Current Search: Modeling (x)
Pages
-
-
Title
-
Investigation of infrared thermography for subsurface damage detection of concrete structures.
-
Creator
-
Hiasa, Shuhei, Catbas, Necati, Tatari, Omer, Nam, Boo Hyun, Zaurin, Ricardo, Xanthopoulos, Petros, University of Central Florida
-
Abstract / Description
-
Deterioration of road infrastructure arises from aging and various other factors. Consequently, inspection and maintenance have been a serious worldwide problem. In the United States, degradation of concrete bridge decks is a widespread problem among several bridge components. In order to prevent the impending degradation of bridges, periodic inspection and proper maintenance are indispensable. However, the transportation system faces unprecedented challenges because the number of aging...
Show moreDeterioration of road infrastructure arises from aging and various other factors. Consequently, inspection and maintenance have been a serious worldwide problem. In the United States, degradation of concrete bridge decks is a widespread problem among several bridge components. In order to prevent the impending degradation of bridges, periodic inspection and proper maintenance are indispensable. However, the transportation system faces unprecedented challenges because the number of aging bridges is increasing under limited resources, both in terms of budget and personnel. Therefore, innovative technologies and processes that enable bridge owners to inspect and evaluate bridge conditions more effectively and efficiently with less human and monetary resources are desired. Traditionally, qualified engineers and inspectors implemented hammer sounding and/or chain drag, and visual inspection for concrete bridge deck evaluations, but these methods require substantial field labor, experience, and lane closures for bridge deck inspections. Under these circumstances, Non-Destructive Evaluation (NDE) techniques such as computer vision-based crack detection, impact echo (IE), ground-penetrating radar (GPR) and infrared thermography (IRT) have been developed to inspect and monitor aging and deteriorating structures rapidly and effectively. However, no single method can detect all kinds of defects in concrete structures as well as the traditional inspection combination of visual and sounding inspections; hence, there is still no international standard NDE methods for concrete bridges, although significant progress has been made up to the present.This research presents the potential to reduce a burden of bridge inspections, especially for bridge decks, in place of traditional chain drag and hammer sounding methods by IRT with the combination of computer vision-based technology. However, there were still several challenges and uncertainties in using IRT for bridge inspections. This study revealed those challenges and uncertainties, and explored those solutions, proper methods and ideal conditions for applying IRT in order to enhance the usability, reliability and accuracy of IRT for concrete bridge inspections. Throughout the study, detailed investigations of IRT are presented. Firstly, three different types of infrared (IR) cameras were compared under active IRT conditions in the laboratory to examine the effect of photography angle on IRT along with the specifications of cameras. The results showed that when IR images are taken from a certain angle, each camera shows different temperature readings. However, since each IR camera can capture temperature differences between sound and delaminated areas, they have a potential to detect delaminated areas under a given condition in spite of camera specifications even when they are utilized from a certain angle. Furthermore, a more objective data analysis method than just comparing IR images was explored to assess IR data. Secondly, coupled structural mechanics and heat transfer models of concrete blocks with artificial delaminations used for a field test were developed and analyzed to explore sensitive parameters for effective utilization of IRT. After these finite element (FE) models were validated, critical parameters and factors of delamination detectability such as the size of delamination (area, thickness and volume), ambient temperature and sun loading condition (different season), and the depth of delamination from the surface were explored. This study presents that the area of delamination is much more influential in the detectability of IRT than thickness and volume. It is also found that there is no significant difference depending on the season when IRT is employed. Then, FE model simulations were used to obtain the temperature differences between sound and delaminated areas in order to process IR data. By using this method, delaminated areas of concrete slabs could be detected more objectively than by judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of this method, and the effect varies depending on the data collection time. Even though there are some limitations, integrated use of FE model simulation with IRT showed that the combination can be reduce other pre-tests on bridges, reduce the need to have access to the bridge and also can help automate the IRT data analysis process for concrete bridge deck inspections. After that, the favorable time windows for concrete bridge deck inspections by IRT were explored through field experiment and FE model simulations. Based on the numerical simulations and experimental IRT results, higher temperature differences in the day were observed from both results around noontime and nighttime, although IRT is affected by sun loading during the daytime heating cycle resulting in