Current Search: Pourmohammadi Fallah, Yaser (x)
View All Items
- Title
- Resource Optimization in Visible Light Communication using Internet of Things.
- Creator
-
Dey, Akash, Yuksel, Murat, Pourmohammadi Fallah, Yaser, Rahnavard, Nazanin, University of Central Florida
- Abstract / Description
-
In the modern day, there is a serious spectrum crunch in the legacy radio frequency (RF) band, for which visible light communication (VLC) can be a promising option. VLC is a short-range wireless communication variant which uses the visible light spectrum. In this thesis, we are using a VLC-based architecture for providing scalable communications to Internet-of-Things (IoT) devices where a multi-element hemispherical bulb is used that can transmit data streams from multiple light emitting...
Show moreIn the modern day, there is a serious spectrum crunch in the legacy radio frequency (RF) band, for which visible light communication (VLC) can be a promising option. VLC is a short-range wireless communication variant which uses the visible light spectrum. In this thesis, we are using a VLC-based architecture for providing scalable communications to Internet-of-Things (IoT) devices where a multi-element hemispherical bulb is used that can transmit data streams from multiple light emitting diode (LED) boards. The essence of this architecture is that it uses a Line-of-Sight (LoS) alignment protocol that handles the hand-off issue created by the movement of receivers inside a room.We start by proposing an optimization problem aiming to minimize the total consumed energy emitted by each LED taking into consideration the LEDs' power budget, users' perceived quality-of-service, LED-user associations, and illumination uniformity constraints. Then, because of the non-convexity of the problem, we propose to solve it in two stages: (1) We design an efficient algorithm for LED-user association for fixed LED powers, and (2) using the LED-user association, we find an approximate solution based on Taylor series to optimize the LEDs' power. We devise two heuristic solutions based on this approach. The first heuristic solution, called the Low Complexity Two Stages Solution (TSS), optimizes the association between the LEDs and the mobile users before and then the power of each LED is optimized. In the second heuristic, named the Maximum Uniformity Approach, we try to improve the illumination uniformity first and then adjust the power values for each LED so that they do not go above a certain value. Finally, we illustrate the performance of our method via simulations.
Show less - Date Issued
- 2019
- Identifier
- CFE0007451, ucf:52693
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007451
- Title
- Joint Optimization of Illumination and Communication for a Multi-Element VLC Architecture.
- Creator
-
Ibne Mushfique, Sifat, Yuksel, Murat, Pourmohammadi Fallah, Yaser, Turgut, Damla, University of Central Florida
- Abstract / Description
-
Because of the ever increasing demand wireless data in the modern era, the Radio Frequency (RF) spectrum is becoming more congested. The remaining RF spectrum is being shrunk at a very heavy rate, and spectral management is becoming more difficult. Mobile data is estimated to grow more than 10 times between 2013 and 2019, and due to this explosion in data usage, mobile operators are having serious concerns focusing on public Wireless Fidelity (Wi-Fi) and other alternative technologies....
Show moreBecause of the ever increasing demand wireless data in the modern era, the Radio Frequency (RF) spectrum is becoming more congested. The remaining RF spectrum is being shrunk at a very heavy rate, and spectral management is becoming more difficult. Mobile data is estimated to grow more than 10 times between 2013 and 2019, and due to this explosion in data usage, mobile operators are having serious concerns focusing on public Wireless Fidelity (Wi-Fi) and other alternative technologies. Visible Light Communication (VLC) is a recent promising technology complementary to RF spectrum which operates at the visible light spectrum band (roughly 400 THz to 780 THz) and it has 10,000 times bigger size than radio waves (roughly 3 kHz to 300 GHz). Due to this tremendous potential, VLC has captured a lot of interest recently as there is already an extensive deployment of energy efficient Light Emitting Diodes (LEDs). The advancements in LED technology with fast nanosecond switching times is also very encouraging. In this work, we present hybrid RF/VLC architecture which is capable of providing simultaneous lighting and communication coverage in an indoor setting. The architecture consists of a multi-element hemispherical bulb design, where it is possible to transmit multiple data streams from the multi-element hemispherical bulb using LED modules. We present the detailed components of the architecture and make simulations considering various VLC transmitter configurations. Also, we devise an approach for an efficient bulb design mechanism to maintain both illumination and communication at a satisfactory rate, and analyze it in the case of two users in a room. The approach involves formulating an optimization problem and tackling the problem using a simple partitioning algorithm. The results indicate that good link quality and high spatial reuse can be maintained in a typical indoor communication setting.
