Current Search: shaped (x)
Pages
-
-
Title
-
REAL-TIME MONOCULAR VISION-BASED TRACKING FOR INTERACTIVE AUGMENTED REALITY.
-
Creator
-
Spencer, Lisa, Guha, Ratan, University of Central Florida
-
Abstract / Description
-
The need for real-time video analysis is rapidly increasing in today's world. The decreasing cost of powerful processors and the proliferation of affordable cameras, combined with needs for security, methods for searching the growing collection of video data, and an appetite for high-tech entertainment, have produced an environment where video processing is utilized for a wide variety of applications. Tracking is an element in many of these applications, for purposes like detecting anomalous...
Show moreThe need for real-time video analysis is rapidly increasing in today's world. The decreasing cost of powerful processors and the proliferation of affordable cameras, combined with needs for security, methods for searching the growing collection of video data, and an appetite for high-tech entertainment, have produced an environment where video processing is utilized for a wide variety of applications. Tracking is an element in many of these applications, for purposes like detecting anomalous behavior, classifying video clips, and measuring athletic performance. In this dissertation we focus on augmented reality, but the methods and conclusions are applicable to a wide variety of other areas. In particular, our work deals with achieving real-time performance while tracking with augmented reality systems using a minimum set of commercial hardware. We have built prototypes that use both existing technologies and new algorithms we have developed. While performance improvements would be possible with additional hardware, such as multiple cameras or parallel processors, we have concentrated on getting the most performance with the least equipment. Tracking is a broad research area, but an essential component of an augmented reality system. Tracking of some sort is needed to determine the location of scene augmentation. First, we investigated the effects of illumination on the pixel values recorded by a color video camera. We used the results to track a simple solid-colored object in our first augmented reality application. Our second augmented reality application tracks complex non-rigid objects, namely human faces. In the color experiment, we studied the effects of illumination on the color values recorded by a real camera. Human perception is important for many applications, but our focus is on the RGB values available to tracking algorithms. Since the lighting in most environments where video monitoring is done is close to white, (e.g., fluorescent lights in an office, incandescent lights in a home, or direct and indirect sunlight outside,) we looked at the response to "white" light sources as the intensity varied. The red, green, and blue values recorded by the camera can be converted to a number of other color spaces which have been shown to be invariant to various lighting conditions, including view angle, light angle, light intensity, or light color, using models of the physical properties of reflection. Our experiments show how well these derived quantities actually remained constant with real materials, real lights, and real cameras, while still retaining the ability to discriminate between different colors. This color experiment enabled us to find color spaces that were more invariant to changes in illumination intensity than the ones traditionally used. The first augmented reality application tracks a solid colored rectangle and replaces the rectangle with an image, so it appears that the subject is holding a picture instead. Tracking this simple shape is both easy and hard; easy because of the single color and the shape that can be represented by four points or four lines, and hard because there are fewer features available and the color is affected by illumination changes. Many algorithms for tracking fixed shapes do not run in real time or require rich feature sets. We have created a tracking method for simple solid colored objects that uses color and edge information and is fast enough for real-time operation. We also demonstrate a fast deinterlacing method to avoid "tearing" of fast moving edges when recorded by an interlaced camera, and optimization techniques that usually achieved a speedup of about 10 from an implementation that already used optimized image processing library routines. Human faces are complex objects that differ between individuals and undergo non-rigid transformations. Our second augmented reality application detects faces, determines their initial pose, and then tracks changes in real time. The results are displayed as virtual objects overlaid on the real video image. We used existing algorithms for motion detection and face detection. We present a novel method for determining the initial face pose in real time using symmetry. Our face tracking uses existing point tracking methods as well as extensions to Active Appearance Models (AAMs). We also give a new method for integrating detection and tracking data and leveraging the temporal coherence in video data to mitigate the false positive detections. While many face tracking applications assume exactly one face is in the image, our techniques can handle any number of faces. The color experiment along with the two augmented reality applications provide improvements in understanding the effects of illumination intensity changes on recorded colors, as well as better real-time methods for detection and tracking of solid shapes and human faces for augmented reality. These techniques can be applied to other real-time video analysis tasks, such as surveillance and video analysis.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001075, ucf:46786
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001075
-
-
Title
-
MESHLESS HEMODYNAMICS MODELING AND EVOLUTIONARY SHAPE OPTIMIZATION OF BYPASS GRAFTS ANASTOMOSES.
-
Creator
-
El Zahab, Zaher, Kassab, Alain, University of Central Florida
-
Abstract / Description
-
Objectives: The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff,...
Show moreObjectives: The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff, and the hood models. Materials and Methods: The ETSDA shape optimization is driven by three computational objects: a localized collocation meshless method (LCMM) solver, an automated geometry pre-processor, and a genetic-algorithm-based optimizer. The usage of the LCMM solver is very convenient to set an autonomous optimization mechanism for the ETSDA models. The task of the automated pre-processor is to randomly distribute solution points in the ETSDA geometries. The task of the optimized is the adjust the ETSDA geometries based on mitigation of the abnormal hemodynamics parameters. Results: The results reported in this dissertation entail the stabilization and validation of the LCMM solver in addition to the shape optimization of the considered ETSDA models. The LCMM stabilization results consists validating a custom-designed upwinding scheme on different one-dimensional and two-dimensional test cases. The LCMM validation is done for incompressible steady and unsteady flow applications in the ETSDA models. The ETSDA shape optimization include single-objective optimization results in steady flow situations and bi-objective optimization results in pulsatile flow situations. Conclusions: The LCMM solver provides verifiably accurate resolution of hemodynamics and is demonstrated to be third order accurate in a comparison to a benchmark analytical solution of the Navier-Stokes. The genetic-algorithm-based shape optimization approach proved to be very effective for the conventional and Miller cuff ETSDA models. The shape optimization results for those two models definitely suggest that the graft caliber should be maximized whereas the anastomotic angle and the cuff height (in the Miller cuff model) should be chosen following a compromise between the wall shear stress spatial and temporal gradients. The shape optimization of the hood ETSDA model did not prove to be advantageous, however it could be meaningful with the inclusion of the suture line cut length as an optimization parameter.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002165, ucf:47927
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002165
-
-
Title
-
DESIGN, ANALYSIS, AND OPTIMIZATION OF DIFFRACTIVE OPTICAL ELEMENTS UNDER HIGH NUMERICAL APERTURE FOCUSING.
-
Creator
-
Jabbour, Toufic, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
The demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical...
