Current Search: Rahman, Talat (x)
View All Items
Pages
- Title
- STRUCTURAL, ELECTRONIC, VIBRATIONAL AND THERMODYNAMICAL PROPERTIES OF SURFACES AND NANOPARTICLES.
- Creator
-
Yildirim, Handan, Rahman, Talat S., University of Central Florida
- Abstract / Description
-
The main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃ&...
Show moreThe main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃÂ" approach for which the knowledge gathered at the scale of atoms and NPs serves as a base to build, at the macroscopic scale, materials with desired physical and chemical properties. We use a variety of theoretical and computational tools with different degrees of accuracy to study problems in different time and length scales. Interactions between the atoms are derived using both Density Functional Theory (DFT) and Embedded Atom Method (EAM), depending on the scale of the problem at hand. For some cases, both methods are used for the purpose of comparison. For revealing the local contributions to the vibrational dynamics and thermodynamics for the systems possessing site-specific environments, a local approach in real-space is used, namely Real Space GreenÃÂ's Function method (RSGF). For simulating diffusion of atoms/clusters and growth on metal surfaces, Molecular Statics (MS) and Molecular Dynamics (MD) methods are employed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003064, ucf:48300
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003064
- Title
- Catalytic Properties of Defect-Laden 2D Material from First-Principles.
- Creator
-
Jiang, Tao, Rahman, Talat, Stolbov, Sergey, Blair, Richard, Tetard, Laurene, University of Central Florida
- Abstract / Description
-
Two dimensional (2D) materials offer excellent opportunities for application as catalysts for energy needs. Their catalytic activity depends on the nature of defects, their geometry and their electronic structure. It thus important that the characteristics of defect-laden 2D materials be understood at the microscopic level. My dissertation focuses on theoretical and computational studies of several novel nanoscale materials using state-of-the-art techniques based on density functional theory ...
Show moreTwo dimensional (2D) materials offer excellent opportunities for application as catalysts for energy needs. Their catalytic activity depends on the nature of defects, their geometry and their electronic structure. It thus important that the characteristics of defect-laden 2D materials be understood at the microscopic level. My dissertation focuses on theoretical and computational studies of several novel nanoscale materials using state-of-the-art techniques based on density functional theory (DFT) with the objective of understanding the microscopic factors that control material functionality.My work has helped establish defect-laden hexagonal boron nitride (dh-BN) as a promising metal-free catalyst for CO2 hydrogenation. Firstly, I showed how small molecules (H2, CO, CO2) interacting with several kinds of defects in dh-BN (with nitrogen or boron vacancy, boron substituted for nitrogen, Stone-Wales defect). I analyzed binding energies and electronic structures of adsorption of molecules on dh-BN to predict their catalytic activities. Then by computational efforts on reaction pathways and activation energy barriers, I found that vacancies induced in dh-BN can effectively activate the CO2 molecule for hydrogenation, where activation occurs through back-donation to the ?* orbitals of CO2 from frontier orbitals (defect state) of the h-BN sheet localized near a nitrogen vacancy (VN). Subsequent hydrogenation to formic acid (HCOOH) and methanol (CH3OH), indicating dh-BN (VN) an excellent metal-free catalyst for CO2 reduction, which may serve as a solution for global energy and sustainability.At the same time, I studied critical steps of the catalytic processes from carbon monoxide and methanol to higher alcohol on single-layer MoS2 functionalized with small Au nanoparticle, indicating C-C coupling feasible on MoS2-Au13, which led to production of acetaldehyde (CH3CHO). Whereas a bilayer 31-atom cluster of gold on MoS2 show excellent catalytic performance on CO hydrogenation to methanol through two effective pathways
Show less - Date Issued
- 2019
- Identifier
- CFE0007823, ucf:52822
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007823
- Title
- From Excited Charge Dynamics to Cluster Diffusion: Development and Application of Techniques Beyond DFT and KMC.
- Creator
-
Acharya, Shree Ram, Rahman, Talat, Chow, Lee, Stolbov, Sergey, Wu, Annie, University of Central Florida
- Abstract / Description
-
This dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean...
Show moreThis dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean field theory (DMFT) is developed and applied to: 1) single-band Hubbard model; 2) multi-band metal Ni; and 3) multi-band insulator MnO. The ultrafast demagnetization in Ni reveal the importance of memory and correlation effects, leading to much better agreement with experimental data than previously obtained, while for MnO the main channels of charge response are identified. Furthermore, an analytical form of the exchange-correlation kernel is obtained for future applications, saving tremendous computational cost. In another project, size-dependent temporal and spatial evolution of homo- and hetero-epitaxial adatom islands on fcc(111) transition metals surfaces are investigated using the self-learning kinetic Monte Carlo (SLKMC) method that explores long-time dynamics unbiased by apriori selected diffusion processes. Novel multi-atom diffusion processes are revealed. Trends in the diffusion coefficients point to the relative role of adatom lateral interaction and island-substrate binding energy in determining island diffusivity. Moreover, analysis of the large data-base of the activation energy barriers generated for multitude of diffusion processes for variety of systems allows extraction of a set of descriptors that in turn generate predictive models for energy barrier evaluation. Finally, the kinetics of the industrially important methanol partial oxidation reaction on a model nanocatalyst is explored using KMC supplemented by DFT energetics. Calculated thermodynamics explores the active surface sites for reaction components including different intermediates and energetics of competing probable reaction pathways, while kinetic study attends to the selectivity of products and its variation with external factors.
Show less - Date Issued
- 2018
- Identifier
- CFE0006965, ucf:52910
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006965
- Title
- Holographic optical elements for visible light applications in photo-thermo-refractive glass.
- Creator
-
Kompan, Fedor, Glebov, Leonid, Schulzgen, Axel, Richardson, Kathleen, Rahman, Talat, University of Central Florida
- Abstract / Description
-
This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation...