Show less - Date Issued
- 2018
- Identifier
- CFE0007016, ucf:52025
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007016
- Title
- A Game-theoretic Model for Regulating Freeriding in Subsidy-Based Pervasive Spectrum Sharing Markets.
- Creator
-
Rahman, Mostafizur, Yuksel, Murat, Nam, Boo Hyun, Pourmohammadi Fallah, Yaser, University of Central Florida
- Abstract / Description
-
Cellular spectrum is a limited natural resource becoming scarcer at a worrisome rate. To satisfy users' expectation from wireless data services, researchers and practitioners recognized the necessityof more utilization and pervasive sharing of the spectrum. Though scarce, spectrum is underutilized in some areas or within certain operating hours due to the lack of appropriate regulatory policies, static allocation and emerging business challenges. Thus, finding ways to improve the utilization...
Show moreCellular spectrum is a limited natural resource becoming scarcer at a worrisome rate. To satisfy users' expectation from wireless data services, researchers and practitioners recognized the necessityof more utilization and pervasive sharing of the spectrum. Though scarce, spectrum is underutilized in some areas or within certain operating hours due to the lack of appropriate regulatory policies, static allocation and emerging business challenges. Thus, finding ways to improve the utilization of this resource to make sharing more pervasive is of great importance. There already exists a number of solutions to increase spectrum utilization via increased sharing. Dynamic Spectrum Access (DSA) enables a cellular operator to participate in spectrum sharing in many ways, such as geological database and cognitive radios, but these systems perform spectrum sharing at the secondary level (i.e., the bands are shared if and only if the primary/licensed user is idle) and it is questionable if they will be sufficient to meet the future expectations of the spectral efficiency.Along with the secondary sharing, spectrum sharing among primary users is emerging as a new domain of future mode of pervasive sharing. We call this type of spectrum sharing among primaryusers as (")pervasive spectrum sharing (PSS)("). However, such spectrum sharing among primary users requires strong incentives to share and ensuring a freeriding-free cellular market.Freeriding in pervasively shared spectrum markets (be it via government subsidies/regulations or self-motivated coalitions among cellular operators) is a real techno-economic challenge to be addressed. In a PSS market, operators will share their resources with primary users of other operators and may sometimes have to block their own primary users in order to attain sharing goals. Small operators with lower quality service may freeride on large operators' infrastructure in such pervasively shared markets. Even worse, since small operators' users may perceive higher-than-expected service quality for a lower fee, this can cause customer loss to the large operators and motivate small operators to continue freeriding with additional earnings from the stolen customers. Thus, freeriding can drive a shared spectrum market to an unhealthy and unstable equilibrium. In this work, we model the freeriding by small operators in shared spectrum markets via a game-theoretic framework. We focus on a performance-based government incentivize scheme and aim to minimize the freeriding issue emerging in such PSS markets. We present insights from the model and discuss policy and regulatory challenges.
Show less - Date Issued
- 2018
- Identifier
- CFE0007082, ucf:52024
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007082
- Title
- Data-Driven Modeling and Optimization of Building Energy Consumption.
- Creator
-
Grover, Divas, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Zhou, Qun, University of Central Florida
- Abstract / Description
-
Sustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the...
Show moreSustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the operation. The City of Orlando has similar goals of sustainability and reduction of energy consumption so, they provided us access to their BAS for the data and study the operation of its facilities. The data scraped from the City's BAS serves can be used to develop statistical/machine learning methods for decision making. We selected a mid-size pilot building to apply these techniques. The process begins with the collection of data from BAS. An Application Programming Interface (API) is developed to login to the servers and scrape data for all data points and store it on the local machine. Then data is cleaned to analyze and model. The dataset contains various data points ranging from indoor and outdoor temperature to fan speed inside the Air Handling Unit (AHU) which are operated by Variable Frequency Drive (VFD). This whole dataset is a time series and is handled accordingly. The cleaned dataset is analyzed to find different patterns and investigate relations between different data points. The analysis helps us in choosing parameters for models that are developed in the next step. Different statistical models are developed to simulate building and equipment behavior. Finally, the models along with the data are used to optimize the building Operation with the equipment constraints to make decisions for building operation which leads to a reduction in energy consumption while maintaining temperature and pressure inside the building.
Show less - Date Issued
- 2019
- Identifier
- CFE0007810, ucf:52335
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007810
- Title
- Real-time SIL Emulation Architecture for Cooperative Automated Vehicles.