possible misdetections. Furthermore, the numerical simulations show that the maximum effect occurs at night during the nighttime cooling cycle, and the temperature difference decreases gradually from that time to a few hours after sunrise of the next day. Thus, it can be concluded that the nighttime application of IRT is the most suitable time window for bridge decks. Furthermore, three IR cameras with different specifications were compared to explore several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high-speed bridge deck inspections at normal driving speeds under field laboratory conditions. The results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. This study revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution.Finally, a real bridge was scanned by three different types of IR cameras and the results were compared with other NDE technologies that were implemented by other researchers on the same bridge. When compared at fully documented locations with 8 concrete cores, a high-end IR camera with cooled detector distinguished sound and delaminated areas accurately. Furthermore, indicated location and shape of delaminations by three IR cameras were compared to other NDE methods from past research, and the result revealed that the cooled camera showed almost identical shapes to other NDE methods including chain drag. It should be noted that the data were collected at normal driving speed without any lane closures, making it a more practical and faster method than other NDE technologies. It was also presented that the factor most likely to affect high-speed application is integration time of IR camera as well as the conclusion of the field laboratory test.The notable contribution of this study for the improvement of IRT is that this study revealed the preferable conditions for IRT, specifically for high-speed scanning of concrete bridge decks. This study shows that IRT implementation under normal driving speeds has high potential to evaluate concrete bridge decks accurately without any lane closures much more quickly than other NDE methods, if a cooled camera equipped with higher pixel resolution is used during nighttime. Despite some limitations of IRT, the data collection speed is a great advantage for periodic bridge inspections compared to other NDE methods. Moreover, there is a high possibility to reduce inspection time, labor and budget drastically if high-speed bridge deck scanning by the combination of IRT and computer vision-based technology becomes a standard bridge deck inspection method. Therefore, the author recommends combined application of the high-speed scanning combination and other NDE methods to optimize bridge deck inspections.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006323, ucf:51575
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006323
-
-
Title
-
Analysis of steady state micro-droplet evaporation to enhance heat dissipation from tiny surfaces.
-
Creator
-
Voota, Harish, Putnam, Shawn, Kauffman, Jeffrey, Vasu Sumathi, Subith, University of Central Florida
-
Abstract / Description
-
Steady state droplet evaporation experiments are conducted to understand (1) Droplet contact line influence on evaporation rate and (2) Droplet contact angle correlation to evaporation rate. Experiments are performed on a polymer substrate with a moat like trench (laser patterned) to control droplet contact line dynamics. A bottom-up methodology is implemented for droplet formation on the patterned substrate. Droplet evaporation rates on substrate temperatures 22???T_Substrate?70? and contact...
Show moreSteady state droplet evaporation experiments are conducted to understand (1) Droplet contact line influence on evaporation rate and (2) Droplet contact angle correlation to evaporation rate. Experiments are performed on a polymer substrate with a moat like trench (laser patterned) to control droplet contact line dynamics. A bottom-up methodology is implemented for droplet formation on the patterned substrate. Droplet evaporation rates on substrate temperatures 22???T_Substrate?70? and contact angles 80(&)deg;???110(&)deg; are measured. For a pinned microdroplet (CCR), volumetric infuse rate influences droplet contact angle. Results illustrate droplet contact line impact on evaporation rate . Moreover, these results coincide with previously published results and affirm that evaporation rate efficiency reduces with contact line depinning. Additionally, from all the analyzed experimental cases, evaporation rate scales proportional to the microdroplet contact angle (i.e. ?_(LG )??). In conclusion, these experiments shed new light on steady state evaporation of a microdroplet and its corresponding observations. Vital research findings can be used to enhance heat dissipation from tiny surfaces.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006235, ucf:51067
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006235
-
-
Title
-
Study On Anisotropic Plasticity And Fracture Of Lightweight Metal Sheets.
-
Creator
-
Jia, Yueqian, Bai, Yuanli, Kassab, Alain, Raghavan, Seetha, Gou, Jihua, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
How to reduce weight and increase fuel efficiency is a critical challenge in transportation industries. One way to resolve the problem is to adopting lightweight alloys (i.e. advanced high strength steel, aluminum alloys, or magnesium alloy) in structure designs and manufacturing. Fully understanding the mechanical properties of these materials is a key step.In order to fully characterize the plasticity and fracture of magnesium AZ31B-H24 sheets, a set of mechanical experiments (170 in total)...
