Current Search: Muller, Mark (x)
View All Items
- Title
- ANALYSIS OF THE REPAIR OF TOPOISOMERASE II DNA DAMAGE.
- Creator
-
Goldstein, Eric, Muller, Mark, University of Central Florida
- Abstract / Description
-
A large number of anti-cancer chemotherapeutics target DNA topoisomerases. Etoposide is a specific topoisomerase II poison which causes reversible double strand DNA breaks. The focus of this project is to analyze the repair of DNA damage induced by etoposide.. Double strand DNA break repair is mediated by through either non-homologous end joining (NHEJ) or homologous recombination. NHEJ repairs through direct ligation of a double stranded break while homologous recombination utilizes a...
Show moreA large number of anti-cancer chemotherapeutics target DNA topoisomerases. Etoposide is a specific topoisomerase II poison which causes reversible double strand DNA breaks. The focus of this project is to analyze the repair of DNA damage induced by etoposide.. Double strand DNA break repair is mediated by through either non-homologous end joining (NHEJ) or homologous recombination. NHEJ repairs through direct ligation of a double stranded break while homologous recombination utilizes a homologous template to recover the wild type sequence. A reporter cassette, RYDR-GFP, has been stably integrated into HeLa cells. This reporter contains an ultra-high affinity topoisomerase II cleavage site (RY) placed in the middle of a mutant GFP sequence. Flanking this sequence is a corresponding stretch of wild type GFP that is used as template to repair the break and restore gene function yielding GFP positive cells. Titrations with etoposide have shown that a logarithmic increase in drug concentration yields a corresponding increase in repair through homologous recombination (HR). This result demonstrates that topoisomerase II mediated damage is efficiently repaired by the process of HR. To examine NHEJ repair, a doxycycline inducible, stably integrated NHEJ HeLa cell reporter cassette was also evaluated. The data indicates that repair of topoisomerase II mediated DNA damage occurs more efficiently through the HR pathway. Collectively, the data suggests that tumor cells proficient in HR repair may effectively elude treatment by topoisomerase II targeting drugs.
Show less - Date Issued
- 2011
- Identifier
- CFH0003785, ucf:44767
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0003785
- Title
- GOLD (III) MACROCYCLES ARE DNA INTERCALATORS THAT INHIBIT TOPOISOMERASE I AND II.
- Creator
-
Fagenson, Alexander, Muller, Mark, University of Central Florida
- Abstract / Description
-
Human Topoisomerase IB (TOP1) and Topoisomerase IIα (TOP2α) are essential nuclear enzymes that control DNA topology during DNA replication, gene transcription and cell division. These enzymes carry out their catalytic function by making transient single-strand (type I) or double-strand (type II) breaks in the DNA. In vivo, these complexes are short-lived but can be exploited by anti-cancer drugs to mechanistically kill cancer cells. Two general classes of compounds can kill cancer cells...
Show moreHuman Topoisomerase IB (TOP1) and Topoisomerase IIα (TOP2α) are essential nuclear enzymes that control DNA topology during DNA replication, gene transcription and cell division. These enzymes carry out their catalytic function by making transient single-strand (type I) or double-strand (type II) breaks in the DNA. In vivo, these complexes are short-lived but can be exploited by anti-cancer drugs to mechanistically kill cancer cells. Two general classes of compounds can kill cancer cells through a topo-targeted mechanism. Interfacial Poisons (IFPs) act at the enzyme-DNA interface to inhibit the religation reaction, resulting in the accumulation of DNA double-stand breaks (DSBs) in the genomic setting. Catalytic Inhibitor Compounds (CICs) act by interfering with other steps of the catalytic cycles such as DNA/protein binding or the cleavage reaction. In this work we identify new Au3+ macrocyclic gold complexes that act as CICs of both TOP1 and TOP2α. The complexes exhibit square planar geometry with an aromatic system that allows for DNA intercalation with binding affinities in the low micromolar range. A cytotoxicity screen across 60 human cancer cell lines performed by the National Cancer Institute (NCI, USA) reveals significant anti-tumor potential. Our lead compound (butyl gold(III) macrocycle, cmpd 3.) is currently undergoing further studies in animal models at the NCI. In vitro assays with purified DNA and enzyme reveal the Au3+ ion to be the quintessential switch that allows for DNA intercalation and subsequent inhibition of TOP1 and TOP2α.