Show moreThis dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR glass with visible radiation. The mechanism of photoionization in this case is based on an excited state absorption upconversion process in the glass when doped with Tb3+. By contrast, the second approach uses the original Ce3+ doped PTR glass and introduces a new modified technique for hologram formation that allows for holographic recording with visible light. Complex HOEs including holographic lenses and holographic curved mirrors were fabricated in PTR glass with visible light using both techniques. The third part of the dissertation takes a step in a different direction and discusses the development of the methods for fabrication of phase masks in PTR glass. A method for relatively straightforward and inexpensive fabrication of phase masks with the aid of a Digital Micromirror Device is presented. This method enabled to produce phase masks containing complex greyscale phase distributions for generation of vortex (helical) beams. A phase mask can be holographically encoded into a transmission Bragg grating where a holographic phase mask (HPM) is formed. HPM has an advantage over a regular phase mask of being capable of multi-wavelength operation. All optical elements recorded in PTR glass preserve the advantages peculiar to VBGs recorded in PTR glass such as stability to heating and illumination with high-power laser beams.
Show less - Date Issued
- 2019
- Identifier
- CFE0007665, ucf:52480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007665
- Title
- Mesoscopic Interactions in Complex Photonic Media.
- Creator
-
Rezvani Naraghi, Roxana, Dogariu, Aristide, Tetard, Laurene, Rahman, Talat, Abouraddy, Ayman, University of Central Florida
- Abstract / Description
-
Mesoscale optics provides a framework for understanding a wide range of phenomena occurring in a variety of fields ranging from biological tissues to composite materials and from colloidal physics to fabricated nanostructures. When light interacts with a complex system, the outcome depends significantly on the length and time scales of interaction. Mesoscale optics offers the apparatus necessary for describing specific manifestations of wave phenomena such as interference and phase memory in...
Show moreMesoscale optics provides a framework for understanding a wide range of phenomena occurring in a variety of fields ranging from biological tissues to composite materials and from colloidal physics to fabricated nanostructures. When light interacts with a complex system, the outcome depends significantly on the length and time scales of interaction. Mesoscale optics offers the apparatus necessary for describing specific manifestations of wave phenomena such as interference and phase memory in complex media. In-depth understanding of mesoscale phenomena provides the required quantitative explanations that neither microscopic nor macroscopic models of light-matter interaction can afford. Modeling mesoscopic systems is challenging because the outcome properties can be efficiently modified by controlling the extent and the duration of interactions.In this dissertation, we will first present a brief survey of fundamental concepts, approaches, and techniques specific to fundamental light-matter interaction at mesoscopic scales. Then, we will discuss different regimes of light propagation through randomly inhomogenous media. In particular, a novel description will be introduced to analyze specific aspects of light propagation in dense composites. Moreover, we will present evidence that the wave nature of light can be critical for understanding its propagation in unbounded highly scattering materials. We will show that the perceived diffusion of light is subjected to competing mechanisms of interaction that lead to qualitatively different phases for the light evolution through complex media. In particular, we will discuss implications on the ever elusive localization of light in three-dimensional random media. In addition to fundamental aspects of light-matter interaction at mesoscopic scales, this dissertation will also address the process of designing material structures that provide unique scattering properties. We will demonstrate that multi-material dielectric particles with controlled radial and azimuthal structure can be engineered to modify the extinction cross-section, to control the scattering directivity, and to provide polarization-dependent scattering. We will show that dielectric core-shell structures with similar macroscopic sizes can have both high scattering cross-sections and radically different scattering phase functions. In addition, specific structural design, which breaks the azimuthal symmetry of the spherical particle, can be implemented to control the polarization properties of scattered radiation. Moreover, we will also demonstrate that the power flow around mesoscopic scattering particles can be controlled by modifying their internal heterogeneous structures.Lastly, we will show how the statistical properties of the radiation emerging from mesoscopic systems can be utilized for surface and subsurface diagnostics. In this dissertation, we will demonstrate that the intensity distributions measured in the near-field of composite materials are direct signatures of the scale-dependent morphology, which is determined by variations of the local dielectric function. We will also prove that measuring the extent of spatial coherence in the proximity of two-dimensional interfaces constitutes a rather general method for characterizing the defect density in crystalline materials. Finally, we will show that adjusting the spatial coherence properties of radiation can provide a simple solution for a significant deficiency of near-field microscopy. We will demonstrate experimentally that spurious interference effects can be efficiently eliminated in passive near-field imaging by implementing a random illumination.
Show less - Date Issued
- 2017
- Identifier
- CFE0006647, ucf:51253
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006647
- Title
- Conservation Laws and Electromagnetic Interactions.
- Creator
-
Kajorndejnukul, Veerachart, Dogariu, Aristide, Abouraddy, Ayman, Kik, Pieter, Rahman, Talat, University of Central Florida
- Abstract / Description
-
Aside from energy, light carries linear and angular momenta that can be transferred to matter. The interaction between light and matter is governed by conservation laws that can manifest themselves as mechanical effects acting on both matter and light waves. This interaction permits remote, precise, and noninvasive manipulation and sensing at microscopic levels. In this dissertation, we demonstrated for the first time a complete set of opto-mechanical effects that are based on nonconservative...
Show moreAside from energy, light carries linear and angular momenta that can be transferred to matter. The interaction between light and matter is governed by conservation laws that can manifest themselves as mechanical effects acting on both matter and light waves. This interaction permits remote, precise, and noninvasive manipulation and sensing at microscopic levels. In this dissertation, we demonstrated for the first time a complete set of opto-mechanical effects that are based on nonconservative forces and act at the interface between dielectric media. Without structuring the light field, forward action is provided by the conventional radiation pressure while a backward movement can be achieved through the natural enhancement of linear momentum. If the symmetry of scattered field is broken, a side motion can also be induced due to the transformation between spin and orbital angular momenta. In experiments, these opto-mechanical effects can be significantly amplified by the long-range hydrodynamic interactions that provide an efficient recycling of energy. These unusual opto-mechanical effects open new possibilities for efficient manipulation of colloidal microparticles without having to rely on intricate structuring or shaping of light beams. Optically-controlled transport of matter is sought after in diverse applications in biology, colloidal physics, chemistry, condensed matter and others.Another consequence of light-matter interaction is the modification of the optical field itself, which can manifest, for instance, as detectable shifts of the centroids of optical beams during reflection and refraction. The spin-Hall effect of light (SHEL) is one type of such beam shifts that is due to the spin-orbit transformation governed by the conservation of angular momentum. We have shown that this effect can be amplified by the structural anisotropy of random nanocomposite materials.