Show moreHow to reduce weight and increase fuel efficiency is a critical challenge in transportation industries. One way to resolve the problem is to adopting lightweight alloys (i.e. advanced high strength steel, aluminum alloys, or magnesium alloy) in structure designs and manufacturing. Fully understanding the mechanical properties of these materials is a key step.In order to fully characterize the plasticity and fracture of magnesium AZ31B-H24 sheets, a set of mechanical experiments (170 in total) were performed under both monotonic and non-proportional loading conditions, including monotonic uniaxial tension, notch tension, in-plane uniaxial compression, wide compression (or called biaxial compression), plane strain compression, through-thickness compression, in-plane shear, punch test, uniaxial compression-tension reverse loading, and two-step uniaxial tension (cross-loading).Both the plastic strain histories and stress responses were obtained under the above loading conditions, which give a comprehensive picture of mechanical behaviors of this material. No apparent cross-hardening effect was observed for this material.An extended orthotropic yield criterion involving two linear anisotropic transformation tensors, CPB06ex2, in conjunction with its associated flow rule was fully calibrated to describe both the anisotropy in plastic flow and tension-compression asymmetry in stress-strain behaviors.A fully modularized framework to combine isotropic, kinematic, and cross hardening behaviors was established under non-monotonic loading conditions. Three sets of state variables were defined and applied to consider the effects of, a) loading history, b) twinning and de-twinning and c) different pre-strain.In order to predict ductile fracture of metal sheets, the (")mixed(") stress/strain invariants based Modified-Mohr-Coulomb (MMC) fracture model was transferred into an all-strain based MMC (eMMC) model under plane stress condition, predicting the fracture strain dependent on strain ratio or ? angle, instead of stress triaxiality and Lode angle parameter. The strain ratio or ? angle could be directly measured by digital image correlation (DIC), while the latter required finite element analysis to be determined. This method makes it possible to study material fracture behavior while bypassing plasticity. The eMMC fracture locus can be fully calibrated by fracture strains directly measured from DIC. The fracture strain was also extended by a linear transformation operating to the plastic strain tensor to incorporate the fracture anisotropy. All models were implemented into Abaqus/Explicit as a user material subroutine (VUMAT). Good prediction capability has been demonstrated for magnesium AZ31B-H24 sheets by FE simulation using shell elements.The current framework was also applied for TRIP780, BH240, DP600, and EDDQ steel sheets with adjustment, under different loading conditions. The FE simulation results for TRIP780 correlated well with experimental data under different monotonic loading conditions. The analytical results for BH240, DP600, and EDDQ demonstrated good prediction capability for cross-hardening behavior, and validated by the non-proportional experimental data under two-stage uniaxial tension.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006121, ucf:51165
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006121
-
-
Title
-
Hmong Americans in Higher Education: Exploring their Sense of Belongingness and the Concept of the American Dream.
-
Creator
-
Daugherty, Janet, Cintron Delgado, Rosa, Owens, J. Thomas, Cox, Thomas, Molina, Olga, University of Central Florida
-
Abstract / Description
-
I conducted this study to examine Hmong American college students' perspectives on sense of belongingness and their idea on the American Dream. The college experience can serve as a precursor to improving the social and economic situation of the Hmong students when aligned with the personal desire to gain upward mobility and motivation to circumvent social and academic inconsistencies.The methodology of the study was designed for one-on-one phenomenological informal interviews with Hmong...
Show moreI conducted this study to examine Hmong American college students' perspectives on sense of belongingness and their idea on the American Dream. The college experience can serve as a precursor to improving the social and economic situation of the Hmong students when aligned with the personal desire to gain upward mobility and motivation to circumvent social and academic inconsistencies.The methodology of the study was designed for one-on-one phenomenological informal interviews with Hmong American college upper-classmen using a two-part interview protocol to elicit demographic and experiential information. Moustakas' approach to the analysis of data provided guidelines to review individual transcripts and to group, remove, cluster, and thematize lived experiences.The findings of this study indicated that Hmong college students: (a) enrolled out of obedience to the parents, especially their fathers, regardless of the educational level of the parents and (b) thrived when authority figures on campus reached out to help their humble situation. . . it not only made them belong to the campus family but it strengthened their self-esteem.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005596, ucf:50250
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005596
-
-
Title
-
A NEW PARADIGM OF MODELING WATERSHED WATER QUALITY.
-
Creator
-
Zhang, Fan, Yeh, Gour-Tsyh, University of Central Florida
-
Abstract / Description
-
Accurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive...
Show moreAccurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive chemical transport in river/stream networks of watershed systems; (2) sediment and reactive chemical transport in overland shallow water of watershed systems; and (3) reactive chemical transport in three-dimensional subsurface systems. Through the decomposition of the system of species transport equations via Gauss-Jordan column reduction of the reaction network, fast reactions and slow reactions are decoupled, which enables robust numerical integrations. Species reactive transport equations are transformed into two sets: nonlinear algebraic equations representing equilibrium reactions and transport equations of kinetic-variables in terms of kinetically controlled reaction rates. As a result, the model uses kinetic-variables instead of biogeochemical species as primary dependent variables, which reduces the number of transport equations and simplifies reaction terms in these equations. For each time step, we first solve the advective-dispersive transport of kinetic-variables. We then solve the reactive chemical system node by node to yield concentrations of all species. In order to obtain accurate, efficient and robust computations, five numerical options are provided to solve the advective-dispersive transport equations; and three coupling strategies are given to deal with the reactive chemistry. Verification examples are compared with analytical solutions to demonstrate the numerical accuracy of the code and to emphasize the need of implementing various numerical options and coupling strategies to deal with different types of problems for different application circumstances. Validation examples are presented to evaluate the ability of the model to replicate behavior observed in real systems. Hypothetical examples with complex reaction networks are employed to demonstrate the design capability of the model to handle field-scale problems involving both kinetic and equilibrium reactions. The deficiency of current practices in the water quality modeling is discussed and potential improvements over current practices using this model are addressed.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000448, ucf:46405
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000448
-
-
Title
-
Real People Acting Out Interpersonal Issues With Paper Representations.