Show moreThe demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical lithography, microscopy and direct laser writing are but a few of the many applications in which a properly designed DOE can significantly improve optical performance of the system. Designing DOEs for use in high-NA applications is complicated by electric field depolarization that occurs with tight focusing. The linear polarization of off-axis rays is tilted upon refraction towards the focal point, generating additional transverse and longitudinal polarization components. These additional field components contribute significantly to the shape of the PSF under tight focusing and cannot be neglected as in scalar diffraction theory. The PSF can be modeled more rigorously using the electromagnetic diffraction integrals derived by Wolf, which account for the full vector character of the field. In this work, optimization algorithms based on vector diffraction theory were developed for designing DOEs that reshape the PSF of a 1.4-NA objective lens. The optimization techniques include simple exhaustive search, iterative optimization (Method of Generalized Projections), and evolutionary computation (Particle Swarm Optimization). DOE designs were obtained that can reshape either the transverse PSF or the irradiance distribution along the optical axis. In one example of transverse beam shaping, all polarization components were simultaneously reshaped so their vector addition generates a focused flat-top square irradiance pattern. Other designs were obtained that can be used to narrow the axial irradiance distribution, giving a focused beam that is superresolved relative to the diffraction limit. In addition to theory, experimental studies were undertaken that include (1) fabricating an axially superresolving DOE, (2) incorporating the DOE into the optical setup, (3) imaging the focused PSF, and (4) measuring aberrations in the objective lens to study how these affect performance of the DOE.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002844, ucf:48063
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002844
-
-
Title
-
Printable Carbon Nanotube Based Multifunctional Nanocomposites for Strain Sensing and Self-heating.
-
Creator
-
Wang, Xin, Gou, Jihua, Challapalli, Suryanarayana, Xu, Yunjun, University of Central Florida
-
Abstract / Description
-
The unique properties of carbon nanotubes (CNTs) represent a potential for developing a piezo-resistive strain sensor and a resistive heating sheet with a smart structure. Conventional fabrication techniques of CNT based nanocomposites such as molding, casting or spray coating lack the ability to control the geometry and properties of fabricated composites. In order to meet the various requirements of strain sensing or self-heating applications, nanocomposites with complex geometry and...
Show moreThe unique properties of carbon nanotubes (CNTs) represent a potential for developing a piezo-resistive strain sensor and a resistive heating sheet with a smart structure. Conventional fabrication techniques of CNT based nanocomposites such as molding, casting or spray coating lack the ability to control the geometry and properties of fabricated composites. In order to meet the various requirements of strain sensing or self-heating applications, nanocomposites with complex geometry and controllable properties are in high demand. Digital printing technique is able to fabricate CNT films with precisely controlled geometry with the help of computer aided design, and their properties could also be controlled by adjusting the printing parameters. The objective of this study is to investigate the printing-structure-property relationship of CNT based multifunctional nanocomposites fabricated by digitally controlled spray deposition process for strain sensing and self-heating. A spray deposition modeling (SDM) printer that uses a 12-array inkjet nozzle attached to an x-y plotter was developed for the fabrication of CNT layers. Most of previously-reported CNT based nanocomposite strain sensors only have limited stretchability and sensitivity for measuring diverse human motions. Additionally, strain sensors fabricated by traditional techniques are only capable of measuring strain in a single direction, but for monitoring human motion with complicated strain condition, strain sensors that can measure strain from multi-direction are favorable. In this dissertation, highly stretchable (in excess of 45% strain) and sensitive (gauge factor of 35.75) strain sensors with tunable strain gauge factors were fabricated by incorporating CNT layers into polymer substrate using SDM printing technique. The cyclic loading-unloading test results revealed that the composite strain sensors exhibited excellent long-term durability. Due to the flexibility of the printing technique, rosette-typed sensors were fabricated to monitor complicated human motions. These superior sensing capabilities of the fabricated nanocomposites offer potential applications in wearable strain sensors. Resistive heating properties of CNT based nanocomposites were also investigated. The electrically resistive heating of these composites can be a desirable stimulus to activate the shape memory effect of polymer matrix. CNT based nanocomposites fabricated by traditional techniques showed a slow heating rate and same shape recovery ratio at different locations in nanocomposites. However, from the practical applications like smart skin or smart tooling perspective, programmable shape recovery ratio at specified locations are desirable. In this dissertation, the CNT based nanocomposites with a fast heating rate and controllable maximum surface temperature were fabricated using SDM technique. The study on the shape memory effect of nanocomposites showed that their shape recoverability was approximately 100% taking 30s under a low voltage of 40V. It is worth noting that through programming the number of printed CNT layers at different locations, the shape recovery rate could be controlled and localized actuation with the desired recovery ratio was achieved. The high efficiency of heating coupling with wide adjustability of surface temperature and shape recovery ratio at specified locations make the fabricated nanocomposites a promising candidate for electrical actuation applications.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006819, ucf:52892
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006819
-
-
Title
-
Holographic optical elements for visible light applications in photo-thermo-refractive glass.
-
Creator
-
Kompan, Fedor, Glebov, Leonid, Schulzgen, Axel, Richardson, Kathleen, Rahman, Talat, University of Central Florida
-
Abstract / Description
-
This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation...
Show moreThis dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR glass with visible radiation. The mechanism of photoionization in this case is based on an excited state absorption upconversion process in the glass when doped with Tb3+. By contrast, the second approach uses the original Ce3+ doped PTR glass and introduces a new modified technique for hologram formation that allows for holographic recording with visible light. Complex HOEs including holographic lenses and holographic curved mirrors were fabricated in PTR glass with visible light using both techniques. The third part of the dissertation takes a step in a different direction and discusses the development of the methods for fabrication of phase masks in PTR glass. A method for relatively straightforward and inexpensive fabrication of phase masks with the aid of a Digital Micromirror Device is presented. This method enabled to produce phase masks containing complex greyscale phase distributions for generation of vortex (helical) beams. A phase mask can be holographically encoded into a transmission Bragg grating where a holographic phase mask (HPM) is formed. HPM has an advantage over a regular phase mask of being capable of multi-wavelength operation. All optical elements recorded in PTR glass preserve the advantages peculiar to VBGs recorded in PTR glass such as stability to heating and illumination with high-power laser beams.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007665, ucf:52480
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007665
-
-
Title
-
Shape Recovery Behavior of Carbon Nanopaper Shape Memory Polymer Composite.
