques for diffraction measurements in internal layers on a coated tubular sample which can be used by various industries to analyze similar geometries with different applications.
Show less - Date Issued
- 2014
- Identifier
- CFE0005640, ucf:50206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005640