-
Creator
-
Dufner, Gary, Poindexter, Carla, Raimundi-Ortiz, Wanda, Price, Mark, University of Central Florida
-
Abstract / Description
-
In this thesis body of work, I have interacted and collaborated with five friends to create images exploring human relationships. The subject matter illustrates my friends and myself acting out interpersonal issues with paper representations of one another. It has been my aim to represent my imagery in a campy thematic way. I include a discussion of the images in my body of work from both my perspective and the perspective of my models. The figurative paper images (")stand in(") as...
Show moreIn this thesis body of work, I have interacted and collaborated with five friends to create images exploring human relationships. The subject matter illustrates my friends and myself acting out interpersonal issues with paper representations of one another. It has been my aim to represent my imagery in a campy thematic way. I include a discussion of the images in my body of work from both my perspective and the perspective of my models. The figurative paper images (")stand in(") as representatives of the genders of their subjects.I have explored multiple points of view, constructing, reconstructing and deconstructing complex compositions; experimenting with a variety of focal points; and I have increased my knowledge of lighting and color effects through digital manipulation.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005607, ucf:52868
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005607
-
-
Title
-
Physical-Virtual Patient Simulators: Bringing Tangible Humanity to Simulated Patients.
-
Creator
-
Daher, Salam, Welch, Gregory, Gonzalez, Laura, Cendan, Juan, Proctor, Michael, University of Central Florida
-
Abstract / Description
-
In lieu of real patients, healthcare educators frequently use simulated patients. Simulated patients can be realized in physical form, such as mannequins and trained human actors, or virtual form, such as via computer graphics presented on two-dimensional screens or head-mounted displays. Each of these alone has its strengths and weaknesses. I introduce a new class of physical-virtual patient (PVP) simulators that combine strengths of both forms by combining the flexibility and richness of...
Show moreIn lieu of real patients, healthcare educators frequently use simulated patients. Simulated patients can be realized in physical form, such as mannequins and trained human actors, or virtual form, such as via computer graphics presented on two-dimensional screens or head-mounted displays. Each of these alone has its strengths and weaknesses. I introduce a new class of physical-virtual patient (PVP) simulators that combine strengths of both forms by combining the flexibility and richness of virtual patients with tangible characteristics of a human-shaped physical form that can also exhibit a range of multi-sensory cues, including visual cues (e.g., capillary refill and facial expressions), auditory cues (e.g., verbal responses and heart sounds), and tactile cues (e.g., localized temperature and pulse). This novel combination of integrated capabilities can improve patient simulation outcomes. In my Ph.D. work I focus on three primary areas of related research. First, I describe the realization of the technology for PVPs and results from two user-studies to evaluate the importance of dynamic visuals and human-shaped physical form in terms of perception, behavior, cognition, emotions, and learning.Second, I present a general method to numerically evaluate the compatibility of any simulator-scenario pair in terms of importance and fidelity of cues. This method has the potential to make logistical, economic, and educational impacts on the choices of utilizing existing simulators.Finally, I describe a method for increasing human perception of simulated humans by exposing participants to the simulated human taking part in a short, engaging conversation prior to the simulation.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007750, ucf:52402
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007750
-
-
Title
-
On Distributed Estimation for Resource Constrained Wireless Sensor Networks.
-
Creator
-
Sani, Alireza, Vosoughi, Azadeh, Rahnavard, Nazanin, Wei, Lei, Atia, George, Chatterjee, Mainak, University of Central Florida
-
Abstract / Description
-
We study Distributed Estimation (DES) problem, where several agents observe a noisy version of an underlying unknown physical phenomena (which is not directly observable), and transmit a compressed version of their observations to a Fusion Center (FC), where collective data is fused to reconstruct the unknown. One of the most important applications of Wireless Sensor Networks (WSNs) is performing DES in a field to estimate an unknown signal source. In a WSN battery powered geographically...