Show less - Date Issued
- 2015
- Identifier
- CFE0005961, ucf:50818
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005961
- Title
- Theoretical and Computational Studies of the electronic, Structural, Vibrational, and Thermodynamic Properties of Transition Metal Nanoparticles.
- Creator
-
Sadatshafaie, Ghazal, Rahman, Talat, Stolbov, Sergey, Ishigami, Masa, Masunov, Artem, University of Central Florida
- Abstract / Description
-
The main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles...
Show moreThe main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles that are brought about by the intrinsic factors as well as the extrinsic ones. The preference of certain ligands to stabilize specific sizes of nanoparticles is investigated. The intrinsic and extrinsic effects on the electronic structure of the nanoparticles are presented. The physical and chemical properties of the nanoparticles are evaluated through better understanding of the above effects on the experimentally observed properties as well as the applied techniques. The unexpected experimental results are tested and interpreted by deconvolution of the affecting factors. The application of Debye model to nanoparticles is tested and its shortcomings at nanoscale are discussed. Predictions which can provide insight into intelligent choice of candidates to cater to certain properties are provided. The results of this thesis can be used in the future in design and engineering of functionalized materials. We use ab initio calculations based on Density Functional Theory (DFT) to obtain information about the energetics, atomic configuration, and electronic structure of the nanoparticles. Ab initio Molecular Dynamics (MD) is used to study the evolution of the structures of the nanoparticles. To calculate vibrational frequencies, the finite displacement method is employed.
Show less - Date Issued
- 2015
- Identifier
- CFE0006385, ucf:51536
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006385
- Title
- Predictive Modeling of Functional Materials for Catalytic and Sensor Applications.
- Creator
-
Rawal, Takat, Rahman, Talat, Chang, Zenghu, Leuenberger, Michael, Zou, Shengli, University of Central Florida
- Abstract / Description
-
The research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte...
Show moreThe research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte Carlo simulation, which help rationalize experimental observations, and ultimately lead to the rational design of materials for the electronic and energy-related applications. Focusing on the popular single-layer MoS2, I first show how its hybrid structure with 29-atom transition metal nanoparticles (M29 where M=Cu, Ag, and Au) can lead to composite catalysts suitable for oxidation reactions. Interestingly, the effect is found to be most pronounced for Au29 when MoS2 is defect-laden (S vacancy row). Second, I show that defect-laden MoS2 can be functionalized either by deposited Au nanoparticles or when supported on Cu(111) to serve as a cost-effective catalyst for methanol synthesis via CO hydrogenation reactions. The charge transfer and electronic structural changes in these sub systems lead to the presence of 'frontier' states near the Fermi level, making the systems catalytically active. Next, in the emerging area of single metal atom catalysis, I provide rationale for the viability of single Pd sites stabilized on ZnO(101 ?0) as the active sites for methanol partial oxidation, an important reaction for the production of H2. We trace its excellent activity to the modified electronic structure of the single Pd site as well as neighboring Zn cationic sites. With the DFT-calculated activation energy barriers for a large set of reactions, we perform ab-initio kMC simulations to determine the selectivity of the products (CO2 and H2). These findings offer an opportunity for maximizing the efficiency of precious metal atoms, and optimizing their activity and selectivity (for desired products). In related work on extended surfaces while trying to explain the Scanning Tunneling Microscopy images observed by our experimental collaborators, I discovered a new mechanism involved in the process of Ag vacancy formation on Ag(110), in the presence of O atoms which leads to the reconstruction and eventually oxidation of the Ag surface. In a similar vein, I was able to propose a mechanism for the orange photoluminescence (PL), observed by our experimental collaborators, of a coupled system of benzylpiperazine (BZP) molecule and iodine on a copper surface. Our results show that the adsorbed BZP and iodine play complimentary roles in producing the PL in the visible range. Upon photo-excitation of the BZP-I/CuI(111) system, excited electrons are transferred into the conduction band (CB) of CuI, and holes are trapped by the adatoms. The relaxation of holes into BZP HOMO is facilitated by its realignment. Relaxed holes subsequently recombine with excited electrons in the CB of the CuI film, thus producing a luminescence peak at ~2.1 eV. These results can be useful for forensic applications in detecting illicit substances.
Show less - Date Issued
- 2017
- Identifier
- CFE0006783, ucf:51813
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006783
- Title
- Optical Parity Time Metasurface Structures.
- Creator
-
El Halawany, Ahmed, Christodoulides, Demetrios, Rahman, Talat, Peale, Robert, Likamwa, Patrick, University of Central Florida
- Abstract / Description
-
In the last few years, optics has witnessed the emergence of two fields namely metasurfaces and parity-time (PT) symmetry. Optical metasurfaces are engineered structures that provide unique responses to electromagnetic waves, absent in natural materials. Optical metasurfaces are known for their reduced dimensionality i.e. subwavelength and consequently lower losses are anticipated. The other paradigm is the PT symmetric materials, also known as photonic synthetic matter. PT symmetry has...