-
Creator
-
Ozdemir, Veli Bugra, Kwok, Kawai, Gou, Jihua, Ghosh, Ranajay, University of Central Florida
-
Abstract / Description
-
This thesis presents analytical, experimental and modeling studies of the shape recovery behavior of electrically activated Carbon Nanopaper (CNP) Shape Memory Polymer (SMP)composite. The composite structure studied consists of a CNP layer sandwiched by two SMP layers where the CNP layer acts as a ?exible electrical heater when a voltage difference is applied. The behavior of CNP/SMP composite presents a coupled electrical - thermal - structural problem. The governing equations for the...
Show moreThis thesis presents analytical, experimental and modeling studies of the shape recovery behavior of electrically activated Carbon Nanopaper (CNP) Shape Memory Polymer (SMP)composite. The composite structure studied consists of a CNP layer sandwiched by two SMP layers where the CNP layer acts as a ?exible electrical heater when a voltage difference is applied. The behavior of CNP/SMP composite presents a coupled electrical - thermal - structural problem. The governing equations for the multiphysics behavior are derived. Derived parameters as a result of multiphysics analysis and effects of these parameters on the shape recovery behavior are investigated. The mechanical properties of the carbon nanopaper and viscoelastic properties of the shape memory polymer are characterized. A nonlinear, fully coupled electrical -thermal-structural ?nite element model is developed, and shape recovery experiments are carried out to validate multiphysics analysis and ?nite element model of the shape recovery of the CNP/SMP composite. Finite element model captures the general behavior of shape recovery, but overpredicts shape ?xity and shape recovery rate.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007700, ucf:52417
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007700
-
-
Title
-
Vision-Based Testbeds for Control System Applicaitons.
-
Creator
-
Sivilli, Robert, Xu, Yunjun, Gou, Jihua, Cho, Hyoung, Pham, Khanh, University of Central Florida
-
Abstract / Description
-
In the field of control systems, testbeds are a pivotal step in the validation and improvement of new algorithms for different applications. They provide a safe, controlled environment typically having a significantly lower cost of failure than the final application. Vision systems provide nonintrusive methods of measurement that can be easily implemented for various setups and applications. This work presents methods for modeling, removing distortion, calibrating, and rectifying single and...
Show moreIn the field of control systems, testbeds are a pivotal step in the validation and improvement of new algorithms for different applications. They provide a safe, controlled environment typically having a significantly lower cost of failure than the final application. Vision systems provide nonintrusive methods of measurement that can be easily implemented for various setups and applications. This work presents methods for modeling, removing distortion, calibrating, and rectifying single and two camera systems, as well as, two very different applications of vision-based control system testbeds: deflection control of shape memory polymers and trajectory planning for mobile robots. First, a testbed for the modeling and control of shape memory polymers (SMP) is designed. Red-green-blue (RGB) thresholding is used to assist in the webcam-based, 3D reconstruction of points of interest. A PID based controller is designed and shown to work with SMP samples, while state space models were identified from step input responses. Models were used to develop a linear quadratic regulator that is shown to work in simulation. Also, a simple to use graphical interface is designed for fast and simple testing of a series of samples. Second, a robot testbed is designed to test new trajectory planning algorithms. A template-based predictive search algorithm is investigated to process the images obtained through a low-cost webcam vision system, which is used to monitor the testbed environment. Also a user-friendly graphical interface is developed such that the functionalities of the webcam, robots, and optimizations are automated. The testbeds are used to demonstrate a wavefront-enhanced, B-spline augmented virtual motion camouflage algorithm for single or multiple robots to navigate through an obstacle dense and changing environment, while considering inter-vehicle conflicts, obstacle avoidance, nonlinear dynamics, and different constraints. In addition, it is expected that this testbed can be used to test different vehicle motion planning and control algorithms.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004601, ucf:49187
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004601
-
-
Title
-
Phonon Modulation by Polarized Lasers for Material Modification.
-
Creator
-
Chen, Sen-Yong, Kar, Aravinda, Vaidyanathan, Rajan, Harvey, James, Likamwa, Patrick, University of Central Florida
-
Abstract / Description
-
Magnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts,...
Show moreMagnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts, such as determining preferred MRI parameters, modifying magnetic field distribution, designing new structure and exploring new materials, have been made to reduce the induction heating. Improving the MRI-compatibility of implanted metallic devices by modifying the properties of the existing materials would be valuable.To evaluate the temperature rise due to RF induction heating on a metallic implant during MRI procedure, an electromagnetic model and thermal model are studied. The models consider the shape of RF magnetic pulses, interaction of RF pulses with metal plate, thermal conduction inside the metal and the convection at the interface between the metal and the surroundings. Transient temperature variation and effects of heat transfer coefficient, reflectivity and MRI settings on the temperature change are studied.Laser diffusion is applied to some titanium sheets for a preliminary study. An electromagnetic and thermal model is developed to choose the proper diffusant. Pt is the diffusant in this study. An electromagnetic model is also developed based on the principles of inverse problems to calculate the electromagnetic properties of the metals from the measured magnetic transmittance. This model is used to determine the reflectivity, dielectric constant and conductivity of treated and as-received Ti sheets. The treated Ti sheets show higher conductivity than the as-received Ti sheets, resulting higher reflectivity.A beam shaping lens system which is designed based on vector diffraction theory is used in laser diffusion. Designing beam shaping lens based on the vector diffraction theory offers improved irradiance profile and new applications such as polarized beam shaping because the polarization nature of laser beams is considered. Laser Pt diffusion are applied on the titanium and tantalum substrates using different laser beam polarizations. The concentration of Pt and oxygen in those substrates are measured using Energy Dispersive X-Ray Spectroscopy (EDS). The magnetic transmittance and conductivity of those substrates are measured as well. The effects of laser beam polarizations on Pt diffusion and the magnetic transmittance and conductivity of those substrates are studied. Treated Ti sheets show lower magnetic transmittance due to the increased conductivity from diffused Pt atoms. On the other hand, treated Ta sheets show higher magnetic transmittance due to reduced conductivity from oxidation. Linearly polarized light can enhance the Pt diffusion because of the excitation of local vibration mode of atoms.Laser Pt diffusion and thermo-treatment were applied on the Ta and MP35N wires. The Pt concentration in laser platinized Ta and MP35N wires was determined using EDS. The ultimate tensile strength, fatigue lives and lead tip heating in real MRI environment of those wires were measured. The lead tip hating of the platinized Ta wires is 42 % less than the as-received Ta wire. The diffused Pt increases the conductivity of Ta wires, resulting in more reflection of magnetic field. In the case of the platinized MP35N wire, the reduction in lead tip heating was only 1 (&)deg;C due to low concentration of Pt. The weaker ultimate tensile strength and shorter fatigue lives of laser-treated Ta and MP35N wires may attribute to the oxidation and heating treatment.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004500, ucf:49269
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004500
-
-
Title
-
FREEFORM REFLECTOR DESIGN WITH EXTENDED SOURCES.
