Current Search: energy (x)
Pages
-
-
Title
-
Ultra High Density Spectral Beam Combining By Thermal Tuning of Volume Bragg Gratings in Photo-Thermo-Refractive Glass.
-
Creator
-
Drachenberg, Derrek, Zeldovich, Boris, Bass, Michael, Schulzgen, Axel, Likamwa, Patrick, Glebov, Leonid, University of Central Florida
-
Abstract / Description
-
High power lasers with diffraction limited beam quality are desired for many applications in defense and manufacturing. A lot of applications require laser beams at the 100 kW power level along with divergence close to the diffraction limit. The figure of merit for a beam used in such applications should be radiance which determines the laser power delivered to a remote target. One of the primary limiting factors is thermal distortion of a laser beam caused by excessive heat generated in the...
Show moreHigh power lasers with diffraction limited beam quality are desired for many applications in defense and manufacturing. A lot of applications require laser beams at the 100 kW power level along with divergence close to the diffraction limit. The figure of merit for a beam used in such applications should be radiance which determines the laser power delivered to a remote target. One of the primary limiting factors is thermal distortion of a laser beam caused by excessive heat generated in the laser media. Combination of multiple laser beams is usually considered as a method to mitigate these limitations. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for the future of high radiance lasers that needs to achieve 100 kW-level power. This work is dedicated to development of methods to increase spectral density of combined beams keeping their divergence at an acceptably low level.A new figure of merit for a beam combining system is proposed, the Beam Combining Factor (BCF), which makes it possible to distinguish the quality of the individual beams from the quality of beam combining. Also presented is a method of including the effect of beam divergence and spectral bandwidth on the performance of VBGs, as well as a method to optimize VBG parameters in terms of thickness and refractive index modulation for an arbitrary number of beams.A novel thermal tuning technique and apparatus is presented with which the SBC system can be tuned for peak efficiency from low to high power without the need for mechanical re-alignment. Finally, a thermally tuned SBC system with five beams, with a spectral separation between beams of 0.25 nm at a total power of 685 W is presented. The results show the highest power spectral density and highest spectral radiance of any SBC system to date. Recent demonstrations in SBC by multiplexed VBGs and the use of super Gaussian beams for beam quality improvement are also discussed.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004104, ucf:49089
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004104
-
-
Title
-
Three Studies of Stakeholder Influence in the Formation and Management of Tax Policies.
-
Creator
-
Chen, Jason, Roberts, Robin, Schmitt, Donna, Robb, Sean, Patten, Dennis, University of Central Florida
-
Abstract / Description
-
This dissertation consists of three separate but interrelated studies examining the formation and management of tax policies. The first study uses stakeholder theory (ST) to investigate the strategic management practices of the Transport for London (TfL) during discrete stages in the adoption, implementation, and amendments of the tax policy reform known as the London Congestion Charge (LCC). Results indicate that TfL has utilized power, legitimacy, and urgency as its main policy management...
Show moreThis dissertation consists of three separate but interrelated studies examining the formation and management of tax policies. The first study uses stakeholder theory (ST) to investigate the strategic management practices of the Transport for London (TfL) during discrete stages in the adoption, implementation, and amendments of the tax policy reform known as the London Congestion Charge (LCC). Results indicate that TfL has utilized power, legitimacy, and urgency as its main policy management tactics with a significant emphasis on legitimatizing the LCC and its subsequent policy amendments.The second study draws on social exchange theory (SET) to reexamine the relationship between corporations and legislators during tax policy processes. Data for the study come from publicly available political action committee (PAC) contribution activities surrounding the Energy Independence and Security Act of 2007 (EISA07). By examining the endogeneity between legislators' voting patterns and PAC contributions by corporations, this study aims to refine empirical work on corporate political strategy, especially as it relates to crucial tax provisions embedded within an intensely debated policy proposal. Using simultaneous equations modeling (SEM), results are consistent with SET showing that an implicit and reciprocal relationship exists between corporations and legislators. This relationship affects the interdependence of how legislators vote for public policies and the amount of corporations' financial contributions to legislators.The third study investigates and aims to validate the empirical applicability of Dahan's (2005) typology of political resources in explicating the political interactions between stakeholder groups and legislators in the development of EISA07. I discuss how and why the mode of operations and various political resources employed by stakeholder groups affected the final EISA07 language concerning domestic production deduction tax credits for the oil and gas industry. Publicly available data show that both supporting and opposing stakeholder groups employ tactics consistent with Dahan's (2005) typology. However, both stakeholder groups tend to use an interactive or positive political approach to gain access and favor of legislators instead of an adversarial approach. Ultimately, the tax credits were preserved. Taken as a whole, the three studies advance the tax and public policy research literature in accounting by studying how and why relevant stakeholders affect the formation and ongoing management of public and tax policies.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004343, ucf:49423
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004343
-
-
Title
-
Land use effects on energy and water balance-developing a land use adapted drought index.