- Creator
-
Gupta, Nitish, Pourmohammadi Fallah, Yaser, Rahnavard, Nazanin, Vosoughi, Azadeh, University of Central Florida
- Abstract / Description
-
This thesis presents a robust, flexible and real-time architecture for Software-in-the-Loop (SIL) testing of connected vehicle safety applications. Emerging connected and automated vehicles (CAV) use sensing, communication and computing technologies in the design of a host of new safety applications. Testing and verification of these applications is a major concern for the automotive industry. The CAV safety applications work by sharing their state and movement information over wireless...
Show moreThis thesis presents a robust, flexible and real-time architecture for Software-in-the-Loop (SIL) testing of connected vehicle safety applications. Emerging connected and automated vehicles (CAV) use sensing, communication and computing technologies in the design of a host of new safety applications. Testing and verification of these applications is a major concern for the automotive industry. The CAV safety applications work by sharing their state and movement information over wireless communication links. Vehicular communication has fueled the development of various Cooperative Vehicle Safety (CVS) applications. Development of safety applications for CAV requires testing in many different scenarios. However, the recreation of test scenarios for evaluating safety applications is a very challenging task. This is mainly due to the randomness in communication, difficulty in recreating vehicle movements precisely, and safety concerns for certain scenarios. We propose to develop a standalone Remote Vehicle Emulator (RVE) that can reproduce V2V messages of remote vehicles from simulations or from previous tests, while also emulating the over the air behavior of multiple communicating nodes. This is expected to significantly accelerate the development cycle. RVE is a unique and easily configurable emulation cum simulation setup to allow Software in the Loop (SIL) testing of connected vehicle applications in a realistic and safe manner. It will help in tailoring numerous test scenarios, expediting algorithm development and validation as well as increase the probability of finding failure modes. This, in turn, will help improve the quality of safety applications while saving testing time and reducing cost.The RVE architecture consists of two modules, the Mobility Generator, and the Communication emulator. Both of these modules consist of a sequence of events that are handled based on the type of testing to be carried out. The communication emulator simulates the behavior of MAC layer while also considering the channel model to increase the probability of successful transmission. It then produces over the air messages that resemble the output of multiple nodes transmitting, including corrupted messages due to collisions. The algorithm that goes inside the emulator has been optimized so as to minimize the communication latency and make this a realistic and real-time safety testing tool. Finally, we provide a multi-metric experimental evaluation wherein we verified the simulation results with an identically configured ns3 simulator. With the aim to improve the quality of testing of CVS applications, this unique architecture would serve as a fundamental design for the future of CVS application testing.
Show less - Date Issued
- 2018
- Identifier
- CFE0007185, ucf:52280
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007185
- Title
- Analysis of Driver Behavior Modeling in Connected Vehicle Safety Systems Through High Fidelity Simulation.
- Creator
-
Jamialahmadi, Ahmad, Pourmohammadi Fallah, Yaser, Rahnavard, Nazanin, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
A critical aspect of connected vehicle safety analysis is understanding the impact of human behavior on the overall performance of the safety system. Given the variation in human driving behavior and the expectancy for high levels of performance, it is crucial for these systems to be flexible to various driving characteristics. However, design, testing, and evaluation of these active safety systems remain a challenging task, exacerbated by the lack of behavioral data and practical test...
Show moreA critical aspect of connected vehicle safety analysis is understanding the impact of human behavior on the overall performance of the safety system. Given the variation in human driving behavior and the expectancy for high levels of performance, it is crucial for these systems to be flexible to various driving characteristics. However, design, testing, and evaluation of these active safety systems remain a challenging task, exacerbated by the lack of behavioral data and practical test platforms. Additionally, the need for the operation of these systems in critical and dangerous situations makes the burden of their evaluation very costly and time-consuming. As an alternative option, researchers attempt to use simulation platforms to study and evaluate their algorithms. In this work, we introduce a high fidelity simulation platform, designed for a hybrid transportation system involving both human-driven and automated vehicles. We decompose the human driving task and offer a modular approach in simulating a large-scale traffic scenario, making it feasible for extensive studying of automated and active safety systems. Furthermore, we propose a human-interpretable driver model represented as a closed-loop feedback controller. For this model, we analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics. Finally, we recreate a similarly dense traffic scenario within our simulator and conduct a thorough analysis of different human-specific and system-specific factors and study their effect on the performance and safety of the traffic network.