-
Creator
-
Fournier, Florian, Rolland, Jannick, University of Central Florida
-
Abstract / Description
-
Reflector design stemmed from the need to shape the light emitted by candles or lamps. Over 2,000 years ago people realized that a mirror shaped as a parabola can concentrate light, and thus significantly boosts its intensity, to the point where objects can be set afire. Nowadays many applications require an accurate control of light, such as automotive headlights, streetlights, projection displays, and medical illuminators. In all cases light emitted from a light source can be shaped into a...
Show moreReflector design stemmed from the need to shape the light emitted by candles or lamps. Over 2,000 years ago people realized that a mirror shaped as a parabola can concentrate light, and thus significantly boosts its intensity, to the point where objects can be set afire. Nowadays many applications require an accurate control of light, such as automotive headlights, streetlights, projection displays, and medical illuminators. In all cases light emitted from a light source can be shaped into a desired target distribution with a reflective surface. Design methods for systems with rotational and translational symmetry were devised in the 1930s. However, the freeform reflector shapes required to illuminate targets with no such symmetries proved to be much more challenging to design. Even when the source is assumed to be a point, the reflector shape is governed by a set of second-order partial non-linear differential equations that cannot be solved with standard numerical integration techniques. An iterative approach to solve the problem for a discrete target, known as the method of supporting ellipsoids, was recently proposed by Oliker. In this research we report several efficient implementations of the method of supporting ellipsoids, based on the point source approximation, and we propose new reflector design techniques that take into account the extent of the source. More specifically, this work has led to three major achievements. First, a thorough analysis of the method of supporting ellipsoids was performed that resulted in two alternative implementations of the algorithm, which enable a fast generation of freeform reflector shapes within the point source approximation. We tailored the algorithm in order to provide control over the parameters of interest to the designers, such as the reflector scale and geometry. Second, the shape generation algorithm was used to analyze how source flux can be mapped onto the target. We derived the condition under which a given source-target mapping can be achieved with a smooth continuous surface, referred as the integrability condition. We proposed a method to derive mappings that satisfy the integrability condition. We then use these mappings to quickly generate reflector shapes that create continuous target distributions as opposed to reflectors generated with the method of supporting ellipsoids that create discrete sets of points on the target. We also show how mappings that do not satisfy the integrability condition can be achieved by introducing step discontinuities in the reflector surface. Third, we investigated two methods to design reflectors with extended sources. The first method uses a compensation approach where the prescribed target distribution is adjusted iteratively. This method is effective for compact sources and systems with rotational or translational symmetry. The second method tiles the source images created by a reflector designed with the method of supporting ellipsoids and then blends the source images together using scattering in order to obtain a continuous target distribution. This latter method is effective for freeform reflectors and target distributions with no sharp variations. Finally, several case studies illustrate how these methods can be successfully applied to design reflectors for general illumination applications such as street lighting or luminaires. We show that the proposed design methods can ease the design of freeform reflectors and provide efficient, cost-effective solutions that avoid unnecessary energy consumption and light pollution.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003311, ucf:48508
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003311
-
-
Title
-
Multi-axial Thermomechanical Characterization of Shape Memory Alloys for Improved Stability.
-
Creator
-
Nicholson, Douglas, Vaidyanathan, Raj, Kumar, Ranganathan, Chen, Ruey-Hung, University of Central Florida
-
Abstract / Description
-
Shape recovery in shape memory alloys (SMAs) occurs against external stress by means of a reversible thermoelastic solid state phase transformation typically between so-called austenite, martensite and R-phases. The ability to do work enables their use as high-force actuators in automotive and aerospace applications while superelastic NiTi is of interest in biomedical devices such as stents. Both R-phase and martensite can detwin, reorient and undergo a thermal or stress induced...
Show moreShape recovery in shape memory alloys (SMAs) occurs against external stress by means of a reversible thermoelastic solid state phase transformation typically between so-called austenite, martensite and R-phases. The ability to do work enables their use as high-force actuators in automotive and aerospace applications while superelastic NiTi is of interest in biomedical devices such as stents. Both R-phase and martensite can detwin, reorient and undergo a thermal or stress induced transformation. For these reasons, it is difficult from ordinary macroscopic measurements to decouple elastic and inelastic contributions (from their respective phases) from the overall deformation. In situ neutron diffraction is ideally suited to probing these microstructural and micromechanical changes while they occur under external stress fields. Despite SMAs typically operating under multi-axial stress states in applications, most previous in situ neutron diffraction based investigations on SMAs have been limited to homogenous stress states as a result of uniaxial loading. The current investigation spatially maps thermoelastic deformation mechanisms during heating and uniaxial/torsional loading of shape memory and superelastic NiTi by recourse to in situ neutron diffraction, performed at Oak Ridge and Los Alamos National Laboratories. SMA spring actuators were also used to experimentally validate the ability of a recently developed model to predict the evolutionary deformation response under multi-axial loading conditions.By recourse to in situ neutron diffraction, martensite variants were tracked during isothermal, isobaric, and isostrain loading in shape memory NiTi. Results show variants were equivalent for the corresponding strain and more importantly, the reversibility and equivalency was immediately evident in variants that were first selected isobarically but then reoriented to a near random self-accommodated structure by isothermal deformation. Variants selected isothermally were not significantly affected by a subsequent thermal cycle under constant strain. During uniaxial/torsional loading and heating, thermoelastic deformation mechanisms in non-uniform states of stress in superelastic NiTi were spatially mapped. The preferred selection of R-phase variants by reorientation and detwinning processes were equivalent for the corresponding strain (in tension and compression) and was reversed by isothermal loading. The variants selected were consistent between uniaxial and torsional loading when the principal stress directions of the stress state were considered (for the crystallographic directions considered here). The similarity in general behavior between uniaxial and torsional loading, in spite of the implicit heterogeneous stress state associated with torsional loading, pointed to the ability of the reversible thermoelastic transformation to accommodate both stress and strain mismatch associated with deformation.Overall, various thermomechanical combinations of heating and loading sequences yielded the same final texture (preferred selection of variants), which highlighted the ability to take different paths yet still obtain the desired response while minimizing irrecoverable deformation mechanisms. These paths have implications for minimizing the number of cycles required to train an SMA, which limits the amount of work required for stabilizing their evolutionary response thereby increasing the fatigue life and overall durability of the SMA. This finding is valuable to the aerospace and medical device industries where SMAs find current application.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006952, ucf:51676
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006952
-
-
Title
-
Dynamic feedback pulse shaping for high power chirped pulse amplification system.