Show moreWe study Distributed Estimation (DES) problem, where several agents observe a noisy version of an underlying unknown physical phenomena (which is not directly observable), and transmit a compressed version of their observations to a Fusion Center (FC), where collective data is fused to reconstruct the unknown. One of the most important applications of Wireless Sensor Networks (WSNs) is performing DES in a field to estimate an unknown signal source. In a WSN battery powered geographically distributed tiny sensors are tasked with collecting data from the field. Each sensor locally processes its noisy observation (local processing can include compression,dimension reduction, quantization, etc) and transmits the processed observation over communication channels to the FC, where the received data is used to form a global estimate of the unknown source such that the Mean Square Error (MSE) of the DES is minimized. The accuracy of DES depends on many factors such as intensity of observation noises in sensors, quantization errors in sensors, available power and bandwidth of the network, quality of communication channels between sensors and the FC, and the choice of fusion rule in the FC. Taking into account all of these contributing factors and implementing a DES system which minimizes the MSE and satisfies all constraints is a challenging task. In order to probe into different aspects of this challenging task we identify and formulate the following three problems and address them accordingly:1- Consider an inhomogeneous WSN where the sensors' observations is modeled linear with additive Gaussian noise. The communication channels between sensors and FC are orthogonal power and bandwidth-constrained erroneous wireless fading channels. The unknown to be estimated is a Gaussian vector. Sensors employ uniform multi-bit quantizers and BPSK modulation. Given this setup, we ask: what is the best fusion rule in the FC? what is the best transmit power and quantization rate (measured in bits per sensor) allocation schemes that minimize the MSE? In order to answer these questions, we derive some upper bounds on global MSE and through minimizing those bounds, we propose various resource allocation schemes for the problem, through which we investigate the effect of contributing factors on the MSE.2- Consider an inhomogeneous WSN with an FC which is tasked with estimating a scalar Gaussian unknown. The sensors are equipped with uniform multi-bit quantizers and the communication channels are modeled as Binary Symmetric Channels (BSC). In contrast to former problem the sensors experience independent multiplicative noises (in addition to additive noise). The natural question in this scenario is: how does multiplicative noise affect the DES system performance? how does it affect the resource allocation for sensors, with respect to the case where there is no multiplicative noise? We propose a linear fusion rule in the FC and derive the associated MSE in closed-form. We propose several rate allocation schemes with different levels of complexity which minimize the MSE. Implementing the proposed schemes lets us study the effect of multiplicative noise on DES system performance and its dynamics. We also derive Bayesian Cramer-Rao Lower Bound (BCRLB) and compare the MSE performance of our porposed methods against the bound.As a dual problem we also answer the question: what is the minimum required bandwidth of thenetwork to satisfy a predetermined target MSE?3- Assuming the framework of Bayesian DES of a Gaussian unknown with additive and multiplicative Gaussian noises involved, we answer the following question: Can multiplicative noise improve the DES performance in any case/scenario? the answer is yes, and we call the phenomena as 'enhancement mode' of multiplicative noise. Through deriving different lower bounds, such as BCRLB,Weiss-Weinstein Bound (WWB), Hybrid CRLB (HCRLB), Nayak Bound (NB), Yatarcos Bound (YB) on MSE, we identify and characterize the scenarios that the enhancement happens. We investigate two situations where variance of multiplicative noise is known and unknown. Wealso compare the performance of well-known estimators with the derived bounds, to ensure practicability of the mentioned enhancement modes.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006913, ucf:51698
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006913
-
-
Title
-
Multi-transit echo suppression for passive wireless surface acoustic wave sensors using 3rd harmonic unidirectional transducers and Walsh-Hadamard-like reflectors.
-
Creator
-
Rodriguez Cordoves, Luis, Malocha, Donald, Weeks, Arthur, Abdolvand, Reza, Moharam, Jim, Youngquist, Robert, University of Central Florida
-
Abstract / Description
-
A passive wireless surface acoustic wave sensor of a delay-line type is composed of an antenna, a transducer that converts the EM signal into a surface acoustic wave, and a set of acoustic reflectors that reflect the incoming signal back out through the antenna. A cavity forms between the transducer and the reflectors, trapping energy and causing multiple unwanted echoes. The work in this dissertation aims to reduce the unwanted echoes so that only the main transit signal is left(-)the signal...