Show less - Date Issued
- 2012
- Identifier
- CFH0004161, ucf:44823
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004161
- Title
- EPIGENETIC CONTROL MECHANISMS IN SOMATIC CELLS MEDIATED BY DNA METHYLTRANSFERASE 1.
- Creator
-
Lee, Bongyong, Muller, Mark, University of Central Florida
- Abstract / Description
-
DNA methylation regulates gene expression through a complex network of protein/protein and protein/DNA interactions in chromatin. The maintenance methylase, DNA methyltransferase 1 (DNMT1), is a prominent enzyme in the process that is linked to DNA replication and drives the heritable nature of epigenetic modifications in somatic cells. The mechanistic details that explain how DNMT1 catalytic action is directed in a chromatin setting are not well understood. We hypothesize that post...
Show moreDNA methylation regulates gene expression through a complex network of protein/protein and protein/DNA interactions in chromatin. The maintenance methylase, DNA methyltransferase 1 (DNMT1), is a prominent enzyme in the process that is linked to DNA replication and drives the heritable nature of epigenetic modifications in somatic cells. The mechanistic details that explain how DNMT1 catalytic action is directed in a chromatin setting are not well understood. We hypothesize that post translational modifications and a variety of protein-protein interactions processes are key regulatory elements that set the methylation of CpG elements essential for normal growth behavior in somatic cells. These fundamental processes can be disrupted by DNA damage leading to inappropriate gene silencing and loss of growth control in somatic cells. First, we show that DNMT1 is post-translationally modified by sumoylation and we have mapped these sumoylation sites by defined mutations. Sumoylated DNMT1 is catalytically active on genomic DNA in vivo and substantially increases the enzymatic activity of DNMT1 both in vitro and in chromatin. These data establish that sumoylation modulates the endogenous activity of a prominent epigenetic maintenance pathway in cells. Second, we investigated novel mechanisms whereby somatic cells can erase then reset DNA methylation events in somatic cells. In this study, the relationship between DNA damage and gene silencing was explored. To this end, we generated a HeLa cell line containing a specialized GFP reporter cassette (DRGFP) containing two mutated GFP genes and a unique I-SceI restriction endonuclease site. These cells do not express GFP. A unique double strand break is then delivered by transfecting in the gene for I-SceI. About 4% of the cells produced a functional GFP by gene conversion and homologous recombination (HR); however roughly half of the GFP recombinants expressed the gene poorly and this was attributed to gene silencing. Silencing of the GFP expressing cell clones was due to DNA methylation and could be reversed using a drug that inhibits global methylation (5-aza-2'-deoxycytidine). Approximately half of the repaired genes were heavily methylated, and half were hypomethylated. That is, a key intermediate methylation state after HR repair is hemimethylated DNA, defined as methylation limited to one strand. Evidence is given that DNMT1 is acting as a de novo methylase at the HR repair patches in cells. Moreover, the DNA damage inducible protein, GADD45, interacts specifically with the catalytic domain of DNMT1 and GADD45 binds with extremely high affinity to hemimethylated DNA sites. Thus, GADD45 is a key regulatory element in silencing of HR repaired DNA segments and appears to inhibit the activity of DNMT1. Consistent with these results, we found that GADD45 increased the expression of recombinant GFP following HR repair, further suggesting its role in orchestrating strand specific DNA methylation by DNMT1. Since these experiments were performed in live cells, there is strong physiological relevance. We propose that DS DNA damage and the resulting HR process involves precise, strand selected DNA methylation mediated by the prominent methylase enzyme, DNMT1. Moreover, DS DNA break repair through HR and gene conversion, may potentially erase and reset DNA methylation patterns and therefore alter the expression of repaired genes. The overall process is tightly regulated by the DNA damage inducible protein GADD45, which may coordinate strand specific methylation by recruiting DNMT1 to HR repair templates. The ability of GADD45 to modulate DNMT1 catalytic activity may explain its role as a passive mediator of demethylation that has been reported by other groups. The overall process of silencing post DNA repair is a strong evolutionary force that may predispose cells to malignant transformation.