-
Creator
-
Nguyen, Dat, Delfyett, Peter, Rahman, Talat, Richardson, Martin, Schulzgen, Axel, Li, Guifang, University of Central Florida
-
Abstract / Description
-
The topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic...
Show moreThe topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic pulse shaping approaches. The experimental research addresses the topic of parabolic pulse generation in two distinct ways. First, pulse shaping technique involving a time domain approach is presented, that results in stretched pulses with parabolic profiles with temporal duration of 15 ns. After pulse is shaped into a parabolic intensity profile, the pulse is compressed with DCF fiber spool by 100 times to 80 ps duration at FWHM. A different approach of pulse shaping in frequency domain is performed, in which a spectral processor based on Liquid Crystal on Silicon technology is used. The pulse is stretched to 1.5 ns before intensity mask is applied, resulting in a parabolic intensity profile. Due to frequency to time mapping, its temporal profile is also parabolic. After pulse shaping, the pulse is compressed with a bulk compressor, and subsequently analyzed with a Frequency Resolved Optical Gating (FROG). The spectral content of the compressed pulse is feedback to the spectral processor and used to adjust the spectral phase mask applied on the pulse. The resultant pulse after pulse shaping with feedback mechanism is a Fourier transform, sub-picosecond ultrashort pulse with 5 times increase in peak power.The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Specification and characterization of major components of equipment and devices used in the experiment are present. The description of Matlab algorithms that was used to calculate required signals for pulse shaping are shown. A brief description of the Labview code used to control the spectral processor will also be illustrated.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004899, ucf:49642
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004899
-
-
Title
-
Injection-Locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation.
-
Creator
-
Bhooplapur, Sharad, Delfyett, Peter, Li, Guifang, Christodoulides, Demetrios, Malocha, Donald, University of Central Florida
-
Abstract / Description
-
Complex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse?shaping, with the goal of making non?periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance...
Show moreComplex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse?shaping, with the goal of making non?periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance of LADAR systems, high?capacity optical telecommunications and ultra wideband signals processing.In this work, an array of Vertical Cavity Surface Emitting Lasers (VCSELs) are used as modulators, by injection-locking each VCSEL to an individual combline from an optical frequency comb source. Injection-locking ensures that the VCSELs' emission is phase coherent with the input combline, and modulating its current modulates mainly the output optical phase. The multi-GHz modulation bandwidth of VCSELs updates the output optical pulse shape on a pulse-to-pulse time scale, which is an important step towards true OAWG. In comparison, it is about a million times faster than the liquid-crystal modulator arrays typically used for pulse shaping! Novel components and subsystems of Optical Arbitrary Waveform Generation (OAWG) are developed and demonstrated in this work. They include:1.Modulators An array of VCSELs is packaged and characterized for use as a modulator for rapid?update pulse?shaping at GHz rates. The amplitude and phase modulation characteristics of an injection?locked VCSEL are simultaneously measured at GHz modulation rates.2.Optical Frequency Comb SourcesAn actively mode?locked semiconductor laser was assembled, with a 12.5 GHz repetition rate, ~ 200 individually resolvable comblines directly out of the laser, and high frequency stability. In addition, optical frequency comb sources are generated by modulation of a single frequency laser.3.High-resolution optical spectral demultiplexersThe demultiplexers are implemented using bulk optics, and are used to spatially resolve individual optical comblines onto the modulator array. 4.Optical waveform measurement techniques Several techniques are used to measure generated waveforms, especially for spectral phase measurements, including multi-heterodyne phase retrieval. In addition, an architecture for discriminating between ultrashort encoded optical pulses with record high sensitivity is demonstrated.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005466, ucf:50402
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005466
-
-
Title
-
COMMISSIONING OF AN ARC-MELTING / VACUUM QUENCH FURNACE FACILITY FOR FABRICATION OF NI-TI-FE SHAPE MEMORY ALLOYS, AND THEIR CHARACTERIZATION.
-
Creator
-
Singh, Jagat, Vaidyanathan, Raj, University of Central Florida
-
Abstract / Description
-
Shape memory alloys when deformed can produce strains as high as 8%. Heating results in a phase transformation and associated recovery of all the accumulated strain, a phenomenon known as shape memory. This strain recovery can occur against large forces, resulting in their use as actuators. The goal of this project is to lower the operating temperature range of shape memory alloys in order for them to be used in cryogenic switches, seals, valves, fluid-line repair and self-healing gaskets for...
Show moreShape memory alloys when deformed can produce strains as high as 8%. Heating results in a phase transformation and associated recovery of all the accumulated strain, a phenomenon known as shape memory. This strain recovery can occur against large forces, resulting in their use as actuators. The goal of this project is to lower the operating temperature range of shape memory alloys in order for them to be used in cryogenic switches, seals, valves, fluid-line repair and self-healing gaskets for space related technologies. The Ni-Ti-Fe alloy system, previously used in Grumman F-14 aircrafts and activated at 120 K, is further developed through arc-melting a range of compositions and subsequent thermo-mechanical processing. A controlled atmosphere arc-melting facility and vertical vacuum quench furnace facility was commissioned to fabricate these alloys. The facility can create a vacuum of 10-7 Torr and heat treat samples up to 977 °C. High purity powders of Ni, Ti and Fe in varying ratios were mixed and arc-melted into small buttons weighing 0.010 kg to 0.025 kg. The alloys were subjected to solutionizing and aging treatments. A combination of rolling, electro-discharge machining and low-speed cutting techniques were used to produce strips. Successful rolling experiments highlighted the workability of these alloys. The shape memory effect was successfully demonstrated at liquid nitrogen temperatures through a constrained recovery experiment that generated stresses of over 40 MPa. Differential scanning calorimetry (DSC) and a dilatometry setup was used to characterize the fabricated materials and determine relationships between composition, thermo-mechanical processing parameters and transformation temperatures.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000308, ucf:46320
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000308
-
-
Title
-
Masquerading Techniques in IEEE 802.11 Wireless Local Area Networks.