Show moreIn the last few years, optics has witnessed the emergence of two fields namely metasurfaces and parity-time (PT) symmetry. Optical metasurfaces are engineered structures that provide unique responses to electromagnetic waves, absent in natural materials. Optical metasurfaces are known for their reduced dimensionality i.e. subwavelength and consequently lower losses are anticipated. The other paradigm is the PT symmetric materials, also known as photonic synthetic matter. PT symmetry has emerged from quantum mechanics when a new class of non-Hermitian Hamiltonian quantum systems was highlighted to have real eigenvalues, hence eradicating Hermiticity of the Hamiltonian as an essential condition to the existence of real eigenvalues.The first half of the thesis is focused on the experimental and numerical realization of PT symmetric metasurfaces. A systematic methodology is developed to implement this class of metasurfaces in both one-dimensional and two-dimensional geometries. In two dimensional systems, PT symmetry can be established by employing either H-like diffractive elements or diatomic oblique Bravais lattices. It is shown that the passive PT symmetric metasurfaces can be utilized to appropriately engineer the resulting far-field characteristics. Such PT-symmetric structures are capable of eliminating diffraction orders in specific directions, while maintaining or even enhancing the remaining orders. Later, it is shown a first ever attempt of PT metasurface fabricated on a flexible polymer (polyimide) substrate. The studied PT metasurface exhibits the ability to direct light, i.e. Poynting vector in a desired direction. Herein, the light scattered from the fabricated device in the undesired direction is attenuated by at least an order of magnitude. The proposed PT symmetric metasurface is essentially diatomic Honeycomb Bravais lattice, where both the passive and lossy elements exist side by side on each site separated by 50 nm. The unidirectionality of the studied metasurface is not limited to a single wavelength, on the contrary, it is observed to be effective on the entire visible band (400 (-) 600 nm). The PT symmetric meatsurface is also fabricated on a high strength substrate; sapphire (Al2O3). An excellent agreement between the experimental and numerical (COMSOL) results is found for both substrates. Customized modifications to the current design can open avenues to study the unidirectionality of metasurfaces to different optical bands, for example IR.The second part of the thesis deals with the theoretical modeling of the dynamics of an electron that gets trapped by means of decoherence and quantum interference in the central quantum dot (QD) of a semiconductor nanoring (NR) made of five QDs, between 100 and 300 K. The electron's dynamics is described by a master equation with a Hamiltonian based on the tight-binding model, taking into account electron(-)LO phonon interaction. Based on this configuration, the probability to trap an electron with no decoherence is almost 27%. In contrast, the probability to trap an electron with decoherence is 70% at 100 K, 63% at 200 K and 58% at 300 K. Our model provides a novel method of trapping an electron at room temperature.This setup is then used to propose a theoretical model for an electrically driven single photon source operating at high temperatures. It is shown that the decoherence, which is usually the main obstacle for operating single photon sources at high temperatures, ensures an efficient operation of the presented electrically driven single photon source at high temperatures. The single-photon source is driven by a single electron source attached to a heterostructure semiconductor nanoring. The electron's dynamics in the nanoring and the subsequent recombination with the hole is described by the generalized master equation with a Hamiltonian based on tight-binding model, taking into account the electron-LO phonon interaction. As a result of decoherence, an almost 100% single photon emission with a strong antibunching behavior i.e. g(2)(0) (<)(<) 1 at high temperature up to 300 K is achieved.
Show less - Date Issued
- 2016
- Identifier
- CFE0006454, ucf:51421
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006454
- Title
- Computational Approach to Electrocatalysis.
- Creator
-
Dhakal, Nagendra, Stolbov, Sergey, Rahman, Talat, Ishigami, Masa, Masunov, Artem, University of Central Florida
- Abstract / Description
-
The main objective of this work is to understand the theoretical basis of the working principle of the Hydrogen fuel cell. We seek the physical basis of the Rational Design Technique, the smart way of preselecting materials from the material-pool, implemented in our study anticipating highly promising electrocatalysts for promoting the conversion of chemical energy stored in hydrogen molecules into the electrical energy. It needs the understanding of the relationship among the compositions of...
Show moreThe main objective of this work is to understand the theoretical basis of the working principle of the Hydrogen fuel cell. We seek the physical basis of the Rational Design Technique, the smart way of preselecting materials from the material-pool, implemented in our study anticipating highly promising electrocatalysts for promoting the conversion of chemical energy stored in hydrogen molecules into the electrical energy. It needs the understanding of the relationship among the compositions of the materials under consideration, their electronic structure and catalytic activities. We performed the first principle DFT calculations to achieve the goal.Our work is focused first on the issues in hydrogen oxidation reaction taking place in anode compartment of the cell. Next comes up with the issues with Oxygen Reduction Reaction taking place in cathode compartment. Finally, we focus on mechanisms underlying binding of small molecules on substrates.Platinum perfectly catalyzes hydrogen oxidation reaction on the hydrogen fuel cell anodes. However, it has at least two drawbacks: a) it is too expensive; b) it has a low tolerance to CO poisoning. Pt-Ru bi-functional catalysts are more tolerant to CO, but they are still very expensive. In this work, we performed first-principle studies of stability and reactivity of M/W (110) structures, where M = Pd, Ru, Au monolayers. All three systems are found to be stable: formation energy of MLs is significantly higher than cohesive energy of the M-elements. The calculated binding energies of H, H2, OH, CO, and H2O were used to obtain the reaction free energies. Analysis of the free energies suggests that Au-W bonding does not activate sufficiently Au monolayer, whereas Ru/W (110) is still too reactive for the CO removal. Meanwhile, Pd/W (110) is found to catalyze hydrogen oxidation and at the same time to be highly tolerant to the CO poisoning. The latter finding is explained by the fact that CO binds much weaker to Pd on W (110) than to Pt, while the OH binding is strong enough to ensure CO oxidation. The obtained results are traced to the electronic structure of the systems.Oxygen Reduction Reaction (ORR) is the heart core reaction in fuel cells, Proton Exchange Membrane Fuel cell and DEMFC. However, the reaction is not so obvious and need suitable electrocatalyst. Pt or Pt-based catalysts are found to be the best catalyst so far. But, its cost and shortage make it not feasible economically. Moreover, lower onset potential (maximal electrode potential at which the reaction can proceed) of such catalysts is offering another limitation to fuel cell performance. Research has been conducted in many directions for lowering the cost by replacing the Pt with some other elements of lower cost or reducing the Pt-load in the material; and even more finding the material performing better than Pt. In this paper, we've tried to understand the ORR mechanism and look for the material that could be potential option to Pt. Our calculations suggest that for monolayer of Pt on 5 layered slab of Nb or Mo the onset potential is the same as for Pt, while cost of these systems are much lower than that of Pt. Presence of water changes the reaction rate very minimum. Rational design method facilitates the research of selecting the appropriate catalyst and saves time and effort significantly. The result shows that the d-band center model is not accurate to describe the reactivity of the catalyst.For decades, adsorbates' binding energy (????) has been used as an indicator of the adsorbate-substrate bond strength (??????). Thus, although one can compute accurately any ?? models to gauge bond-strength are developed and applied to rationalize and anticipate ????'s because that is a key aspect in the rational search for efficient catalysts. Yet bond-strength alone fails to predict ???? trends. Therefore, quantifying and understanding the difference between ???? and ?????? is essential to catalysts design. Indeed, the adsorbate-substrate bond formation perturbs the substrate's electronic charge density, which reduces ???? by the energy attached to such perturbation: ??????????. Here, with the example of carbon monoxide adsorption on metal-doped graphene, we show that ?????????? may exceed 1 eV and render an unusual situation: although the EB of CO to the Au-doped graphene indicates that binding does not happen, we find evidence of a strong bond between CO and the substrate. Thus, in this case, the large ?????????? totally disrupt the equivalency between ?????? and ???? we also propose a method to compute ?????????? that bypasses dealing with an excited electronic state of the system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006583, ucf:51336
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006583
- Title
- The effect of electron-hole pairs in semiconductor and topological insulator nanostructures on plasmon resonances and photon polarizations.
