Current Search: Liang, Wenlang (x)
View All Items
- Title
- Imaging long-range orientational order in monolayers of amphiphilic molecules with scanning probe force microscope and liquid crystal optical amplification.
- Creator
-
Liang, Wenlang, Fang, Jiyu, Deng, Weiwei, An, Linan, Huo, Qun, University of Central Florida
- Abstract / Description
-
Monolayers of amphiphilic molecules at interface provide a unique system for understanding the thermodynamic and rheological properties of quasi two-dimensional systems. They are also an excellent model accessible for studying cell membranes. The feature of long-range organization of molecular tilt azimuth in monolayers at the air/water interface is one of the most interesting findings over the past two decades, which leads to the formation rich and defined textures. By observing the changes...
Show moreMonolayers of amphiphilic molecules at interface provide a unique system for understanding the thermodynamic and rheological properties of quasi two-dimensional systems. They are also an excellent model accessible for studying cell membranes. The feature of long-range organization of molecular tilt azimuth in monolayers at the air/water interface is one of the most interesting findings over the past two decades, which leads to the formation rich and defined textures. By observing the changes in these textures, the transitions between tilted monolayer phases can be detected. We study the boojum and stripe textures formed in the liquid-condensed phase of pentadecanoic acid (PDA) monolayers at the air/water interface and find that they can be preserved after being transferred to glass substrates at low dipping speeds at a temperature lower than the room temperature. Frictional force microscopy confirms the long-range tilt order in the transferred boojums and stripes of PDA, implying the interaction of the PDA molecules with the glass surface does not change the tilt order. Polymerized stripe textures of pentacosadiynoic acid (PCA) monolayers can also be transferred onto solid substrates. Atomic force microscopy shows that the PCA stripe textures represent the regular variations of molecular packing densities in PCA monolayers. Furthermore, we find that the molecular orientation and packing density changes in monolayers can induce the local order of nematic liquid crystals. Due to the long-range orientation correlation of nematic liquid crystals, the boojum and stripe textures in monolayers can be observed by an optical microscope after liquid crystal optical amplification.
Show less - Date Issued
- 2011
- Identifier
- CFE0004498, ucf:49294
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004498
- Title
- Self-Assembled Two-Component Organic Tubes: Structures and Applications.
- Creator
-
Liang, Wenlang, Fang, Jiyu, Huo, Qun, Deng, Weiwei, University of Central Florida
- Abstract / Description
-
Bile acids are physiologically important metabolites, which are synthesized in liver as the end products of cholesterol metabolism and then secreted into the intestines. They play a critical role in the digestion and absorption of fats and fat-soluble vitamins through emulsifications. The amphipathic and chiral nature of bile acids makes their unique building blocks for assembling supramolecular structures including vesicles, fibers, ribbons and hollow tubes. Lithocholic acid (LCA) is a...
Show moreBile acids are physiologically important metabolites, which are synthesized in liver as the end products of cholesterol metabolism and then secreted into the intestines. They play a critical role in the digestion and absorption of fats and fat-soluble vitamins through emulsifications. The amphipathic and chiral nature of bile acids makes their unique building blocks for assembling supramolecular structures including vesicles, fibers, ribbons and hollow tubes. Lithocholic acid (LCA) is a secondary bile acid. Our studies show LCA can self-assemble into helical tubes in aqueous solution by the linear aggregation and fusion of vesicles. The objective of this dissertation is to tune the structure of helical tubes and functionalize them by the co-assembly of ionic LCA and cationic cetyltrimethylammonium bromide (CTAB) and ionic LCA and cationic cyanine dye (CD), respectively. The first part of this dissertation focuses on the ionic-assembly of LCA and CTAB to synthesize the helical tubes with varied diameters and pitches. Our studies show that LCA and CTAB can self-assemble into helical tubes in NH4OH aqueous solution. The diameter of the helical tubes can be changed by adjusting the molar ratio of LCA and CTAB. The pitch of the helical tubes can be tuned by varying NH4OH concentrations. Differential scanning calorimetry studies indicate that there is a homogeneous composition distribution in the LCA/CTAB helical tubes. X-ray diffraction analysis studies show that the helical tubes have multibilayer walls with an average d-spacing of 4.11nm. We demonstrate that the helical tubes with varied diameters and pitches can be transformed into helical silica through the sol-gel transcription of tetraethoxysilane (TEOS). The second part of this dissertation is to use the ionic self-assembly of LCA and CD to design light-harvesting tubes by mimicking green sulfur bacteria that are known to be a highly efficient photosynthesizer. X-ray diffraction and optical spectra show that LCA and CD can co-assemble into J- or H-aggregate tubes, depending the condition under which the self-assembly occurs. We demonstrate the feasibility of using the J-aggregate nanotubes in the sensitive and selective detection of mercury (II) ions by the photoinduced electron transfer under sunlight. The presence of mercury (II) ions in aqueous solution could be detected for concentrations as low as 10 pM.
Show less - Date Issued
- 2013
- Identifier
- CFE0005201, ucf:50635
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005201