-
Creator
-
Nakhila, Omar, Zou, Changchun, Turgut, Damla, Bassiouni, Mostafa, Chatterjee, Mainak, Wang, Chung-Ching, University of Central Florida
-
Abstract / Description
-
The airborne nature of wireless transmission offers a potential target for attackers to compromise IEEE 802.11 Wireless Local Area Network (WLAN). In this dissertation, we explore the current WLAN security threats and their corresponding defense solutions. In our study, we divide WLAN vulnerabilities into two aspects, client, and administrator. The client-side vulnerability investigation is based on examining the Evil Twin Attack (ETA) while our administrator side research targets Wi-Fi...
Show moreThe airborne nature of wireless transmission offers a potential target for attackers to compromise IEEE 802.11 Wireless Local Area Network (WLAN). In this dissertation, we explore the current WLAN security threats and their corresponding defense solutions. In our study, we divide WLAN vulnerabilities into two aspects, client, and administrator. The client-side vulnerability investigation is based on examining the Evil Twin Attack (ETA) while our administrator side research targets Wi-Fi Protected Access II (WPA2). Three novel techniques have been presented to detect ETA. The detection methods are based on (1) creating a secure connection to a remote server to detect the change of gateway's public IP address by switching from one Access Point (AP) to another. (2) Monitoring multiple Wi-Fi channels in a random order looking for specific data packets sent by the remote server. (3) Merging the previous solutions into one universal ETA detection method using Virtual Wireless Clients (VWCs). On the other hand, we present a new vulnerability that allows an attacker to force the victim's smartphone to consume data through the cellular network by starting the data download on the victim's cell phone without the victim's permission. A new scheme has been developed to speed up the active dictionary attack intensity on WPA2 based on two novel ideas. First, the scheme connects multiple VWCs to the AP at the same time-each VWC has its own spoofed MAC address. Second, each of the VWCs could try many passphrases using single wireless session. Furthermore, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple VWCs to access the WLAN. The combination of the individual bandwidth of each VWC results in an increase of the total bandwidth gained by the attacker. All proposal techniques have been implemented and evaluated in real-life scenarios.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007063, ucf:51979
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007063
-
-
Title
-
Thermomechanical Behavior of High-Temperature Shape Memory Alloy NiTiPdPt Actuators.
-
Creator
-
Nicholson, Douglas, Vaidyanathan, Rajan, Kumar, Ranganathan, Chen, Ruey-Hung, University of Central Florida
-
Abstract / Description
-
To date the commercial use of shape memory alloys (SMAs) has been mostly limited to binary NiTi alloys with transformation temperatures approximately in the -100 to 100 (&)#186;C range. In an ongoing effort to develop high-temperature shape memory alloys (HTSMAs), ternary and quaternary additions are being made to binary NiTi to form NiTi-X (e.g., X: Pd, Pt, Au and Hf) alloys. Stability and repeatability can be further increased at these higher temperatures by limiting the stress, but the...
Show moreTo date the commercial use of shape memory alloys (SMAs) has been mostly limited to binary NiTi alloys with transformation temperatures approximately in the -100 to 100 (&)#186;C range. In an ongoing effort to develop high-temperature shape memory alloys (HTSMAs), ternary and quaternary additions are being made to binary NiTi to form NiTi-X (e.g., X: Pd, Pt, Au and Hf) alloys. Stability and repeatability can be further increased at these higher temperatures by limiting the stress, but the tradeoff is reduced work output and stroke. However, HTSMAs operating at decreased stresses can still be used effectively in actuator applications that require large strokes when used in the form of springs. The overall objective of this work is to facilitate the development of HTSMAs for use as high-force actuators in active/adaptive aerospace structures.A modular test setup was assembled with the objective of acquiring stroke, stress, temperature and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were evaluated under both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Recognizing that evolution in the material microstructure results in changes in geometry and vice versa in HTSMA springs, the objective of the present study also included assessing the contributions from the material microstructural evolution, by eliminating contributions from changes in geometry, to overall HTSMA spring performance. The finite element method (FEM) was used to support the analytical analyses and provided further insight into the behavior and heterogeneous stress states that exist in these spring actuators.Furthermore, with the goal of improving dimensional stability there is a need to better understand the microstructural evolution in HTSMAs that contributes to irrecoverable strains. Towards this goal, available Ni29.5Ti50.5Pd20 neutron diffraction data (from a comparable HTMSA alloy without the solid solution strengthening offered by the Pt addition) were analyzed. The data was obtained from in situ neutron diffraction experiments performed on Ni29.5Ti50.5Pd20 during compressive loading while heating/cooling, using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory. Specifically, in this work emphasis was placed on neutron diffraction data analysis via Rietveld refinement and capturing the texture evolution through inverse pole figures. Such analyses provided quantitative information on the evolution of lattice strain, phase volume fraction (including retained martensite that exists above the austenite finish temperature) and texture (martensite variant reorientation and detwinning) under temperature and stress. Financial support for this work from NASA's Fundamental Aeronautics Program Supersonics Project (NNX08AB51A), Subsonic Fixed Wing Program (NNX11AI57A) and the Florida Center for Advanced Aero-Propulsion (FCAAP) is gratefully acknowledged. It benefited additionally from the use of the Lujan Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Office of Basic Energy Sciences (Department of Energy) and is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004147, ucf:49059
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004147
-
-
Title
-
A study of Compressive Sensing for application to Structural Health Monitoring.
-
Creator
-
Ganesan, Vaahini, Das, Tuhin, Kauffman, Jeffrey, Raghavan, Seetha, University of Central Florida
-
Abstract / Description
-
One of the key areas that have attracted attention in the construction industry today is Structural Health Monitoring, more commonly known as SHM. It is a concept developed to monitor the quality and longevity of various engineering structures. The incorporation of such a system would help to continuously track health of the structure, indicate the occurrence/presence of any damage in real time and give us an idea of the number of useful years for the same. Being a recently conceived idea,...