Show less - Date Issued
- 2009
- Identifier
- CFE0002872, ucf:48026
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002872
- Title
- THE EXPRESSION OF MAKORIN1 RING FINGER PROTEIN, AN E3 UBIQUITIN LIGASE FOR TELOMERASE REVERSE TRANSCRIPTASE, IS INDUCED WITH DIFFERENTIATION THERAPY IN LEUKEMIA.
- Creator
-
Salvatico, Jose, Muller, Mark, University of Central Florida
- Abstract / Description
-
Telomeres are important structural and functional components of chromosomes, serving to provide stability and enabling full replication of the chromosomes. However, a shortening of the telomeres occurs with each cell division that can be fixed by a polymerase activity provided by telomerase, preventing this loss which would otherwise eventually lead to chromosome end-to-end fusions, senescence and cell death. The telomerase activity is present in stem cells and germ line cells, but absent or...
Show moreTelomeres are important structural and functional components of chromosomes, serving to provide stability and enabling full replication of the chromosomes. However, a shortening of the telomeres occurs with each cell division that can be fixed by a polymerase activity provided by telomerase, preventing this loss which would otherwise eventually lead to chromosome end-to-end fusions, senescence and cell death. The telomerase activity is present in stem cells and germ line cells, but absent or barely noticeable in adult somatic cells. However, in approximately 80-90% of transformed somatic cells the telomerase activity is recovered, resulting in a "telomerase positive phenotype". This phenotype has been a prime target in cancer research, and recently a novel mechanism for regulating telomerase levels has been uncovered. Makorin 1 RING finger protein (MKRN1) was found to be an E3 ubiquitin ligase for hTERT, the rate-limiting catalytic component of telomerase, leading to the ubiqutin-mediated 26s proteasomal degradation of hTERT and reduced telomerase activity. So, MKRN1 plays a role in telomere homeostasis. In this study we looked at the expression of MKRN1 in numerous tumor cell lines (Hela, HCT116, HL60) and the normal diploid fibroblasts (WI-38). In the latter cell line, basal levels of MKRN1 were found to increase 6-fold when the cells were serum starved and arrested in G1/G0. In contrast, the cancer cell lines expressed MKRN1 at low levels or undetectable. This would indicate that MKRN1 is up-regulated in resting or G1 arrested cells.In one cell line the promyelocytic leukemia, HL-60, showed no protein levels of MKRN1. This cell line is able to be terminally differentiated upon ATRA treatment, when cells are arrested at G1. In this model system of cellular differentiation hTERT mRNA levels and telomerase activity decrease drastically and quickly. We hypothesized that the differentiation of HL-60 induced by ATRA would be accompanied by an increase in MKRN1 levels. MKRN1 mRNA and protein levels were strongly up-regulated during the ATRA-mediated differentiation of HL-60 cells. Although, a decrease in hTERT mRNA is a contributor to telomerase inhibition during cellular differentiation; our data indicate that the up-regulation of MKRN1 ensures the effective removal of residual telomerase activity by the ubiquitin-mediated degradation pathway at the proteasome.
Show less - Date Issued
- 2009
- Identifier
- CFE0002879, ucf:48032
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002879
- Title
- A Solid Phase Assay for Topoisomerase I interfacial Poisons and Catalytic Inhibitors.
- Creator
-
Cyril Sagayaraj, Vidusha, Muller, Mark, Zhao, Jihe, Chakrabarti, Debopam, University of Central Florida
- Abstract / Description
-
We report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic...