- Creator
-
Paudel, Hari, Leuenberger, Michael, Rahman, Talat, Saha, Haripada, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
The generation of electron-hole pairs in materials has great importance. In directbandgap semiconductor materials, the mechanism of radiative recombination of electron-holepairs leads to the emission of photons, which is the basis of Light Emitting Diodes(LEDs). The excitation of electron-hole pairs by absorption of photons is the active processin photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronicdevices such as optical switches which are based on...
Show moreThe generation of electron-hole pairs in materials has great importance. In directbandgap semiconductor materials, the mechanism of radiative recombination of electron-holepairs leads to the emission of photons, which is the basis of Light Emitting Diodes(LEDs). The excitation of electron-hole pairs by absorption of photons is the active processin photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronicdevices such as optical switches which are based on transmission and reflection of the photons,electron-hole pairs excitation is a key for the device performance. Diodes and transistorsare also great discoveries in electronics which rely on the generation and recombination ofelectron-hole pairs at p-n junctions. In three-dimensional topological insulators (3D TIs)materials nanostructures excitation of electron-hole pairs can be utilized for the quantummemory, quantum information and quantum teleportation. In two-dimensional (2D) layeredmaterials like graphene, MoS_2, MoSe_2, WS_2 and WSe_2 generation and recombination ofelectron hole pairs is main process at p-n junctions, infrared detectors and sensors.This PhD thesis is concerned with the physics of different types of electron-hole pairsin various materials, such as wide-bandgap semiconductors, 3D topological insulators, andplasmonic excitations in metallic nanostructures. The materials of interest are wide bandgap semiconductors such as TiO_2 , 3D TIs such as Pb_1?xSn_xTe and the 2D layered materials such as MoS_2 and MoO_3. We study the electronic and optical properties in bulk and nanostructures and find applications in the area of semiclassical and quantum information processing. One of the interesting applications we focus in this thesis is shift in surface plasmon resonance due to reduction in index of refraction of surrounding dielectric environment which inturns shifts the wavelength of surface plasmon resonance up to 125 nm for carrier density of10^22/cm^3. Employing this effect, we present a model of a light controlled plasmon switching using a hybrid metal-dielectric heterostructures.In 3D TIs nanostructures, the time reversible spin partners in the valence and conductionband can be coupled by a left and a right handed circular polarization of the light.Such coupling of light with electron-hole pair polarization provides an unique opportunityto utilize 3D TIs in quantum information processing and spintronics devices. We present a model of a 3D TI quantum dot made of spherical core-bulk heterostructure. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD.Due to excellent transport properties in single and multiple layers of 2D layeredmaterials, several efforts have demonstrated the possibility to engineer electronic and optoelectronic devices based on MoS_2. In this thesis, we focus on theoretical and experimental study of electrical property and photoluminescence tuning, both in a single-layer of MoS_2.We present theoretical analysis of experimental results from the point of view of stability of MoO_3 defects in MoS_2 single layer and bandstructures calculation. In experiment, the electrical property of a single layer of MoS_2 can be tuned from semiconducting to insulating regime via controlled exposure to oxygen plasma. The quenching of photoluminescence of asingle sheet of MoS_2 has also been observed upon exposure to oxygen plasmas. We calculatethe direct to indirect band gap transitions by going from MoS_2 single sheet to MoO_3 singlesheet during the plasma exposure, which is due to the formation of MoO_3 rich defect domainsinside a MoS_2 sheet.
Show less - Date Issued
- 2014
- Identifier
- CFE0005397, ucf:50454
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005397
- Title
- High flux isolated attosecond pulse generation.
- Creator
-
Wu, Yi, Chang, Zenghu, Richardson, Martin, Christodoulides, Demetrios, Rahman, Talat, University of Central Florida
- Abstract / Description
-
This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory.First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light...
Show moreThis thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory.First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date.Second, using this laser as a driving laser source, the generalized double optical gating method is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated pulse generation.Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical gating technique. The extreme ultraviolet pulse energy was ~100 nJ at the exit of the argon gas target.
Show less - Date Issued
- 2013
- Identifier
- CFE0005075, ucf:49949
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005075
- Title
- Theoretical And Computational Studies Of Diffusion Of Adatom Islands And Reactions Of Molecules On Surfaces.
- Creator
-
Shah, Syed Islamuddin, Rahman, Talat, Kara, Abdelkader, Schelling, Patrick, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The work presented in this dissertation focuses on the study of post deposition spatial and temporal evolution of adatom islands and molecules on surfaces using ab initio and semiemperical methods. It is a microscopic study of the phenomena of diffusion and reaction on nanostructured surfaces for which we have developed appropriate computational tools,as well as implemented others that are available. To map out the potential energy surface on which the adatom islands and molecules move, we...