Show moreOne of the key areas that have attracted attention in the construction industry today is Structural Health Monitoring, more commonly known as SHM. It is a concept developed to monitor the quality and longevity of various engineering structures. The incorporation of such a system would help to continuously track health of the structure, indicate the occurrence/presence of any damage in real time and give us an idea of the number of useful years for the same. Being a recently conceived idea, the state of the art technique in the field is straight forward - populating a given structure with sensors and extracting information from them. In this regard, instrumenting with too many sensors may be inefficient as this could lead to superfluous data that is expensive to capture and process.This research aims to explore an alternate SHM technique that optimizes the data acquisition process by eliminating the amount of redundant data that is sensed and uses this sufficient data to detect and locate the fault present in the structure. Efficient data acquisition requires a mechanism that senses just the necessary amount of data for detection and location of fault. For this reason Compressive Sensing (CS) is explored as a plausible idea. CS claims that signals can be reconstructed from what was previously believed to be incomplete information by Shannon's theorem, taking only a small amount of random and linear non - adaptive measurements. As responses of many physical systems contain a finite basis, CS exploits this feature and determines the sparse solution instead of the traditional least - squares type solution. As a first step, CS is demonstrated by successfully recovering the frequency components of a simple sinusoid. Next, the question of how CS compares with the conventional Fourier transform is analyzed. For this, recovery of temporal frequencies and signal reconstruction is performed using the same number of samples for both the approaches and the errors are compared. On the other hand, the FT error is gradually minimized to match that of CS by increasing the number of regularly placed samples. Once the advantages are established, feasibility of using CS to detect damage in a single degree of freedom system is tested under unforced and forced conditions. In the former scenario, damage is indicated when there is a change in natural frequency of vibration of the system after an impact. In the latter, the system is excited harmonically and damage is detected by a change in amplitude of the system's vibration. As systems in real world applications are predominantly multi-DOF, CS is tested on a 2-DOF system excited with a harmonic forcing. Here again, damage detection is achieved by observing the change in the amplitude of vibration of the system. In order to employ CS for detecting either a change in frequency or amplitude of vibration of a structure subjected to realistic forcing conditions, it would be prudent to explore the reconstruction of a signal which contains multiple frequencies. This is accomplished using CS on a chirp signal.Damage detection is clearly a spatio-temporal problem. Hence it is important to additionally explore the extension of CS to spatial reconstruction. For this reason, mode shape reconstruction of a beam with standard boundary conditions is performed and validated with standard/analytical results from literature. As the final step, the operation deflection shapes (ODS) are reconstructed for a simply supported beam using CS to establish that it is indeed a plausible approach for a less expensive SHM. While experimenting with the idea of spatio-temporal domain, the mode shape as well as the ODS of the given beam are examined under two conditions - undamaged and damaged. Damage in the beam is simulated as a decrease in the stiffness coefficient over a certain number of elements. Although the range of modes to be examined heavily depends on the structure in question, literature suggests that for most practical applications, lower modes are more dominant in indicating damage. For ODS on the other hand, damage is indicated by observing the shift in the recovered spatial frequencies and it is confirmed by the reconstructed response.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005334, ucf:50520
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005334
-
-
Title
-
OPTIMIZATION OF ZONAL WAVEFRONT ESTIMATION AND CURVATURE MEASUREMENTS.
-
Creator
-
Zou, Weiyao, Rolland, Jannick, University of Central Florida
-
Abstract / Description
-
Optical testing in adverse environments, ophthalmology and applications where characterization by curvature is leveraged all have a common goal: accurately estimate wavefront shape. This dissertation investigates wavefront sensing techniques as applied to optical testing based on gradient and curvature measurements. Wavefront sensing involves the ability to accurately estimate shape over any aperture geometry, which requires establishing a sampling grid and estimation scheme, quantifying...
Show moreOptical testing in adverse environments, ophthalmology and applications where characterization by curvature is leveraged all have a common goal: accurately estimate wavefront shape. This dissertation investigates wavefront sensing techniques as applied to optical testing based on gradient and curvature measurements. Wavefront sensing involves the ability to accurately estimate shape over any aperture geometry, which requires establishing a sampling grid and estimation scheme, quantifying estimation errors caused by measurement noise propagation, and designing an instrument with sufficient accuracy and sensitivity for the application. Starting with gradient-based wavefront sensing, a zonal least-squares wavefront estimation algorithm for any irregular pupil shape and size is presented, for which the normal matrix equation sets share a pre-defined matrix. A GerchbergSaxton iterative method is employed to reduce the deviation errors in the estimated wavefront caused by the pre-defined matrix across discontinuous boundary. The results show that the RMS deviation error of the estimated wavefront from the original wavefront can be less than λ/130~ λ/150 (for λ equals 632.8nm) after about twelve iterations and less than λ/100 after as few as four iterations. The presented approach to handling irregular pupil shapes applies equally well to wavefront estimation from curvature data. A defining characteristic for a wavefront estimation algorithm is its error propagation behavior. The error propagation coefficient can be formulated as a function of the eigenvalues of the wavefront estimation-related matrices, and such functions are established for each of the basic estimation geometries (i.e. Fried, Hudgin and Southwell) with a serial numbering scheme, where a square sampling grid array is sequentially indexed row by row. The results show that with the wavefront piston-value fixed, the odd-number grid sizes yield lower error propagation than the even-number grid sizes for all geometries. The Fried geometry either allows sub-sized wavefront estimations within the testing domain or yields a two-rank deficient estimation matrix over the full aperture; but the latter usually suffers from high error propagation and the waffle mode problem. Hudgin geometry offers an error propagator between those of the Southwell and the Fried geometries. For both wavefront gradient-based and wavefront difference-based estimations, the Southwell geometry is shown to offer the lowest error propagation with the minimum-norm least-squares solution. Noll's theoretical result, which was extensively used as a reference in the previous literature for error propagation estimate, corresponds to the Southwell geometry with an odd-number grid size. For curvature-based wavefront sensing, a concept for a differential Shack-Hartmann (DSH) curvature sensor is proposed. This curvature sensor is derived from the basic Shack-Hartmann sensor with the collimated beam split into three output channels, along each of which a lenslet array is located. Three Hartmann grid arrays are generated by three lenslet arrays. Two of the lenslets shear in two perpendicular directions relative to the third one. By quantitatively comparing the Shack-Hartmann grid coordinates of the three channels, the differentials of the wavefront slope at each Shack-Hartmann grid point can be obtained, so the Laplacian curvatures and twist terms will be available. The acquisition of the twist terms using a Hartmann-based sensor allows us to uniquely determine the principal curvatures and directions more accurately than prior methods. Measurement of local curvatures as opposed to slopes is unique because curvature is intrinsic to the wavefront under test, and it is an absolute as opposed to a relative measurement. A zonal least-squares-based wavefront estimation algorithm was developed to estimate the wavefront shape from the Laplacian curvature data, and validated. An implementation of the DSH curvature sensor is proposed and an experimental system for this implementation was initiated. The DSH curvature sensor shares the important features of both the Shack-Hartmann slope sensor and Roddier's curvature sensor. It is a two-dimensional parallel curvature sensor. Because it is a curvature sensor, it provides absolute measurements which are thus insensitive to vibrations, tip/tilts, and whole body movements. Because it is a two-dimensional sensor, it does not suffer from other sources of errors, such as scanning noise. Combined with sufficient sampling and a zonal wavefront estimation algorithm, both low and mid frequencies of the wavefront may be recovered. Notice that the DSH curvature sensor operates at the pupil of the system under test, therefore the difficulty associated with operation close to the caustic zone is avoided. Finally, the DSH-curvature-sensor-based wavefront estimation does not suffer from the 2-ambiguity problem, so potentially both small and large aberrations may be measured.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001566, ucf:47145
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001566
-
-
Title
-
THERMAL MANAGEMENT, BEAM CONTROL,AND PACKAGING DESIGNS FOR HIGH POWER DIODE LASER ARRAYS AND PUMP CAVITY DESIGNS FOR DIODE LASER ARRAY PUMPED ROD SHAPED LASERS.