Show moreWe report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic inhibitors; therefore, the solid phase assay represents a 'bimodal' readout that reveals mechanisms of action. The method has been demonstrated to work with known interfacial poisons and catalytic inhibitors. In addition to specific topoisomerase targeting drugs, the method also weakly detects other relevant anticancer agents, such as potent DNA alkylating and intercalating compounds; therefore, topoisomerase I HTS represents an excellent tool for searching and identifying novel genotoxic agents. This method is rapid, robust, economical and scalable for large library screens.
Show less - Date Issued
- 2011
- Identifier
- CFE0004473, ucf:49304
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004473
- Title
- Establishment of Methods for Isolation of Pnmt+ Cardiac Progenitor Cells.
- Creator
-
Varudkar, Namita, Ebert, Steven, Parthasarathy, Sampath, Muller, Mark, University of Central Florida
- Abstract / Description
-
Cardiovascular disease is the leading cause of death in the United States. Millions of patients suffer each year from endothelial dysfunction and/or debilitating myocardial damage resulting in decreased quality of life and increased risk of death or disablement. Current pharmacological approaches are only partly effective at treating cardiovascular disease, and hence, better strategies are needed to provide significant improvements in treatment options. Cardiac stem/progenitorcells have the...
Show moreCardiovascular disease is the leading cause of death in the United States. Millions of patients suffer each year from endothelial dysfunction and/or debilitating myocardial damage resulting in decreased quality of life and increased risk of death or disablement. Current pharmacological approaches are only partly effective at treating cardiovascular disease, and hence, better strategies are needed to provide significant improvements in treatment options. Cardiac stem/progenitorcells have the potential to regenerate myocardial tissue and repair damaged heart muscle. There are many different types of cardiac progenitor cells, and each may have certain unique properties and characteristics that would likely be useful for particular clinical applications. A current challengein the field is to identify, isolate, and test specific cardiac stem/progenitor cell populations for their ability to repair/regenerate myocardial tissue. Our laboratory has discovered a new type of cardiac progenitor cell that expresses the enzyme, Phenylethanolamine-n-methyltransferase (Pnmt). My initial studies focused on identification of Pnmt+ cells based on knock-in of a nuclear-localized Enhanced Green Fluorescent Protein (nEGFP) reporter gene into exon 1 of the Pnmt gene in a stable recombinant Pnmt-nEGFP mouse embryonic stem cell (mESC) line. These cells were differentiated into cardiomyocytes, and I identified nEGFP+ cells using fluorescence, immunofluorescence, and phase-contrast microscopy techniques. Our results showed that only about 0.025% ( 1 per 4000) of the cardiac-differentiating stem cells expressed the nEGFP+ marker. Because of the relative rarity of these cells, optimization of isolation methods proved initially challenging. To overcome this technical barrier, I used a surrogate cell culture system to establish the methodsof isolation based on expression of either a fluorescent cell marker (EGFP), or a unique cell surface receptor represented by an inactivated (truncated) version of the human low-affinity nerve growth factor receptor (LNGFR). Plasmid DNA containing these reporter genes was transiently transfected into a permissive cell line (RS1), and reporter gene expression was used to identify and isolate transfected from non-transfected cells using either Fluorescence-Activated Cell Sorting(FACS) or Magnetic-Activated Cell Sorting (MACS) methods. The main objective of the study was to establish the isolation techniques based on the expression of reporter genes (EGFP and LNGFR) in RS1 cells. Following transfection, EGFP+ cells were successfully isolated via FACS as verified by flow cytometric and microscopic analyses, which showed that approximately 96% of the isolated cells were indeed EGFP+. Despite the relative purity of the isolated cell population, however, their viability in culture following FACS was substantially compromised ( 50% attrition). In contrast, MACS enabled efficient isolation of LNGFR+ cells, and the vast majority of these ( 90%) retained viability in culture following MACS. The LNGFR expression was verified using RT-PCR. Further, MACS methods enabled isolation of marked cells in about 5-7 mins, whereas it took 2-4 hours to using FACS to perform similar isolations from the same amount of starting material (10^6 cells). In addition, MACS is a more economical method in that it does not require the use of an expensive laser-based instrument to perform the sorting. These results suggest that MACS was a more efficient, gentle, and feasible technique than FACS for isolation of reporter-tagged mammalian cells. Consequently, future studies aimed at isolation of Pnmt+ cardiac progenitor cells will thus primarily focus on MACS methods.