Show less - Date Issued
- 2018
- Identifier
- CFE0007573, ucf:52578
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007573
- Title
- AUTONOMOUS ROBOTIC GRASPING IN UNSTRUCTURED ENVIRONMENTS.
- Creator
-
Jabalameli, Amirhossein, Behal, Aman, Haralambous, Michael, Pourmohammadi Fallah, Yaser, Boloni, Ladislau, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
A crucial problem in robotics is interacting with known or novel objects in unstructured environments. While the convergence of a multitude of research advances is required to address this problem, our goal is to describe a framework that employs the robot's visual perception to identify and execute an appropriate grasp to pick and place novel objects. Analytical approaches explore for solutions through kinematic and dynamic formulations. On the other hand, data-driven methods retrieve grasps...
Show moreA crucial problem in robotics is interacting with known or novel objects in unstructured environments. While the convergence of a multitude of research advances is required to address this problem, our goal is to describe a framework that employs the robot's visual perception to identify and execute an appropriate grasp to pick and place novel objects. Analytical approaches explore for solutions through kinematic and dynamic formulations. On the other hand, data-driven methods retrieve grasps according to their prior knowledge of either the target object, human experience, or through information obtained from acquired data. In this dissertation, we propose a framework based on the supporting principle that potential contacting regions for a stable grasp can be foundby searching for (i) sharp discontinuities and (ii) regions of locally maximal principal curvature in the depth map. In addition to suggestions from empirical evidence, we discuss this principle by applying the concept of force-closure and wrench convexes. The key point is that no prior knowledge of objects is utilized in the grasp planning process; however, the obtained results show thatthe approach is capable to deal successfully with objects of different shapes and sizes. We believe that the proposed work is novel because the description of the visible portion of objects by theaforementioned edges appearing in the depth map facilitates the process of grasp set-point extraction in the same way as image processing methods with the focus on small-size 2D image areas rather than clustering and analyzing huge sets of 3D point-cloud coordinates. In fact, this approach dismisses reconstruction of objects. These features result in low computational costs and make it possible to run the proposed algorithm in real-time. Finally, the performance of the approach is successfully validated by applying it to the scenes with both single and multiple objects, in both simulation and real-world experiment setups.
Show less - Date Issued
- 2019
- Identifier
- CFE0007892, ucf:52757
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007892
- Title
- Reliability and Robustness Enhancement of Cooperative Vehicular Systems: A Bayesian Machine Learning Perspective.
- Creator
-
Nourkhiz Mahjoub, Hossein, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Yuksel, Murat, Atia, George, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Autonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full...
Show moreAutonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full autonomy concept still has a long way before being completely fulfilled and realized due to numerous technical and societal challenges. During this long transition phase, blended driving scenarios, composed of agents with different levels of autonomy, seems to be inevitable. Therefore, it is critical to design appropriate driving systems with different levels of intelligence in order to benefit all participants. Vehicular safety systems and their more advanced successors, i.e., Cooperative Vehicular Systems (CVS), have originated from this perspective. These systems aim to enhance the overall quality and performance of the current driving situation by incorporating the most advanced available technologies, ranging from on-board sensors such as radars, LiDARs, and cameras to other promising solutions e.g. Vehicle-to-Everything (V2X) communications. However, it is still challenging to attain the ideal anticipated benefits out of the cooperative vehicular systems, due to the inherent issues and challenges of their different components, such as sensors' failures in severe weather conditions or the poor performance of V2X technologies under dense communication channel loads. In this research we aim to address some of these challenges from a Bayesian Machine- Learning perspective, by proposing several novel ideas and solutions which facilitate the realization of more robust, reliable, and agile cooperative vehicular systems. More precisely, we have a two-fold contribution here. In one aspect, we have investigated the notion of Model-Based Communications (MBC) and demonstrated its effectiveness for V2X communication performance enhancement. This improvement is achieved due to the more intelligent communication strategy of MBC in comparison with the current state-of-the-art V2X technologies. Essentially, MBC proposes a conceptual change in the nature of the disseminated and shared information over the communication channel compared to what is being disseminated in current technologies. In the MBC framework, instead of sharing the raw dynamic information among the network agents, each agent shares the parameters of a stochastic forecasting model which represents its current and future behavior and updates these parameters as needed. This model sharing strategy enables the receivers to precisely predict the future behaviors of the transmitter even when the update frequency is very low. On the other hand, we have also proposed receiver-side solutions in order to enhance the CVS performance and reliability and mitigate the issues caused by imperfect communication and detection processes. The core concept for these solutions is incorporating other informative elements in the system to compensate for the lack of information which is lost during the imperfect communication or detection phases. For proof of concept, we have designed an adaptive FCW framework which considers the driver's feedbacks to the CVS system. This adaptive framework mitigates the negative impact of imperfectly received or detected information on system performance, using the inherent information of these feedbacks and responses. The effectiveness and superiority of this adaptive framework over traditional design has been demonstrated in this research.