Show moreA passive wireless surface acoustic wave sensor of a delay-line type is composed of an antenna, a transducer that converts the EM signal into a surface acoustic wave, and a set of acoustic reflectors that reflect the incoming signal back out through the antenna. A cavity forms between the transducer and the reflectors, trapping energy and causing multiple unwanted echoes. The work in this dissertation aims to reduce the unwanted echoes so that only the main transit signal is left(-)the signal of interest with sensor information.The contributions of this dissertation include reflective delay-line device response in the form of an infinite impulse response (IIR) filter. This may be used in the future to subtract out unwanted echoes via post-processing. However, this dissertation will use a physical approach to echo suppression by using a unidirectional transducer. Thus a unidirectional transducer is used and also optimized for 3rd harmonic operation. Both the directionality and the coupling of the 3rd harmonic optimized SPUDT are improved over a standard electrode width controlled (EWC) SPUDT. New type of reflectors for the reflective delay-line device are also presented. These use BPSK type coding, similar to that of the Walsh-Hadamard codes. Two types are presented, variable reflectivity and variable chip-lengths. The COM model is used to simulate devices and compare the predicted echo suppression level to that of fabricated devices. Finally, a device is mounted on a tunable antenna and the echo is suppressed on a wireless operating device.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006912, ucf:51697
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006912
-
-
Title
-
Microscopic Assessment of Transportation Emissions on Limited Access Highways.
-
Creator
-
Abou-Senna, Hatem, Radwan, Ahmed, Abdel-Aty, Mohamed, Al-Deek, Haitham, Cooper, Charles, Johnson, Mark, University of Central Florida
-
Abstract / Description
-
On-road vehicles are a major source of transportation carbon dioxide (CO2) greenhouse gas emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, e.g., carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). The need to accurately quantify transportation-related emissions from vehicles is essential. Transportation agencies and researchers in the past have...
Show moreOn-road vehicles are a major source of transportation carbon dioxide (CO2) greenhouse gas emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, e.g., carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). The need to accurately quantify transportation-related emissions from vehicles is essential. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The new United States Environmental Protection Agency (USEPA) mobile source emissions model, MOVES2010a (MOVES) can estimate vehicle emissions on a second-by-second basis creating the opportunity to develop new software (")VIMIS 1.0(") (VISSIM/MOVES Integration Software) to facilitate the integration process. This research presents a microscopic examination of five key transportation parameters (traffic volume, speed, truck percentage, road grade and temperature) on a 10-mile stretch of Interstate 4 (I-4) test bed prototype; an urban limited access highway corridor in Orlando, Florida. The analysis was conducted utilizing VIMIS 1.0 and using an advanced custom design technique; D-Optimality and I-Optimality criteria, to identify active factors and to ensure precision in estimating the regression coefficients as well as the response variable.The analysis of the experiment identified the optimal settings of the key factors and resulted in the development of Micro-TEM (Microscopic Transportation Emissions Meta-Model). The main purpose of Micro-TEM is to serve as a substitute model for predicting transportation emissions on limited access highways to an acceptable degree of accuracy in lieu of running simulations using a traffic model and integrating the results in an emissions model. Furthermore, significant emission rate reductions were observed from the experiment on the modeled corridor especially for speeds between 55 and 60 mph while maintaining up to 80% and 90% of the freeway's capacity. However, vehicle activity characterization in terms of speed was shown to have a significant impact on the emission estimation approach.Four different approaches were further examined to capture the environmental impacts of vehicular operations on the modeled test bed prototype. First, (at the most basic level), emissions were estimated for the entire 10-mile section (")by hand(") using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link driving schedules (LDS), and second-by-second operating mode distributions (OPMODE). This research analyzed how the various approaches affect predicted emissions of CO, NOx, PM and CO2. The results demonstrated that obtaining accurate and comprehensive operating mode distributions on a second-by-second basis improves emission estimates. Specifically, emission rates were found to be highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, frequent braking/coasting and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.Additionally, model applications and mitigation scenarios were examined on the modeled corridor to evaluate the environmental impacts in terms of vehicular emissions and at the same time validate the developed model (")Micro-TEM("). Mitigation scenarios included the future implementation of managed lanes (ML) along with the general use lanes (GUL) on the I-4 corridor, the currently implemented variable speed limits (VSL) scenario as well as a hypothetical restricted truck lane (RTL) scenario. Results of the mitigation scenarios showed an overall speed improvement on the corridor which resulted in overall reduction in emissions and emission rates when compared to the existing condition (EX) scenario and specifically on link by link basis for the RTL scenario.The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004777, ucf:49788
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004777
-
-
Title
-
DESIGN AND DEVELOPMENT OF HETEROGENOUS COMBUSTION SYSTEMS FOR LEAN BURN APPLICATIONS.
-
Creator
-
Terracciano, Anthony, Orlovskaya, Nina, Vasu Sumathi, Subith, Chow, Louis, Kassab, Alain, University of Central Florida
-
Abstract / Description
-
Combustion with a high surface area continuous solid immersed within the flame, referred to as combustion in porous media, is an innovative approach to combustion as the solid within the flame acts as an internal regenerator distributing heat from the combustion byproducts to the upstream reactants. By including the solid structure, radiative energy extraction becomes viable, while the solid enables a vast extension of flammability limits compared to conventional flames, while offering...