Show less - Date Issued
- 2014
- Identifier
- CFE0005558, ucf:50287
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005558
- Title
- A major double strand repair pathway and cancer-associated circulating proteins are effecters of epigenetic revision.
- Creator
-
Allen, Brittany, Masternak, Michal, Khaled, Annette, Zhao, Jihe, Muller, Mark, Siddiqi, Shadab, University of Central Florida
- Abstract / Description
-
DNA methylation is a vital epigenetic process that acts as a major control mechanism for gene expression. In addition to its essential role in many normal cellular processes, it is also implicated in a wide variety of disease states and processes including cancer. Along with genetic mutations, aberrant DNA methylation patterns, specifically the inappropriate DNA methylation or demethylation of CpG residues, may activate oncogenes or suppress tumor suppressor genes, respectively. These changes...
Show moreDNA methylation is a vital epigenetic process that acts as a major control mechanism for gene expression. In addition to its essential role in many normal cellular processes, it is also implicated in a wide variety of disease states and processes including cancer. Along with genetic mutations, aberrant DNA methylation patterns, specifically the inappropriate DNA methylation or demethylation of CpG residues, may activate oncogenes or suppress tumor suppressor genes, respectively. These changes can generate or facilitate the progression of tumorigenesis and tend to accumulate throughout the development of cancer. Although they play such a major role in cancer and in other diseases, it remains unclear what causes these epigenetic revisions to occur. This dissertation will focus on uncovering mechanisms that are sources of epigenetic revision, specifically as they relate to cancer. Due to rapid cell division and increased DNA damage, cells are increasingly dependent on DNA repair as they continue on a path of tumorigenic progression. We hypothesize that DNA repair, specifically the repair of DNA double strand breaks (DSB) by Non-Homologous End Joining (NHEJ) may play a role in inappropriate epigenetic revision. Using a GFP reporter system inserted into the genome of HeLa cells, we are able to induce targeted DNA damage that enables the cells, after successfully undergoing NHEJ repair, to express WT GFP. These GFP+ cells were segregated into two expression classes, one with robust expression (Bright) and the other with reduced expression (Dim). Using a DNA hypomethylating drug (AzadC) we were able to demonstrate that the different GFP expression levels was due to differential methylation statuses of CpGs in regions on either side of the break site. Deep sequencing analysis of this area in sorted Bright and Dim populations revealed a collection of different epi-alleles that display patterns of DNA methylation following repair by NHEJ. These patterns differ between Bright and Dim cells which are hypo- and hypermethylated, respectively, and between the post-repair populations and the original, uncut cells. These data suggest that NHEJ repair facilitates a rewrite of the methylation landscape in repaired genes, elucidating one potential source for the altered methylation patterns seen in cancer cells.The Dim cells generated during this study are known to have a hypermethylated GFP gene that is correlated with reduced expression, allowing it to be used as a screening tool for hypomethylating agents. We used this tool to screen the blood serum of patients with head and neck squamous cell carcinoma (HNSCC). We found that the serum from HNSCC patients, but not from healthy individuals, contains some factor that causes hypomethylation in exposed cells. Further, we were able to identify this factor as a protein capable of effecting changes in DNA methylation, gene expression, and miRNA levels in the treated Dim cells. The novel concept presented in this study has immense implications on the study of cancer progression as it evidences circulating proteins, presumably released by cancer cells, which are able to effect gene expression in cells that are distal to the location of the cancer. Further, the fact that these proteins are in circulation makes them a potential target for use in diagnostics. Changes in DNA methylation play a major role in the development of cancer and understanding the mechanisms by which this occurs could provide new therapeutic targets for preventing this process from contributing to tumorigenesis. This dissertation presents potential sources of epigenetic revision in cancer and thus provides answers to a major question that has yet to be answered in the area of cancer research.
Show less - Date Issued
- 2017
- Identifier
- CFE0006555, ucf:51333
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006555