Show less - Date Issued
- 2019
- Identifier
- CFE0007845, ucf:52807
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007845
- Title
- Nonlinear Control Synthesis for Facilitation of Human-Robot Interaction.
- Creator
-
Ding, Zhangchi, Behal, Aman, Pourmohammadi Fallah, Yaser, Haralambous, Michael, Boloni, Ladislau, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Human-robot interaction is an area of interest that is becoming increasingly important in robotics research. Nonlinear control design techniques allow researchers to guarantee stability, performance, as well as safety, especially in cases involving physical human-robot interaction (PHRI). In this dissertation, we will propose two different nonlinear controllers and detail the design of an assistive robotic system to facilitate human-robot interaction. In Chapter 2, to facilitate physical...
Show moreHuman-robot interaction is an area of interest that is becoming increasingly important in robotics research. Nonlinear control design techniques allow researchers to guarantee stability, performance, as well as safety, especially in cases involving physical human-robot interaction (PHRI). In this dissertation, we will propose two different nonlinear controllers and detail the design of an assistive robotic system to facilitate human-robot interaction. In Chapter 2, to facilitate physical human-robot interaction, the problem of making a safe compliant contact between a human and an assistive robot is considered. Users with disabilities have a need to utilize their assistive robots for physical interaction during activities such as hair-grooming, scratching, face-sponging, etc. Specifically, we propose a hybrid force/velocity/attitude control for our physical human-robot interaction system which is based on measurements from a force/torque sensor mounted on the robot wrist. While automatically aligning the end-effector surface with the unknown environmental (human) surface, a desired commanded force is applied in the normal direction while following desired velocity commands in the tangential directions. A Lyapunov based stability analysis is provided to prove both convergence as well as passivity of the interaction to ensure both performance and safety. Simulation as well as experimental results verify the performance and robustness of the proposed hybrid force/velocity/attitude controller in the presence of dynamic uncertainties as well as safety compliance of human-robot interactions for a redundant robot manipulator.Chapter 3 presents the design, analysis, and experimental implementation of an adaptive control enabled intelligent algorithm to facilitate 1-click grasping of novel objects by a robotic gripper since one of the most common types of tasks for an assistive robot is pick and place/object retrieval tasks. But there are a variety of objects in our daily life all of which need different optimal force to grasp them. This algorithm facilitates automated grasping force adjustment. The use of object-geometry free modeling coupled with utilization of interaction force and slip velocity measurements allows for the design of an adaptive backstepping controller that is shown to be asymptotically stable via a Lyapunov-based analysis. Experiments with multiple objects using a prototype gripper with embedded sensing show that the proposed scheme is able to effectively immobilize novel objects within the gripper fingers. Furthermore, it is seen that the adaptation allows for close estimation of the minimum grasp force required for safe grasping which results in minimal deformation of the grasped object.In Chapter 4, we present the design and implementation of the motion controllerand adaptive interface for the second generation of the UCF-MANUSintelligent assistive robotic manipulator system. Based on usability testingfor the system, several features were implemented in the interface thatcould reduce the complexity of the human-robot interaction while alsocompensating for the deficits in different human factors, such as WorkingMemory, Response Inhibition, Processing Speed; , Depth Perception, SpatialAbility, Contrast Sensitivity. For the controller part, we designed severalnew features to provide the user has a less complex and safer interactionwith the robot, such as `One-click mode', `Move suggestion mode' and`Gripper Control Assistant'. As for the adaptive interface design, wedesigned and implemented compensators such as `Contrast Enhancement',`Object Proximity Velocity Reduction' and `Orientation Indicator'.
Show less - Date Issued
- 2019
- Identifier
- CFE0007798, ucf:52360
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007798
- Title
- Autonomous Discovery and Maintenance of Mobile Frees-Space-Optical Links.