-
Creator
-
Chung, Te-yuan, Bass, Michael, University of Central Florida
-
Abstract / Description
-
Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time....
Show moreSeveral novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000259, ucf:46222
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000259
-
-
Title
-
INVESTIGATION OF THERMAL, ELASTIC AND LOAD-BIASED TRANSFORMATION STRAINS IN NITI SHAPE MEMORY ALLOYS.
-
Creator
-
Qiu, Shipeng, Vaidyanathan, Raj, University of Central Florida
-
Abstract / Description
-
Polycrystalline NiTi shape memory alloys have the ability to recover their original, pre-deformed shape in the presence of external loads when heated through a solid-solid phase transformation from a lower-symmetry B19' martensite phase to a higher-symmetry B2 austenite phase. The strain associated with a shape memory alloy in an actuator application typically has thermal, elastic and inelastic contributions. The objective of this work was to investigate the aforementioned strains by...
Show morePolycrystalline NiTi shape memory alloys have the ability to recover their original, pre-deformed shape in the presence of external loads when heated through a solid-solid phase transformation from a lower-symmetry B19' martensite phase to a higher-symmetry B2 austenite phase. The strain associated with a shape memory alloy in an actuator application typically has thermal, elastic and inelastic contributions. The objective of this work was to investigate the aforementioned strains by recourse to in situ neutron diffraction experiments during selected combinations of heating, cooling and/or mechanical loading. The primary studies were conducted on polycrystalline Ni49.9Ti50.1 specimens on the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory. Quantitative information on the phase-specific strain, texture and phase fraction evolution was obtained from the neutron data using Rietveld refinement and single-peak analyses, and compared with macroscopic data from extensometry. First, the lattice strain evolution during heating and cooling in an unloaded sample (i.e., free-recovery experiment) was studied. The lattice strain evolution remained linear with temperature and was not influenced by intergranular stresses, enabling the determination of a thermal expansion tensor that quantified the associated anisotropy due to the symmetry of B19' NiTi. The tensor thus determined was subsequently used to obtain an average coefficient of thermal expansion that was consistent with macroscopic dilatometric measurements and a 30,000 grain polycrystalline self-consistent model. The accommodative nature of B19' NiTi was found to account for macroscopic shape changes lagging (with temperature) the start and finish of the transformation. Second, the elastic response of B19' martensitic NiTi variants during monotonic loading was studied. Emphasis was placed on capturing and quantifying the strain anisotropy which arises from the symmetry of monoclinic martensite and internal stresses resulting from intergranular constraints between individual variants and load re-distribution among variants as the texture evolved during variant reorientation and detwinning. The methodology adopted took into account both tensile and compressive loading given the asymmetric response in the texture evolution. Plane specific elastic moduli were determined from neutron measurements and compared with those determined using a self-consistent polycrystalline deformation model and from recently reported elastic stiffness constants determined via ab initio calculations. The comparison among the three approaches further helped understand the influence of elastic anisotropy, intergranular constraint, and texture evolution on the deformation behavior of polycrystalline B19' NiTi. Connections were additionally made between the assessed elastic properties of martensitic NiTi single crystals (i.e., the single crystal stiffness tensor) and the overall macroscopic response in bulk polycrystalline form. Lastly, the role of upper-cycle temperature, i.e., the maximum temperature reached during thermal cycling, was investigated during load-biased thermal cycling of NiTi shape memory alloys at selected combinations of stress and temperature. Results showed that the upper-cycle temperature, under isobaric conditions, significantly affected the amount of transformation strain and thus the work output available for actuation. With the objective of investigating the underlying microstructural and micromechanical changes due to the influence of the upper-cycle temperature, the texture evolution was systematically analyzed. While the changes in transformation strain were closely related to the evolution in texture of the room temperature martensite, retained martensite in the austenite state could additionally affect the transformation strain. Additionally, multiple thermal cycles were performed under load-biased conditions in both NiTi and NiTiPd alloys, to further assess and understand the role of retained martensite. Dimensional and thermal stabilities of these alloys were correlated with the volume fraction and texture of retained martensite, and the internal strain evolution in these alloys. The role of symmetry, i.e., B19' monoclinic martensite vs. B19 orthorhombic martensite in these alloys was also assessed. This work not only established a methodology to study the thermal and elastic properties of the low symmetry B19' monoclinic martensite, but also provided valuable insight into quantitative micromechanical and microstructural changes responsible for the thermomechanical response of NiTi shape memory alloys. It has immediate implications for optimizing shape memory behavior in the alloys investigated, with extension to high temperature shape memory alloys with ternary and quaternary elemental additions, such as Pd, Pt and Hf. This work was supported by funding from NASAÃÂ's Fundamental Aeronautics Program, Supersonics Project (NNX08AB51A) and NSF (CAREER DMR-0239512). It benefited additionally from the use of the Lujan Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Office of Basic Energy Sciences (Department of Energy) and is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003362, ucf:48440
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003362
-
-
Title
-
Ytterbium-doped fiber-seeded thin-disk master oscillator power amplifier laser system.
-
Creator
-
Willis-Ott, Christina, Richardson, Martin, Schulzgen, Axel, Delfyett, Peter, Chow, Louis, University of Central Florida
-
Abstract / Description
-
Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 ?m ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin...
Show moreLasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 ?m ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 ?m respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 ?m laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004961, ucf:49588
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004961
Pages