Current Search: Roy, Herve (x)
View All Items
- Title
- PHYSIOLOGICAL RELEVANCE OF A TRNA-DEPENDENT MECHANISM FOR MEMBRANE MODIFICATION IN ENTEROCOCCUS FAECIUM.
- Creator
-
Harrison, Jesse, Roy, Herve, University of Central Florida
- Abstract / Description
-
Enterococci were once thought to be harmless, commensal organisms that colonize the gastrointestinal tract of humans and other mammals. In the last 30 years, however, concern has grown in the clinical setting over two particular species, Enterococcus faecalis and Enterococcus faecium, which are frequently found to be the etiologic agents of nosocomial infections. Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that add amino acids to phosphatidylglycerol (PG)...
Show moreEnterococci were once thought to be harmless, commensal organisms that colonize the gastrointestinal tract of humans and other mammals. In the last 30 years, however, concern has grown in the clinical setting over two particular species, Enterococcus faecalis and Enterococcus faecium, which are frequently found to be the etiologic agents of nosocomial infections. Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that add amino acids to phosphatidylglycerol (PG) in the cellular envelope of bacteria. Addition of amino acids to PG confers resistance to various therapeutic antimicrobial agents, and contributes to evasion of the host immune response in a number of clinically relevant microorganisms. E. faecium possesses two distinct aaPGSs: aaPGS1 and aaPGS2. In addition, another gene coding for a putative hydrolase (pHyd) is located in the same operon as aaPGS2, and has no known function. To investigate the physiological relevance of aa-PG formation, and the function of aaPGS1, aaPGS2, and pHyd in E. faecium, we generated individual knockouts of these genes using a markerless deletion strategy. Deletion of aaPGS1 did not noticeably alter lipid aminoacylation, whereas deletion of aaPGS2 led to a loss of aa-PG synthesis. Deletion of pHyd also led to a loss of lipid aminoacylation; however, additional experiments are needed to verify that expression of aaPGS2 (which resides just downstream in the same operon) is unaffected in the pHyd-deletion strain. Development of the mutant strains described here will enable us to investigate additional phenotypes associated with these genes, and to determine whether aa-PG formation contributes to antibiotic resistance in E. faecium as in several other pathogenic microorganisms.
Show less - Date Issued
- 2012
- Identifier
- CFH0004308, ucf:45054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004308
- Title
- Role of Single Nucleotide Polymorphisms (SNPs) in PTPN2/22 and Mycobacterium avium subspecies paratuberculosis (MAP) in Rheumatoid Arthritis and Crohn's Disease.
- Creator
-
Sharp, Robert, Naser, Saleh, Parks, Griffith, Roy, Herve, Singla, Dinender, University of Central Florida
- Abstract / Description
-
Both genetic pre-disposition and potential environmental triggers are shared between Rheumatoid arthritis (RA) and Crohn's disease (CD). We hypothesized that single nucleotide polymorphisms (SNPs) in the negative T-cell regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response as seen in RA and CD. To test the hypothesis, peripheral leukocytes samples from 204 consented subjects were TaqMan genotyped for 9 SNPs in PTPN2/22. The SNPs...