- Creator
-
Khan, Mahmudur, Yuksel, Murat, Pourmohammadi Fallah, Yaser, Ewetz, Rickard, Turgut, Damla, Nam, Boo Hyun, University of Central Florida
- Abstract / Description
-
Free-Space-Optical (FSO) communication has the potential to play a significant role in future generation wireless networks. It is advantageous in terms of improved spectrum utilization, higher data transfer rate, and lower probability of interception from unwanted sources. FSO communication can provide optical-level wireless communication speeds and can also help solve the wireless capacity problem experienced by the traditional RF-based technologies. Despite these advantages, communications...
Show moreFree-Space-Optical (FSO) communication has the potential to play a significant role in future generation wireless networks. It is advantageous in terms of improved spectrum utilization, higher data transfer rate, and lower probability of interception from unwanted sources. FSO communication can provide optical-level wireless communication speeds and can also help solve the wireless capacity problem experienced by the traditional RF-based technologies. Despite these advantages, communications using FSO transceivers require establishment and maintenance of line-of-sight (LOS). We consider autonomous mobile nodes (Unmanned Ground Vehicles or Unmanned Aerial Vehicles), each with one FSO transceiver mounted on a movable head capable of scanning in the horizontal and vertical planes. We propose novel schemes that deal with the problems of automatic discovery, establishment, and maintenance of LOS alignment between these nodes with mechanical steering of the directional FSO transceivers in 2-D and 3-D scenarios. We perform extensive simulations to show the effectiveness of the proposed methods for both neighbor discovery and LOS maintenance. We also present a prototype implementation of such mobile nodes with FSO transceivers. The potency of the neighbor discovery and LOS alignment protocols is evaluated by analyzing the results obtained from both simulations and experiments conducted using the prototype. The results show that, by using such mechanically steerable directional transceivers and the proposed methods, it is possible to establish optical wireless links within practical discovery times and maintain the links in a mobile setting with minimal disruption.
Show less - Date Issued
- 2018
- Identifier
- CFE0007575, ucf:52573
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007575
- Title
- Scalable Map Information Dissemination for Connected and Automated Vehicle Systems.
- Creator
-
Gani, S M Osman, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Yuksel, Murat, Chatterjee, Mainak, Hasan, Samiul, University of Central Florida
- Abstract / Description
-
Situational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle...
Show moreSituational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle this challenge, the inter-vehicle communication system is envisioned that allows vehicles to exchange self-status updates aiming to extend their effective field of view and thus compensate for the limitations of the vehicle tracking subsystem that relies substantially on onboard sensing devices. Tracking capability in such systems can be further improved through the cooperative sharing of locally created map data instead of transmitting only self-update messages containing core basic safety message (BSM) data. In the cooperative sharing of safety messages, it is imperative to have a scalable communication protocol to ensure optimal use of the communication channel. This dissertation contributes to the analysis of the scalability issue in vehicle-to-everything (V2X) communication and then addresses the range issue of situational awareness in CAV systems by proposing a content-adaptive V2X communication architecture. To that end, we first analyze the BSM scheduling protocol standardized in the SAE J2945/1 and present large-scale scalability results obtained from a high-fidelity simulation platform to demonstrate the protocol's efficacy to address the scalability issues in V2X communication. By employing a distributed opportunistic approach, the SAE J2945/1 congestion control algorithm keeps the overall offered channel load within an optimal operating range, while meeting the minimum tracking requirements set forth by upper-layer applications. This scheduling protocol allows event-triggered and vehicle-dynamics driven message transmits that further the situational awareness in a cooperative V2X context. Presented validation results of the congestion control algorithm include position tracking errors as the performance measure, with the age of communicated information as the evaluation measure. In addition, we examine the optimality of the default settings of the congestion control parameters. Comprehensive analysis and trade-off study of the control parameters reveal some areas of improvement to further the algorithm's efficacy. Motivated by the effectiveness of channel congestion control mechanism, we further investigate message content and length adaptations, together with transmit rate control. Reasonably, the content of the exchanged information has a significant impact on the map accuracy in cooperative driving systems. We investigate different content control schemes for a communication architecture aimed at map sharing and evaluate their performance in terms of position tracking error. This dissertation determines that message content should be concentrated to mapped objects that are located farther away from the sender to the edge of the local sensor range. This dissertation also finds that optimized combination of message length and transmit rate ensures the optimal channel utilization for cooperative vehicular communication, which in turn improves the situational awareness of the whole system.
Show less - Date Issued
- 2019
- Identifier
- CFE0007634, ucf:52470
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007634