Show moreThe work presented in this dissertation focuses on the study of post deposition spatial and temporal evolution of adatom islands and molecules on surfaces using ab initio and semiemperical methods. It is a microscopic study of the phenomena of diffusion and reaction on nanostructured surfaces for which we have developed appropriate computational tools,as well as implemented others that are available. To map out the potential energy surface on which the adatom islands and molecules move, we have carried out ab initio electronic structure calculations based on density functional theory (DFT) for selected systems. For others, we have relied on semiempirical interatomic potentials derived from the embedded atom method. To calculate the activation energy barriers, we have employed the (")drag(") method in most cases and verified its reliability by employing the more accurate nudged elastic band method for selected systems. Temporal and spatial evolution of the systems of interest have been calculated using the kinetic Monte Carlo (KMC), or the more accurate (complete) Self Learning kinetic Monte Carlo (SLKMC) method in the majority of cases, and ab initio molecular dynamics simulations in others. We have significantly enhanced the range of applicability of the SLKMC method by introducing a new pattern recognitionscheme which by allowing occupancy of the (")fcc(") and (")hcp(") sites (and inclusion of (")top(") site in the pattern recognition as well) is capable of simulating the morphological evolution of three dimensional adatom islands, a feature not feasible via the earlier - proposed SLKMC method. Using SLKMC (which allows only fcc site occupancy on fcc(111) surface), our results of the coarsening of Ag islands on the Ag(111) surface show that during early stages, coarsening proceeds as a sequence of selected island sizes, creating peaks and valleys in the island-size distribution. This island size selectivity is independent of initial conditions andresults from the formation of kinetically stable islands for certain sizes as dictated by the relative energetics of edge atom detachment/attachment processes together with the large activation barrier for kink detachment.On applying the new method, SLKMC-II, to examine the self diffusion of smalladatom islands (1-10 atoms) of Cu on Cu(111), Ag on Ag(111) and Ni on Ni(111), wefind that for the case of Cu and Ni islands, diffusion is dominated by concerted processes(motion of island as a whole), whereas in the case of Ag, islands of size 2-9 atoms diffusethrough concerted motion whereas the 10-atom island diffuses through single atom processes.Effective energy barriers for the self diffusion of these small Cu islands is 0.045 eV/atom,for Ni it is 0.060 eV/atom and for Ag it is 0.049 eV/atom, increasing almost linearly withisland size.Application of DFT based techniques have allowed us to address a few issues stemmingfrom experimental observations on the effect of adsorbates such as CO on the structure and stability of bimetallic systems (nanoparticles and surfaces). Total energy calculationsof Ni-Au nanoparticles show Ni atoms to prefer to be in the interior of the nanoparticle.CO molecules, however, prefer to bind to a Ni atom if present on the surface. Using abinitio molecular dynamics simulations, we confirm that the presence of CO molecule induces diffusion of Ni atom from the core of the Ni-Au nanoparticle to its surface, making the nanoparticle more reactive. These results which help explain a set of experimental data are rationalized through charge transfer analysis.Similar to the case of Ni-Au system, it is found that methoxy (CH$_{3}$O) may also induce diffusion of inner atoms to the surface on bimetallic Au-Pt systems. Our total energy DFT calculations show that it is more favorable for methoxy to bind to a Pt atom in the top Au layer than to a Au atom in Au-Pt system thereby explaining experimental observations.To understand questions related to the dependence of product selectivity on ambientpressure for ammonia decomposition on RuO2(110), we have carried out an extensivecalculation of the reaction pathways and energy barriers for a large number of intermediate products. On combining the reaction energetics from DFT, with KMC simulations, we showthat under UHV conditions, selectivity switches from N2 ( ? 100 % selectivity) at T = 373Kto NO at T = 630K, whereas under ambient conditions, N2 is still the dominant productbut maximum selectivity is only 60%. An analysis based on thermodynamics alone shows a contradiction between experimental data at UHV with those under ambient pressure. Ourcalculations of the reaction rates which are essential for KMC simulations removes this apparentinconsistency and stresses the need to incorporate kinetics of processes in order toextract information on reaction selectivity.
Show less - Date Issued
- 2013
- Identifier
- CFE0005254, ucf:50584
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005254
- Title
- Optical and Magnetic properties of nanostructures.
- Creator
-
Nayyar, Neha, Rahman, Talat, Stolbov, Sergey, Ishigami, Marsahir, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms...
Show moreIn this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is larger than 20. In the case of coupled pure chains it was found that the plasmon energy grows as square root of the number of chains, and reaches the visible light energy 1.8eV for the case of three parallel chains. Doping of pure Au chains with transition-metal atoms leads in many cases to formation of additional plasmon peaks close in energy to the undoped chain peak. This peak comes from the local charge oscillations around the potential minima created by the impurity atom. The effect is especially pronounced for Ni-doped chains. In the multiple-chain case, we find an unusual hybridization of the two different (local and collective) plasmon modes. Changing the chain size and chemical composition in the array can be used to tune the absorption properties of nanochains. The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005221, ucf:50650
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005221
- Title
- Transverse mode selection and brightness enhancement in laser resonators by means of volume Bragg gratings.
- Creator
-
Anderson, Brian, Glebov, Leonid, Zeldovich, Boris, Schulzgen, Axel, Rahman, Talat, University of Central Florida
- Abstract / Description
-
The design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible...
Show moreThe design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible with conventional methods of transverse mode selection. This thesis explores the angular selectivity of volume Bragg gratings (VBGs) and their use as spatial transverse mode filters in a laser resonator. Selection of the fundamental mode of a resonator is explored using transmission Bragg gratings (TBGs) as the spatial filter. Simulations and experimental measurements are made for a planar, 1 cm long resonator demonstrating near diffraction limited output (M2 (<) 1.4) for aperture sizes as large as 2.0 mm. Applications to novel fiber laser designs are explored. Single mode operation of a multi-mode Yb3+ doped ribbon fiber laser (core dimensions of 107.8 ?m x 8.3 ?m) is obtained using a single transmission VBG as the filter in an external cavity resonator. Finally, a novel method of selecting a pure higher order mode to oscillate within the gain medium while simultaneously converting this higher order mode to a fundamental mode at an output coupler is proposed and demonstrated. A multiplexed transmission VBG is used as the mode converting element, selecting the 12th higher order mode for amplifications in an Yb3+ doped ribbon fiber laser, while converting the higher order mode of a laser resonator to a single lobed output beam with diffraction limited divergence.
Show less - Date Issued
- 2015
- Identifier
- CFE0005754, ucf:50103
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005754
- Title
- Tuning chemical and optical properties of nanomaterials: From extended surfaces to finite nanoclusters.
- Creator
-
Hooshmand Gharehbagh, Zahra, Rahman, Talat, Kara, Abdelkader, Kaden, William, Uribe Romo, Fernando, University of Central Florida
- Abstract / Description
-
Modifying the electronic and optical properties of surfaces and nanostructures are in the forefront of surface science. This dissertation's focus is on this problem. The first part is on the adsorption of functionalized naphthalene molecules on Cu(111) surface. The results show that changing the functional group results in modification of charge redistribution at the interface of molecule and surface and the electronic structure of Cu changes. The second part discusses the new Moir(&)#233;...