Show moreBoth genetic pre-disposition and potential environmental triggers are shared between Rheumatoid arthritis (RA) and Crohn's disease (CD). We hypothesized that single nucleotide polymorphisms (SNPs) in the negative T-cell regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response as seen in RA and CD. To test the hypothesis, peripheral leukocytes samples from 204 consented subjects were TaqMan genotyped for 9 SNPs in PTPN2/22. The SNPs effect on PTPN2/22 and IFN-y expression was determined using RT-PCR. Blood samples were analyzed for the Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. T-cell proliferation and response to phytohematoagglutonin (PHA) mitogen and MAP cell lysate were determined by BrdU proliferation assay. Out of 9 SNPs, SNP alleles of PTPN2:rs478582 occurred in 79% RA compared to 60% control (p-values ? 0.05). SNP alleles of PTPN22:rs2476601 occurred in 29% RA compared to 6% control (p-values ? 0.05). For the haplotype combination of PTPN2:rs478582/PTPN22rs2476601, 21.4% RA had both SNPs (C-A) compared to 2.4% control (p-values ? 0.05). PTPN2/22 expression in RA was decreased by an average of 1.2 fold. PTPN2:rs478582 upregulated IFN-y in RA by an average of 1.5 fold. Combined PTPN2:rs478582/PTPN22:rs2476601 increased T-cell proliferation by an average of 2.7 fold when treated with PHA. MAP DNA was detected in 34% RA compared to 8% controls (p-values ? 0.05), where samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more MAP positive. PTPN2:rs478582/PTPN22:rs2476601 together with MAP infection significantly increased T-cell response and IFN-y expression in RA samples. The same experimental approach was followed on blood samples from CD patients. Both PTPN2:rs478582/PTPN22:rs2476601 affected PTPN2/22 and IFN-y expression along with T-cell proliferation significantly more than in RA. MAP DNA was detected in 64% of CD. This is the first study to report the correlation between SNPs in PTPN2/22, IFN-y expression and MAP in autoimmune disease.
Show less - Date Issued
- 2018
- Identifier
- CFE0007371, ucf:52094
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007371
- Title
- Exacerbation of efp- sickness in Escherichia coli by an uncharacterized RNA helicase.
- Creator
-
Wingo, Robert, Moore, Sean, Roy, Herve, Teter, Kenneth, University of Central Florida
- Abstract / Description
-
In Escherichia coli, growth is rate-limited by translation capacity. Stalled ribosomes have profound effects on a cell such as altered mRNA abundance, decreased ribosome availability, and an imbalanced proteome. The absence of elongation factor P (EF-P), a universally conserved transpeptidation enhancer, presents an extreme example of this scenario, wherein ribosomes accumulate disproportionately onto messages that are more slowly translated and cell growth becomes notably impaired. We...
Show moreIn Escherichia coli, growth is rate-limited by translation capacity. Stalled ribosomes have profound effects on a cell such as altered mRNA abundance, decreased ribosome availability, and an imbalanced proteome. The absence of elongation factor P (EF-P), a universally conserved transpeptidation enhancer, presents an extreme example of this scenario, wherein ribosomes accumulate disproportionately onto messages that are more slowly translated and cell growth becomes notably impaired. We discovered that faster-growing cells arise spontaneously in ?efp cultures, suggesting that translation defects could be circumvented by mutating other genes. This thesis presents a genetic and biochemical analysis of a mechanism ?efp cells employ to overcome translation stress. Using a dual luciferase reporter system, we found that transpeptidation remained hindered in the faster growing ?efp cells. Whole genome sequencing of several fast-growing strains revealed mutations in a poorly characterized RNA helicase called HrpA. We determined that deletion of hrpA, or mutations at several conserved residues critical for HrpA's function, was sufficient to improve the fitness of ?efp cells. HrpA is a DEAH-box RNA helicase and represents a large class of enigmatic proteins that use ATP to restructure cellular RNAs; however, it's direct function in cellular physiology has yet to be clearly demonstrated. Several HrpA mutants were engineered to interrogate the molecular mechanism of HrpA and how its function impairs ?efp cells. Complementation in ?efp ?hrpA cells showed that a number of these mutants were unable to restore sickness, suggesting they were defective in key aspects of RNA processing. It was discovered that wild-type HrpA is associated with actively translating ribosomes and several of the inactive HrpA mutants impose substantial deleterious effects on translation and ribosome production. In sum, the work presented here describes a mechanism by which cells overcome translation stress involving a novel genetic and biochemical relationship between EF-P and HrpA.
Show less - Date Issued
- 2018
- Identifier
- CFE0007267, ucf:52178
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007267
- Title
- Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase.
- Creator
-
Johnstone, Michael, Self, William, Roy, Herve, Moore, Sean, University of Central Florida
- Abstract / Description
-
Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation...