-
Creator
-
Cheng, Chi-Han, Nnadi, Fidelia, Chopra, Manoj, Wang, Dingbao, Sumner, David, University of Central Florida
-
Abstract / Description
-
Climate change is expected to increase the frequency, intensity and duration of droughts in all parts of the United States (US). Snow packs are disappearing earlier in the spring and summer, with reduced stream-flow. Lower reservoir levels, higher temperatures, and greater precipitation variability have been observed. Drought events in the US have threatened drinking water supplies for communities in Maryland and Chesapeake Bay as observed in 2001 through September 2002; Lake Mead in Las...
Show moreClimate change is expected to increase the frequency, intensity and duration of droughts in all parts of the United States (US). Snow packs are disappearing earlier in the spring and summer, with reduced stream-flow. Lower reservoir levels, higher temperatures, and greater precipitation variability have been observed. Drought events in the US have threatened drinking water supplies for communities in Maryland and Chesapeake Bay as observed in 2001 through September 2002; Lake Mead in Las Vegas in 2000 through 2004; Peace River and Lake Okeechobee in South Florida in 2006; and Lake Lanier in Atlanta, Georgia in 2007. ENSO influences the climate of Florida; where El Ni(&)#241;o years tend to be cooler and wetter, while La Ni(&)#241;a years tend to be warmer and drier than normal in the fall through the spring, with the strongest effect in the winter. Both prolonged heavy rainfall and drought potentially have impacts on land uses and many aspects of Florida's economy and quality of life. Drought indices could integrate various hydrological and meteorological parameters and quantify climate anomalies in terms of intensity, duration, and spatial extent, thus making it easier to communicate information to diverse users. Hence, understanding local ENSO patterns on regional scales and developing a new land use drought index in Florida are critical in agriculture and water resources planning and managements. Current drought indices have limitations and drawbacks such as calculation using climate data from meteorological stations, which are point measurements. In addition, weather stations are scarce in remote areas and are not uniformly distributed. Currently used drought indices like the PDSI and the Standardized Precipitation Index (SPI) could not fully demonstrate the land use effects. Other limitations include no single index that addresses universal drought impact. Hence, there is a renewed interest to develop a new (")Regional Land Use Drought Index (RLDI) that could be applied for various land use areas and serve for short term water resources planning. In this study, the first and second research topics investigated water and energy budgets on the specific and important land use areas (urban, forest, agriculture and lake) in the State of Florida by using the North American Regional Reanalysis (NARR) reanalysis data. NARR data were used to understand how drought events, EI Ni(&)#241;o, La Ni(&)#241;a, and seasonal and inter-annual variations in climatic variables affect the hydrologic and energy cycle over different land use areas. The results showed that the NARR data could provide valuable, independent analysis of the water and energy budgets for various land uses in Florida. Finally, the high resolution land use (32km(&)#215;32km) adapted drought indices were developed based on the NARR data from 1979 to 2002. The new regional land use drought indices were developed from normalized Bowen ratio and the results showed that they could reflect not only the level of severity in drought events resulting from land use effects, but also La Ni(&)#241;a driven drought impacts.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004344, ucf:49410
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004344
-
-
Title
-
ANALYSIS AND OPTIMIZATION OF A SOLAR THERMAL COLLECTOR WITH INTEGRATED STORAGE.
-
Creator
-
Bonadies, Monica, Kapat, Jay, University of Central Florida
-
Abstract / Description
-
Solar energy, a topic popular in the United States during the oil embargo of the 1970ÃÂ's, has become a relevant topic once more with the current focus on reducing greenhouse emissions. Solar thermal energy in particular has become popular as it uses existing steam turbine technology to produce electricity, with the benefit of using solar energy to produce steam rather than coal or nuclear heat sources. Solar thermal can also be used at lower temperatures to heat water...
