Current Search: Wocjan, Pawel (x)
View All Items
- Title
- Resource Management in Large-scale Systems.
- Creator
-
Paya, Ashkan, Marinescu, Dan, Wocjan, Pawel, Bassiouni, Mostafa, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
The focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are:1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery...
Show moreThe focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are:1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery model based on auction-driven self-organization approach.2. Algorithms. We also proposed several different algorithms for the models described above. Algorithms such as coalition formation, combinatorial auctions and clustering algorithm for scale-free organizations of scale-free networks.3. Evaluation. Eventually we conducted different evaluations for the proposed models and algorithms in order to verify them. All the simulations reported in this thesis had been carried out on different instances and services of Amazon Web Services (AWS).All of these modules will be discussed in detail in the following chapters respectively.
Show less - Date Issued
- 2015
- Identifier
- CFE0005862, ucf:50913
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005862
- Title
- On the security of NoSQL cloud database services.
- Creator
-
Ahmadian, Mohammad, Marinescu, Dan, Wocjan, Pawel, Heinrich, Mark, Brennan, Joseph, University of Central Florida
- Abstract / Description
-
Processing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS...
Show moreProcessing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS introduces new challenges such as confidentiality violation and information leakage in the presence of privileged malicious insiders and adds new dimension to the data security. We address the problem of building a secure DBaaS for a public cloud infrastructure where, the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high level description of several architectures combining modern cryptographic primitives for achieving this goal. A novel searchable security scheme is proposed to leverage secure query processing in presence of a malicious cloud insider without disclosing sensitive information. A holistic database security scheme comprised of data confidentiality and information leakage prevention is proposed in this dissertation. The main contributions of our work are:(i) A searchable security scheme for non-relational databases of the cloud DBaaS; (ii) Leakage minimization in the untrusted cloud.The analysis of experiments that employ a set of established cryptographic techniques to protect databases and minimize information leakage, proves that the performance of the proposed solution is bounded by communication cost rather than by the cryptographic computational effort.
Show less - Date Issued
- 2017
- Identifier
- CFE0006848, ucf:51777
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006848
- Title
- Hilbert Series of Graphs, Hypergraphs, and Monomial Ideals.
- Creator
-
Trainor, Kyle, Brennan, Joseph, Song, Zixia, Martin, Heath, Morey, Susan, Wocjan, Pawel, University of Central Florida
- Abstract / Description
-
In this dissertation, identities for Hilbert series of quotients of polynomial rings by monomial ideals are explored, beginning in the contexts of graph and hypergraph rings and later generalizing to general monomial ideals. These identities are modeled after constructive identities from graph theory, and can thus be used to construct Hilbert series iteratively from those of smaller algebraic structures.
- Date Issued
- 2018
- Identifier
- CFE0007258, ucf:52176
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007258
- Title
- The Power of Quantum Walk: Insights, Implementation, and Applications.
- Creator
-
Chiang, Chen-Fu, Wocjan, Pawel, Marinescu, Dan, Dechev, Damian, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
In this thesis, I investigate quantum walks in quantum computing from threeaspects: the insights, the implementation, and the applications. Quantum walks are the quantum analogue of classical random walks. For the insights of quantum walks, I list and explain the required components for quantizing a classical random walk into a quantum walk. The components are, for instance, Markov chains, quantum phase estimation, and quantum spectrum theorem. I then demonstrate how the product of two...
Show moreIn this thesis, I investigate quantum walks in quantum computing from threeaspects: the insights, the implementation, and the applications. Quantum walks are the quantum analogue of classical random walks. For the insights of quantum walks, I list and explain the required components for quantizing a classical random walk into a quantum walk. The components are, for instance, Markov chains, quantum phase estimation, and quantum spectrum theorem. I then demonstrate how the product of two reflections in the walk operator provides a quadratic speed-up, in comparison to the classical counterpart. For the implementation of quantum walks, I show the construction of an efficient circuit for realizing one single step of the quantum walk operator. Furthermore, I devise a more succinct circuit to approximately implement quantum phase estimation with constant precision controlled phase shift operators. From an implementation perspective, efficient circuits are always desirable because the realization of a phase shift operator with high precision would be a costly task and a critical obstacle. For the applications of quantum walks, I apply the quantum walk technique along with other fundamental quantum techniques, such as phase estimation, to solve the partition function problem. However, there might be some scenario in which the speed-up of spectral gap is insignificant. In a situation like that that,I provide an amplitude amplification-based approach to prepare the thermal Gibbs state. Such an approach is useful when the spectral gap is extremely small. Finally, I further investigate and explore the effect of noise (perturbation)on the performance of quantum walks.
Show less - Date Issued
- 2011
- Identifier
- CFE0004094, ucf:49148
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004094
- Title
- An Optimization of Thermodynamic Efficiency vs. Capacity for Communications Systems.
- Creator
-
Rawlins, Gregory, Wocjan, Pawel, Wahid, Parveen, Georgiopoulos, Michael, Jones, W Linwood, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
This work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages...
Show moreThis work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages Shannon's while providing additional insight through physical models which enable the calculation and improvement of efficiency for the encoding of signals. The proliferation of Mobile Communications platforms is challenging capacity of networks largely because of the ever increasing data rate at each node. This places significant power management demands on personal computing devices as well as cellular and WLAN terminals. The increased data throughput translates to shorter meantime between battery charging cycles and increased thermal footprint. Solutions are developed herein to counter this trend. Hardware was constructed to measure the efficiency of a prototypical Gaussian signal prior to efficiency enhancement. After an optimization was performed, the efficiency of the encoding apparatus increased from 3.125% to greater than 86% for a manageable investment of resources. Likewise several telecommunications standards based waveforms were also tested on the same hardware. The results reveal that the developed physical theories extrapolate in a very accurate manner to an electronics application, predicting the efficiency of single ended and differential encoding circuits before and after optimization.
Show less - Date Issued
- 2015
- Identifier
- CFE0006051, ucf:50994
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006051