Show moreSelenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. In this work, we add knowledge to the mechanism for selenium-over-sulfur specificity in hopes of further understanding the controlled regulation of selenium trafficking and the prevention of its toxicity. We have identified SclA, a selenocysteine lyase in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for L-selenocysteine over L-cysteine. Human selenocysteine lyase contains a residue, D146, which plays a significant role in determining its specificity. A D146K mutation eliminated this trait, allowing non-specific L-cysteine degradation. Using computational biology, we identified an orthologous residue in SclA, H100, and generated mutant enzymes with site-directed mutagenesis. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying levels of activity towards L-selenocysteine, hinting at a catalytic role for H100. Additionally, L-cysteine acted as a competitive inhibitor towards all enzymes with higher affinity than L-selenocysteine. Finally, our experiments revealed that SclA possessed extremely poor cysteine desulfurase activity with each mutation exhibiting subtle changes in turnover. Our findings offer key insight into the molecular mechanisms behind selenium-over-sulfur specificity and may further elucidate the role of selenocysteine lyases in vivo.
Show less - Date Issued
- 2019
- Identifier
- CFE0007659, ucf:52481
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007659
- Title
- Allelic characterization and novel functions of the outer membrane porin U in Vibrio cholerae.
- Creator
-
Sakib, Sk Nazmus, Almagro-Moreno, Salvador, Moore, Sean, Roy, Herve, University of Central Florida
- Abstract / Description
-
Vibrio cholerae is the etiological agent of the severe diarrheal disease cholera. The bacterium is a natural inhabitant of brackish and estuarine waters . To date, only a subset of V. cholerae strains, those belonging to the pandemic group (PG), can cause cholera in humans while the rest (environmental group, EG) cannot cause the disease. Recently, we discovered that V. cholerae PG contains allelic variations in core genes that confer preadaptation to virulence, which we termed Virulence...
Show moreVibrio cholerae is the etiological agent of the severe diarrheal disease cholera. The bacterium is a natural inhabitant of brackish and estuarine waters . To date, only a subset of V. cholerae strains, those belonging to the pandemic group (PG), can cause cholera in humans while the rest (environmental group, EG) cannot cause the disease. Recently, we discovered that V. cholerae PG contains allelic variations in core genes that confer preadaptation to virulence, which we termed Virulence Adaptive Polymorphisms (VAPs). We identified nine core genes that encode potential VAPs, one of which encodes the outer membrane porin U (OmpU). OmpU provides tolerance to bile and acidic pH, resistance to antimicrobials and facilitates biofilm formation. In this study, several alleles of ompU were analyzed to determine whether these VAPs encode different functional properties. We performed multiple phenotypic assays and observed increased survival for strains encoding the PG-like alleles in the presence of bile, organic acid, anionic detergents and the antimicrobial peptide P2. On the other hand, EG-like alleles only showed increased biofilm formation. Interestingly, tests for motility and tolerance of inorganic acid, polymyxin B and protamine sulphate showed no differences in survival for strains encoding either alleles indicating that some of the properties conferred by OmpU are allelic independent. We have also discovered that V. cholerae OmpU shows resistance against Rifamycin, EDTA and Trifluoperazine and interestingly, Rifamycin has been found to be PG-allele dependent. Our findings provide further evidence that genetic variations in core genes lead to the emergence of virulence adaptive traits in pathogenic V. cholerae and can be extrapolated to other bacterial pathogens.
Show less - Date Issued
- 2019
- Identifier
- CFE0007720, ucf:52420
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007720
- Title
- Membrane topology of a broad-spectrum resistance factor responsible for lipid modification in Enterococcus faecium.
- Creator
-
Harrison, Jesse, Roy, Herve, Teter, Kenneth, Phanstiel, Otto, University of Central Florida
- Abstract / Description
-
Aminoacylphosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that use aminoacyl-tRNAs as substrates to catalyze the addition of amino acids to phosphatidylglycerol (PG) in the cytoplasmic membranes of bacteria. Addition of amino acids to PG decreases the net negative charge of the membrane, conferring resistance to various classes of antibacterial agents (i.e., cationic antimicrobial peptides, beta-lactams, glycopeptides, and lipopeptides) and protecting the cell against...