Show moreModifying the electronic and optical properties of surfaces and nanostructures are in the forefront of surface science. This dissertation's focus is on this problem. The first part is on the adsorption of functionalized naphthalene molecules on Cu(111) surface. The results show that changing the functional group results in modification of charge redistribution at the interface of molecule and surface and the electronic structure of Cu changes. The second part discusses the new Moir(&)#233; structure of h-BN on Rh(111) induced by intrinsic carbon impurities of Rh single crystals. We found that these impurities intercalate between h-BN and Rh(111) with new local properties such as charge transfer from Rh and C atoms to h-BN such as appearance of new states in the BN. The third part is about the study of CO super lattice structure at 1/2ML when adsorbed on Pd(111). By considering all the possible overlayer structures and using several different functionals, we found that two structures can be made by CO adsorbents and all the other structures convert to one of these two. The fourth part is on the electronic and optical properties of ligated Ag44 nanoclusters. Using DFT and TDDFT calculations we show that when the pH level of a solvent is changed, the protecting ligands deprotonate and their interaction with each other as well as the metal core varies and the new peaks in absorption spectrum arise from electron rich deprotonated ligands. The final part is on the adsorption of planar molecules on MoS2. We found that the isomers of di-iodobenzene adsorb with same strength on MoS2 and it is the symmetry of frontier orbitals that identifies their different behavior. Also the adsorption and dissociation of benzenethiol on MoS2 was studied and the results show that benzenethiol dissociates only in the presence of defects and heals the structure.
Show less - Date Issued
- 2018
- Identifier
- CFE0007337, ucf:52138
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007337
- Title
- Approximate In-memory computing on RERAMs.
- Creator
-
Khokhar, Salman Anwar, Heinrich, Mark, Leavens, Gary, Yuksel, Murat, Bagci, Ulas, Rahman, Talat, University of Central Florida
- Abstract / Description
-
Computing systems have seen tremendous growth over the past few decades in their capabilities, efficiency, and deployment use cases. This growth has been driven by progress in lithography techniques, improvement in synthesis tools, architectures and power management. However, there is a growing disparity between computing power and the demands on modern computing systems. The standard Von-Neuman architecture has separate data storage and data processing locations. Therefore, it suffers from a...
Show moreComputing systems have seen tremendous growth over the past few decades in their capabilities, efficiency, and deployment use cases. This growth has been driven by progress in lithography techniques, improvement in synthesis tools, architectures and power management. However, there is a growing disparity between computing power and the demands on modern computing systems. The standard Von-Neuman architecture has separate data storage and data processing locations. Therefore, it suffers from a memory-processor communication bottleneck, which is commonly referredto as the 'memory wall'. The relatively slower progress in memory technology compared with processing units has continued to exacerbate the memory wall problem. As feature sizes in the CMOSlogic family reduce further, quantum tunneling effects are becoming more prominent. Simultaneously, chip transistor density is already so high that all transistors cannot be powered up at the same time without violating temperature constraints, a phenomenon characterized as dark-silicon. Coupled with this, there is also an increase in leakage currents with smaller feature sizes, resultingin a breakdown of 'Dennard's' scaling. All these challenges cannot be met without fundamental changes in current computing paradigms. One viable solution is in-memory computing, wherecomputing and storage are performed alongside each other. A number of emerging memory fabrics such as ReRAMS, STT-RAMs, and PCM RAMs are capable of performing logic in-memory.ReRAMs possess high storage density, have extremely low power consumption and a low cost of fabrication. These advantages are due to the simple nature of its basic constituting elements whichallow nano-scale fabrication. We use flow-based computing on ReRAM crossbars for computing that exploits natural sneak paths in those crossbars.Another concurrent development in computing is the maturation of domains that are error resilient while being highly data and power intensive. These include machine learning, pattern recognition,computer vision, image processing, and networking, etc. This shift in the nature of computing workloads has given weight to the idea of (")approximate computing("), in which device efficiency is improved by sacrificing tolerable amounts of accuracy in computation. We present a mathematically rigorous foundation for the synthesis of approximate logic and its mapping to ReRAM crossbars using search based and graphical methods.
Show less - Date Issued
- 2019
- Identifier
- CFE0007827, ucf:52817
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007827
- Title
- Design, Synthesis, Stability, and Photocatalytic Studies of Sustainable Metal-Organic Frameworks.
- Creator
-
Logan, Matthew, Uribe Romo, Fernando, Zhai, Lei, Yuan, Yu, Kuebler, Stephen, Rahman, Talat, University of Central Florida
- Abstract / Description
-
The presented dissertation focuses on the design, synthesis, and characterization of metal-organic frameworks (MOFs) composed of earth-abundant elements the exhibit photoredox activity and studied their application as heterogeneous photocatalysts in organic synthesis and in solar-to-chemical energy conversion. In particular, the structure-property relationships of titanium-based MOFs relating the structure of the organic building unit and the photophysical and photochemical activity of the...
Show moreThe presented dissertation focuses on the design, synthesis, and characterization of metal-organic frameworks (MOFs) composed of earth-abundant elements the exhibit photoredox activity and studied their application as heterogeneous photocatalysts in organic synthesis and in solar-to-chemical energy conversion. In particular, the structure-property relationships of titanium-based MOFs relating the structure of the organic building unit and the photophysical and photochemical activity of the solid material is studied. The first novel family of seven MOFs isoreticular to MIL-125-NH2, includes functionalized with N-alkyl groups with increasing chain length (methyl to heptyl) and with varying connectivity (primary or secondary). The functionalized materials displayed reduced optical bandgaps correlated with the increased inductive donor ability of the alkyl substituents, enhanced excited-state lifetimes, mechanistic information towards visible light CO2 reduction, and improved water stability. The second family of titanium MOFs was prepared with a new secondary building unit and organic links of varying lengths, for which Their crystal structure was solved utilizing powder X-ray diffraction crystallography. This work provides guidelines for the next generation of photocatalyst for the conversion of solar-to-chemical energy and other organic transformations.
Show less - Date Issued
- 2018
- Identifier
- CFE0007219, ucf:52217
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007219
- Title
- Automated Synthesis of Unconventional Computing Systems.