Show moreCombustion with a high surface area continuous solid immersed within the flame, referred to as combustion in porous media, is an innovative approach to combustion as the solid within the flame acts as an internal regenerator distributing heat from the combustion byproducts to the upstream reactants. By including the solid structure, radiative energy extraction becomes viable, while the solid enables a vast extension of flammability limits compared to conventional flames, while offering dramatically reduced emissions of NOx and CO, and dramatically increased burning velocities. Efforts documented within are used for the development of a streamlined set of design principles, and characterization of the flame's behavior when operating under such conditions, to aid in the development of future combustors for lean burn applications in open flow systems. Principles described herein were developed from a combination of experimental work and reactor network modeling using CHEMKIN-PRO. Experimental work consisted of a parametric analysis of operating conditions pertaining to reactant flow, combustion chamber geometric considerations and the viability of liquid fuel applications. Experimental behavior observed, when utilizing gaseous fuels, was then used to validate model outputs through comparing thermal outputs of both systems. Specific details pertaining to a streamlined chemical mechanism to be used in simulations, included within the appendix, and characterization of surface area of the porous solid are also discussed. Beyond modeling the experimental system, considerations are also undertaken to examine the applicability of exhaust gas recirculation and staged combustion as a means of controlling the thermal and environmental output of porous combustion systems. This work was supported by ACS PRF #51768-ND10 and NSF IIP 1343454.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005269, ucf:50549
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005269
-
-
Title
-
Factors Affecting Systems Engineering Rigor in Launch Vehicle Organizations.
-
Creator
-
Gibson, Denton, Karwowski, Waldemar, Rabelo, Luis, Kotnour, Timothy, Kern, David, University of Central Florida
-
Abstract / Description
-
Systems engineering is a methodical multi-disciplinary approach to design, build, and operate complex systems. Launch vehicles are considered by many extremely complex systems that have greatly impacted where the systems engineering industry is today. Launch vehicles are used to transport payloads from the ground to a location in space. Satellites launched by launch vehicles can range from commercial communications to national security payloads. Satellite costs can range from a few million...
Show moreSystems engineering is a methodical multi-disciplinary approach to design, build, and operate complex systems. Launch vehicles are considered by many extremely complex systems that have greatly impacted where the systems engineering industry is today. Launch vehicles are used to transport payloads from the ground to a location in space. Satellites launched by launch vehicles can range from commercial communications to national security payloads. Satellite costs can range from a few million dollars to billions of dollars. Prior research suggests that lack of systems engineering rigor as one of the leading contributors to launch vehicle failures. A launch vehicle failure could have economic, societal, scientific, and national security impacts. This is why it is critical to understand the factors that affect systems engineering rigor in U.S. launch vehicle organizations.The current research examined organizational factors that influence systems engineering rigor in launch vehicle organizations. This study examined the effects of the factors of systems engineering culture and systems engineering support on systems engineering rigor. Particularly, the effects of top management support, organizational commitment, systems engineering support, and value of systems engineering were examined. This research study also analyzed the mediating role of systems engineering support between top management support and systems engineering rigor, as well as between organizational commitment and systems engineering rigor. A quantitative approach was used for this. Data for the study was collected via survey instrument. A total of 203 people in various systems engineering roles in launch vehicle organizations throughout the United States voluntarily participated. Each latent construct of the study was validated using confirmatory factor analysis (CFA). Structural equation modeling (SEM) was used to examine the relationships between the variables of the study. The IBM SPSS Amos 25 software was used to analyze the CFA and SEM.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007806, ucf:52348
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007806
-
-
Title
-
Characterization of Anisotropic Mechanical Performance of As-Built Additively Manufactured Metals.
-
Creator
-
Siddiqui, Sanna, Gordon, Ali, Raghavan, Seetha, Bai, Yuanli, Sohn, Yongho, University of Central Florida
-
Abstract / Description
-
Additive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials...
Show moreAdditive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials and how it is reflected in observed tensile, torsional and fatigue mechanical responses. As such, there is a need to understand how the build orientation of as-built additively manufactured metals, affects mechanical performance (e.g. monotonic and cyclic behavior, cyclically hardening/softening behavior, plasticity effects on fatigue life etc.); and to use constitutive modeling to both support experimental findings, and provide approximations of expected behavior (e.g. failure surfaces, monotonic and cyclic response, correlations between tensile and fatigue properties), for orientations and experiments not tested, due to the expensive cost associated with AM. A comprehensive framework has been developed to characterize the anisotropic behavior of as-built additively manufactured metals (i.e. Stainless Steel GP1 (SS GP1), similar in chemical composition to Stainless Steel 17-4PH), through a series of mechanical testing, microscopic evaluation and constitutive modeling, which were used to identify a reduced specimen size for characterizing these materials. An analysis of the torsional response of additively manufactured Inconel 718 has been performed to assess the impact of build orientation and as-built conditions on the shearing behavior of this material. Experimental results from DMLS SS GP1 and AM Inconel 718 from literature were used to constitutively model the material responses of these additively manufactured metals. Overall, this framework has been designed to serve as standard, from which build orientation selection can be used to meet specific desired industry requirements.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007097, ucf:52883
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007097
-
-
Title
-
Inquiry as Practice for Continuous Improvement: A Framework for the Curricular Redesign of the Education Doctorate in Curriculum and Instruction Research Continuum at the University of Central Florida.