Show moreAminoacylphosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that use aminoacyl-tRNAs as substrates to catalyze the addition of amino acids to phosphatidylglycerol (PG) in the cytoplasmic membranes of bacteria. Addition of amino acids to PG decreases the net negative charge of the membrane, conferring resistance to various classes of antibacterial agents (i.e., cationic antimicrobial peptides, beta-lactams, glycopeptides, and lipopeptides) and protecting the cell against osmotic stress and acidic conditions. aaPGS homologs are found in a variety of clinically relevant microorganisms, including Enterococcus faecium, which is increasingly found to be the etiologic agent of antibiotic-resistant nosocomial infections. Although the broad distribution of these virulence factors across bacterial species makes them attractive targets for therapeutic strategies, little is known about the structure of aaPGSs. Two aaPGS paralogs are found in E. faecium, one of which exhibits relaxed substrate specificity and is responsible for the transfer of Arg (R), Ala (A), and Lys (K) to PG (RakPGS). The catalytic site of RakPGS is located in the hydrophilic C-terminal domain, which is localized in the cytoplasm. The N-terminus contains an integral membrane domain that is thought to harbor flippase activity that translocates the neosynthesized aa-PG from the inner to the outer leaflet of the membrane. We are currently developing the substituted cysteine accessibility method (SCAM) and a dual-reporter fusion system, which exploits alkaline phosphatase (Pho) and ?-galactosidase (LacZ) activities, for investigating the membrane topology of RakPGS in E. faecium.
Show less - Date Issued
- 2015
- Identifier
- CFE0006318, ucf:51566
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006318
- Title
- Chlamydia trachomatis Transformants Show a Significant Reduction in Rates of Invasion upon Removal of Key Tarp Domains.
- Creator
-
Parrett, Christopher, Jewett, Travis, Roy, Herve, Moore, Sean, University of Central Florida
- Abstract / Description
-
Chlamydia trachomatis is an obligate, intracellular bacterium which is known to cause multiple human infections including nongonococcal urethritis (serovars D-K), lymphogranuloma venereum (serovars L1, L2, L3) and trachoma (serovars A-C). The infectious form of the bacterium, called the elementary body (EB), harbors a type III secreted effector known as Tarp (translocated actin recruiting phosphoprotein) which is a candidate virulence factor and is hypothesized to play a role in C....
Show moreChlamydia trachomatis is an obligate, intracellular bacterium which is known to cause multiple human infections including nongonococcal urethritis (serovars D-K), lymphogranuloma venereum (serovars L1, L2, L3) and trachoma (serovars A-C). The infectious form of the bacterium, called the elementary body (EB), harbors a type III secreted effector known as Tarp (translocated actin recruiting phosphoprotein) which is a candidate virulence factor and is hypothesized to play a role in C. trachomatis' ability to invade and grow within epithelial cells in a human host. C. trachomatis L2 Tarp harbors five unique protein domains which include the Phosphorylation Domain, the Proline Rich Domain, the Actin Binding Domain, and two F-Actin Binding Domains. Tarp has been biochemically characterized in vitro, but it has yet to be characterized in vivo due to a lack of genetic tools in C. trachomatis. Through the recent generation of a chlamydial transformation system, we have created transformants which express epitope tagged wild type or mutant Tarp effectors. In this thesis, C. trachomatis transformants expressing Tarp lacking one of the five biochemically defined protein domains were used to examine both bacterial invasion and bacterial development within mammalian host cells. Our results demonstrate that those EBs which harbor mutant Tarp missing either its Phosphorylation Domain or its Actin Binding Domain were less capable of host cell invasion. However, these transformants, once internalized, were capable of normal development when compared to wild type C. trachomatis or C. trachomatis harboring an epitope tagged wild type Tarp effector. These results suggest that transformant expressed Tarp lacking the Phosphorylation Domain or Actin Binding Domain may be acting as a dominant-negative effector protein. Ultimately, these results support the hypothesis that Tarp is a virulence factor for Chlamydia trachomatis. Furthermore, this data indicates that through the manipulation of the Tarp effector, C. trachomatis pathogenesis may be attenuated.