- Creator
-
Hassen, Amad Ul, Jha, Sumit Kumar, Sundaram, Kalpathy, Fan, Deliang, Ewetz, Rickard, Rahman, Talat, University of Central Florida
- Abstract / Description
-
Despite decades of advancements, modern computing systems which are based on the von Neumann architecture still carry its shortcomings. Moore's law, which had substantially masked the effects of the inherent memory-processor bottleneck of the von Neumann architecture, has slowed down due to transistor dimensions nearing atomic sizes. On the other hand, modern computational requirements, driven by machine learning, pattern recognition, artificial intelligence, data mining, and IoT, are growing...
Show moreDespite decades of advancements, modern computing systems which are based on the von Neumann architecture still carry its shortcomings. Moore's law, which had substantially masked the effects of the inherent memory-processor bottleneck of the von Neumann architecture, has slowed down due to transistor dimensions nearing atomic sizes. On the other hand, modern computational requirements, driven by machine learning, pattern recognition, artificial intelligence, data mining, and IoT, are growing at the fastest pace ever. By their inherent nature, these applications are particularly affected by communication-bottlenecks, because processing them requires a large number of simple operations involving data retrieval and storage. The need to address the problems associated with conventional computing systems at the fundamental level has given rise to several unconventional computing paradigms. In this dissertation, we have made advancements for automated syntheses of two types of unconventional computing paradigms: in-memory computing and stochastic computing. In-memory computing circumvents the problem of limited communication bandwidth by unifying processing and storage at the same physical locations. The advent of nanoelectronic devices in the last decade has made in-memory computing an energy-, area-, and cost-effective alternative to conventional computing. We have used Binary Decision Diagrams (BDDs) for in-memory computing on memristor crossbars. Specifically, we have used Free-BDDs, a special class of binary decision diagrams, for synthesizing crossbars for flow-based in-memory computing. Stochastic computing is a re-emerging discipline with several times smaller area/power requirements as compared to conventional computing systems. It is especially suited for fault-tolerant applications like image processing, artificial intelligence, pattern recognition, etc. We have proposed a decision procedures-based iterative algorithm to synthesize Linear Finite State Machines (LFSM) for stochastically computing non-linear functions such as polynomials, exponentials, and hyperbolic functions.
Show less - Date Issued
- 2019
- Identifier
- CFE0007648, ucf:52462
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007648
- Title
- Applications of Volume Holographic Elements in High Power Fiber Lasers.
- Creator
-
Jain, Apurva, Glebov, Leonid, Zeldovich, Boris, Schulzgen, Axel, Likamwa, Patrick, Rahman, Talat, University of Central Florida
- Abstract / Description
-
The main objective of this thesis is to explore the use of volume holographic elements recorded in photo-thermo-refractive (PTR) glass for power scaling of narrow linewidth diffraction-limited fiber lasers to harness high average power and high brightness beams. Single fiber lasers enable kW level output powers limited by optical damage, thermal effects and non-linear effects. Output powers can be further scaled using large mode area fibers, however, at the cost of beam quality and...
Show moreThe main objective of this thesis is to explore the use of volume holographic elements recorded in photo-thermo-refractive (PTR) glass for power scaling of narrow linewidth diffraction-limited fiber lasers to harness high average power and high brightness beams. Single fiber lasers enable kW level output powers limited by optical damage, thermal effects and non-linear effects. Output powers can be further scaled using large mode area fibers, however, at the cost of beam quality and instabilities due to the presence of higher order modes. The mechanisms limiting the performance of narrow-linewidth large mode area fiber lasers are investigated and solutions using intra-cavity volume Bragg gratings (VBG) proposed. Self-pulsations-free, completely continuous-wave operation of a VBG-stabilized unidirectional fiber ring laser is demonstrated with quasi single-frequency ((<) 7.5 MHz) output. A method for transverse mode selection in multimode fiber lasers to reduce higher order mode content and stabilize the output beam profile is developed using angular selectivity of reflecting VBGs. By placing the VBG output coupler in a convergent beam, stabilization of the far-field beam profile of a 20 ?m core large mode area fiber laser is demonstrated.Beam combining techniques are essential to power scale beyond the limitations of single laser sources. Several beam combining techniques relevant to fiber lasers were compared in this study and found to be lacking in one or more of the following aspects: the coherence of the individual sources is compromised, the far-field beam quality is highly degraded with significant power in side lobes, spectrally broad and unstable, and uncertainty over scaling to larger arrays and higher power. Keeping in mind the key requirements of coherence, good far-field beam quality, narrow and stable spectra, and scalability in both array size and power, a new passive coherent beam combining technique using multiplexed volume Bragg gratings (M-VBGs) is proposed.In order to understand the mechanism of radiation exchange between multiple beams via these complex holographic optical elements, the spectral and beam splitting properties a 2nd order reflecting M-VBG recorded in PTR glass is experimentally investigated using a tunable single frequency seed laser. Two single-mode Yb-doped fiber lasers are then coherently combined using reflecting M-VBGs in both linear and unidirectional-ring resonators with (>)90% combining efficiency and diffraction-limited beam quality. It is demonstrated that the combining bandwidth can be controlled in the range of 100s of pm to a few pm by angular detuning of the M-VBG. Very narrow-linewidth ((<) 210 MHz) operation in a linear cavity and possibility of single-frequency operation in a unidirectional ring cavity of the coherently combined system is demonstrated using this technique. It is theoretically derived and experimentally demonstrated that high combining efficiency can be achieved even by multiplexing low-efficiency VBGs, with the required diffraction efficiency of individual VBGs decreasing as array size increases. Scaling of passive coherent beam combining to four fiber lasers is demonstrated using a 4th order transmitting M-VBG. Power scaling of this technique to 10 W level combined powers with 88% combining efficiency is demonstrated by passively combining two large mode area fiber lasers using a 2nd order reflecting M-VBG in a unidirectional ring resonator. High energy compact single-frequency sources are highly desired for several applications (-) one of which is as a seed for high power fiber amplifiers. Towards achieving the goal of a monolithic solid-state laser, a new gain medium having both photosensitive and luminescence properties is investigated (-) rare-earth doped PTR glass. First lasing is demonstrated in this new gain element in a VBG-stabilized external cavity.
Show less - Date Issued
- 2012
- Identifier
- CFE0004553, ucf:49230
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004553