-
Creator
-
Clark, Paola, Boote, David, Vitale, Thomas, Hopp, Carolyn, Swan, Bonnie, University of Central Florida
-
Abstract / Description
-
This design-based research study was conducted at the University of Central Florida with the aim of informing the Education Doctorate in Curriculum and Instruction research course sequence within the College of Education and Human Performance. The main purpose of this dissertation was to enhance and enrich the Ed.D. in Curriculum and Instruction research continuum courses to ensure that they support the use of applied research and practical theory as central to the development of scholarly...
Show moreThis design-based research study was conducted at the University of Central Florida with the aim of informing the Education Doctorate in Curriculum and Instruction research course sequence within the College of Education and Human Performance. The main purpose of this dissertation was to enhance and enrich the Ed.D. in Curriculum and Instruction research continuum courses to ensure that they support the use of applied research and practical theory as central to the development of scholarly practitioners. In order to fulfill its purpose, this study addressed three main goals: clarifying the Ed.D. in Curriculum and Instruction program goals, objectives, and research continuum learning outcomes; developing research course sequence curriculum maps; and redesigning sample curriculum units for individual research courses.The curriculum mapping and redesign process was supported by research-based design choices in alignment with the practice-oriented nature of the program. These design choices included the Carnegie Project on the Education Doctorate Working Principles and Design Concepts, in particular the use of Inquiry as Practice as the main redesign framework in combination with improvement science principles. These frameworks were first used as foundations to clarify the Ed.D. in Curriculum and Instruction program goal and overall objectives. Later, user-centered design principles were applied to create faculty and student personas in order to inform the redefinition of individual research course learning outcomes. In addition, the frameworks were used to create alignment matrices and demonstrate where they supported each of the program objectives. This iterative process was carried out simultaneously with the course curriculum map redesign for each of the research continuum courses using backward design principles, the spiral curriculum model, and taking into consideration the most suitable instructional modality for learning outcomes, including the best suited education technology choices. Further, some proposed sample course units were developed in greater detail utilizing Universal Design for Learning principles and the prioritization of learning outcomes. Course contents were selected based on cognitive and reasoning learning theories pertaining to mixed method courses for professional practitioners.The developed prototypes support the continuous Ed.D. in Curriculum and Instruction curriculum redesign efforts of the program and College of Education and Human Performance at the University of Central Florida and clearly distinguish the Ed.D. in Curriculum and Instruction program from traditional, research-based doctorates. Similarly, at the national level, this study also sought to benefit other CPED-influenced professional practice programs, as they also consider the careful redesign of their research or inquiry sequences to define their programs as ones that fully address the needs of advanced professional educators. Acknowledging the limitations of this study, further studies should identifying the motivational, cognitive, and organizational causes affecting student learning outcomes. Implementing and evaluating the prototypes developed to ensure their effectiveness in preparing scholarly practitioners to act as agents of change in their professional practices.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006285, ucf:51585
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006285
-
-
Title
-
Field Theoretic Lagrangian Stencils from Off-Shell Supermultiplet Gauge Quotients.
-
Creator
-
Katona, Gregory, Klemm, Richard, Hubsch, Tristan, Peale, Robert, Shivamoggi, Bhimsen, University of Central Florida
-
Abstract / Description
-
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic / bosonic componentfields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge quotients by supersymmetric images of other Adinkras,...
Show moreRecent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic / bosonic componentfields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or (")proper(") Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected (")Adinkraic network("). Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, ? ? 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 ? 4 supersymmetric extension to the Chiral-Chiral and Chiral-twisted-Chiral multiplet, while a subset admits two inequivalent such extensions. In a natural progression, a continuum of observably and usefully inequivalent, finite-dimensional off-shellrepresentations of worldline N = 4 extended supersymmetry are explored, that are variatefrom one another but in the value of a tuning parameter, Ref [53]. Their dynamics turnsout to be nontrivial already when restricting to just bilinear Lagrangians. In particular, wefind a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlationsto group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005011, ucf:50004
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005011
Pages