Show less - Date Issued
- 2016
- Identifier
- CFE0006159, ucf:51142
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006159
- Title
- The Anti-toxin Properties of Grape Seed Phenolic Compounds.
- Creator
-
Cherubin, Patrick, Teter, Kenneth, Zervos, Antonis, Roy, Herve, Phanstiel, Otto, University of Central Florida
- Abstract / Description
-
Corynebacterium diphtheriae, Pseudomonas aeruginosa, Ricinus communis, Shigella dysentariae, and Vibrio cholerae produce AB toxins which share the same basic structural characteristics: a catalytic A subunit attached to a cell-binding B subunit. All AB toxins have cytosolic targets despite an initial extracellular location. AB toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against these toxins are therefore hard to...
Show moreCorynebacterium diphtheriae, Pseudomonas aeruginosa, Ricinus communis, Shigella dysentariae, and Vibrio cholerae produce AB toxins which share the same basic structural characteristics: a catalytic A subunit attached to a cell-binding B subunit. All AB toxins have cytosolic targets despite an initial extracellular location. AB toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against these toxins are therefore hard to develop because they use different surface receptors, entry mechanisms, enzyme activities, and cytosolic targets.We have found that grape seed extract provides resistance to five different AB toxins: diphtheria toxin (DT), P. aeruginosa exotoxin A (ETA), ricin, Shiga toxin, and cholera toxin (CT). To identify individual compounds in grape seed extract that are capable of inhibiting the activities of these AB toxins, we screened twenty common phenolic compounds of grape seed extract for anti-toxin properties. Three compounds inhibited DT, four inhibited ETA, one inhibited ricin, and twelve inhibited CT. Additional studies were performed to determine the mechanism of inhibition against CT. Two compounds inhibited CT binding to the cell surface and even stripped bound CT off the plasma membrane of a target cell. Two other compounds inhibited the enzymatic activity of CT. We have thus identified individual toxin inhibitors from grape seed extract and some of their mechanisms of inhibition against CT. This work will help to formulate a defined mixture of phenolic compounds that could potentially be used as a therapeutic against a broad range of AB toxins.
Show less - Date Issued
- 2014
- Identifier
- CFE0005315, ucf:50510
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005315
- Title
- Multi-target high-throughput screening assays for antimicrobial drug discovery.
- Creator
-
Grube, Christopher, Roy, Herve, Chakrabarti, Debopam, Moore, Sean, Koculi, Eda, University of Central Florida
- Abstract / Description
-
The rise of antibiotic resistant microbes (bacteria, fungi, and parasites), combined with the current void of new drugs entering the clinical setting, has created an urgent need for the discovery of new antimicrobials. High-throughput screening (HTS) assays represent a fast and cost-efficient method for identifying new therapeutic compounds and have been the longstanding gold standard for drug discovery. The focus of this dissertation is on the development and implementation of novel...
Show moreThe rise of antibiotic resistant microbes (bacteria, fungi, and parasites), combined with the current void of new drugs entering the clinical setting, has created an urgent need for the discovery of new antimicrobials. High-throughput screening (HTS) assays represent a fast and cost-efficient method for identifying new therapeutic compounds and have been the longstanding gold standard for drug discovery. The focus of this dissertation is on the development and implementation of novel methodologies to increase the throughput of target-based HTS by designing assays that allow multiple drug targets to be probed simultaneously. During my graduate studies, I developed three distinct HTS assays. In each of these assays, drug targets were incorporated into synthetic pathways obeying various reaction topologies (e.g., cyclical, parallel, or linear). Each of these reaction topologies conferred specific advantages and limitations to the individual assays. The first assay reconstitutes the bacterial tRNA-dependent pathway for lipid aminoacylation. This two-step pathway combines a tRNA aminoacylation step catalyzed by an aminoacyl-tRNA synthetase (aaRS), and a transferase step, which transfers the amino acid born by the tRNA onto membrane lipids. aaRSs are essential enzymes in all domains of life and represent longstanding drug targets in pathogenic species. The transferase reaction in the pathway is also an appealing drug target since it impacts the cellular permeability of antibiotics. Inhibitors of this reaction could dramatically increase the efficacy of existing therapeutics. The second assay I developed also targets aaRSs, but utilizes a parallel topology that permits the probing of the synthetic and editing activities of up to four aaRSs simultaneously. The third assay utilizes a linear topology that reconstitutes the entire purine salvage pathway from Plasmodium falciparum. Because parasites are unable to synthesize purines de novo, this pathway represents an appealing target for novel antimalarials. Pilot screens using this assay revealed inhibitors for multiple enzymes in the pathway, validating the design of the system. This body of work aims to shift the current paradigm of single-target systems that have historically dominated the HTS field, toward multi-target designs that can be used to more efficiently screen compound libraries against essential pathways in pathogenic microbes.
Show less - Date Issued
- 2019
- Identifier
- CFE0007642, ucf:52469
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007642
- Title
- The role of a highly conserved eubacterial ribosomal protein in translation quality control.
- Creator
-
Naganathan, Anusha, Moore, Sean, Cole, Alexander, Teter, Kenneth, Roy, Herve, Koculi, Eda, University of Central Florida
- Abstract / Description
-
The process of decoding is the most crucial determinant of the quality of protein synthesis. Ribosomal protein L9 was first implicated in decoding fidelity when a mutant version of L9 was found to increase the translation of a T4 phage gene. Later studies confirmed that the absence of L9 leads to increased translational bypassing, frameshifting, and stop codon readthrough. L9 is part of the large subunit of the prokaryotic ribosome and is located more than 90 (&)#197; from the site of...
Show moreThe process of decoding is the most crucial determinant of the quality of protein synthesis. Ribosomal protein L9 was first implicated in decoding fidelity when a mutant version of L9 was found to increase the translation of a T4 phage gene. Later studies confirmed that the absence of L9 leads to increased translational bypassing, frameshifting, and stop codon readthrough. L9 is part of the large subunit of the prokaryotic ribosome and is located more than 90 (&)#197; from the site of decoding, making it difficult to envision how it might affect decoding and reading frame maintenance. Twenty years after the identification of L9's putative function, there is no mechanism for how a remotely located L9 improves translation fidelity. This mystery makes our picture of translation incomplete. Despite the high conservation of L9 in eubacteria, E.coli lacking L9 does not exhibit any obvious growth defects. Thus, the evolutionary advantage conferred by L9 in bacteria is masked under laboratory conditions. In order to uncover unique L9-dependent conditions, a library of E. coli mutants was screened to isolate those that rely on L9 for fitness. Interestingly, factors found to be synergistic with L9 had no known role in fidelity. Six independent mutants were isolated, each exhibiting a severe growth defect that is partially suppressed in the presence of L9. One class of L9-dependent mutations was present in an essential ribosome biogenesis factor, Der. Der's established function is in the maturation of the large ribosomal subunit. The identified mutations severely impaired the GTPase activity of Der. Interestingly, L9 did not directly compensate for the defective GTPase activity of mutant Der. The second class of L9-dependent mutations was present in EpmA and EpmB, factors required to post-translationally modify elongation factor, EF-P. EF-P's established function is in the translation of poly-proline containing proteins. EF-P deficient cells were nearly inviable in the absence of L9; however, L9 did not directly influence poly-proline translation. Therefore, in each case, L9 improved cell health without altering the activity of either Der or EF-P. Remarkably, the der mutants required only the N domain of L9, whereas the absence of active EF-P required full-length, wild-type L9 for growth complementation. Thus, each mutant class needed a different aspect of L9's unique architecture. In cells lacking either active EF-P or Der, there was a severe deficiency of 70S ribosomes and the indication of small subunit maturation defects, both of which worsened upon L9 depletion. These results strongly suggest that L9 plays a role in improving ribosome quality and abundance under certain conditions.Overall, the genetic screen lead to the discovery that bacteria need L9 when either of two important translation factors (Der or EF-P) is inactivated. This work has characterized the physiological requirement for L9 in each case and offers a new insight into L9's assigned role in translation fidelity.
Show less - Date Issued
- 2015
- Identifier
- CFE0005674, ucf:50169
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005674