Show moreSolar energy, a topic popular in the United States during the oil embargo of the 1970ÃÂ's, has become a relevant topic once more with the current focus on reducing greenhouse emissions. Solar thermal energy in particular has become popular as it uses existing steam turbine technology to produce electricity, with the benefit of using solar energy to produce steam rather than coal or nuclear heat sources. Solar thermal can also be used at lower temperatures to heat water for pools or for residential use. While this energy source has its benefits, it has the problem of being opportunistic ÃÂ the energy must be used as it is captured. With the integration of storage, a solar thermal system becomes more viable for use. In this work, a low temperature (50-70o C) thermal storage unit with a solar thermal collector is experimentally run then studied using both analytical and numerical methods. With these methods, suggestions for future developments of the storage unit are made. The prototype collector and storage combination tested worked best during the winter months, when there was low humidity. Furthermore, the heat exchanger design within the storage unit was found to work well for charging (heating) the unit, but not for discharging the storage to heat water. The best modeling method for the storage unit was the use of FLUENT, which would allow for the suggested changes to the prototype to be simulated before the next prototype was constructed.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003260, ucf:48548
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003260
-
-
Title
-
Mechanism of Hip Dysplasia and Identification of the Least Energy Path for its Treatment by using the Principle of Stationary Potential Energy.
-
Creator
-
Zwawi, Mohammed abdulwahab m, Moslehy, Faissal, Kassab, Alain, Mansy, Hansen, Divo, Eduardo, University of Central Florida
-
Abstract / Description
-
Developmental dysplasia of the hip (DDH) is a common newborn condition where the femoral head is not located in its natural position in the acetabulum (hip socket). Several treatment methods are being implemented worldwide to treat this abnormal condition. One of the most effective methods of treatment is the use of Pavlik Harness, which directs the femoral head toward the natural position inside the acetabulum. This dissertation presents a developed method for identifying the least energy...
Show moreDevelopmental dysplasia of the hip (DDH) is a common newborn condition where the femoral head is not located in its natural position in the acetabulum (hip socket). Several treatment methods are being implemented worldwide to treat this abnormal condition. One of the most effective methods of treatment is the use of Pavlik Harness, which directs the femoral head toward the natural position inside the acetabulum. This dissertation presents a developed method for identifying the least energy path that the femoral head would follow during reduction. This is achieved by utilizing a validated computational biomechanical model that allows the determination of the potential energy, and then implementing the principle of stationary potential energy. The potential energy stems from strain energy stored in the muscles and gravitational potential energy of four rigid-body components of lower limb bones. Five muscles are identified and modeled because of their effect on DDH reduction. Clinical observations indicate that reduction with the Pavlik Harness occurs passively in deep sleep under the combined effects of gravity and the constraints of the Pavlik Harness.A non-linear constitutive equation, describing the passive muscle response, is used in the potential energy computation. Different DDH abnormalities with various flexion, abduction, and hip rotation angles are considered, and least energy paths are identified. Several constraints, such as geometry and harness configuration, are considered to closely simulate real cases of DDH. Results confirm the clinical observations of two different pathways for closed reduction. The path of least energy closely approximated the modified Hoffman-Daimler method. Release of the pectineus muscle favored a more direct pathway over the posterior rim of the acetabulum. The direct path over the posterior rim of the acetabulum requires more energy. This model supports the observation that Grade IV dislocations may require manual reduction by the direct path. However, the indirect path requires less energy and may be an alternative to direct manual reduction of Grade IV infantile hip dislocations. Of great importance, as a result of this work, identifying the minimum energy path that the femoral head would travel would provide a non-surgical tool that effectively aids the surgeon in treating DDH.?
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006022, ucf:51000
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006022
-
-
Title
-
Water and energy costs of landfilled food waste.
-
Creator
-
Sarker, Tonmoy, Kibler, Kelly, Reinhart, Debra, Tatari, Omer, University of Central Florida
-
Abstract / Description
-
Energy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to...
Show moreEnergy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to disposal of wasted food in landfills within the state of Florida were characterized. It is estimated that each metric ton (Mg) of landfilled food waste produces 18.1 kWh of energy, while the energy needed for collection, leachate transport, and treatment totals 126.5 kWh/Mg. These values equate to a net energy cost of 108.4 kWh/Mg, which is 110 Million kWh annually in Florida. It was observed that the water footprint of landfilled food waste is related to the assimilation of contaminated effluent and ranges from 2.5 to 58.5 m3 per metric ton of landfilled food waste, depending on the constituent of interest. Up to 58 Million m3 of water may be required annually to assimilate contamination related to landfilled food waste in Florida. We assessed the sensitivity of 14 variables used to estimate energy and water impacts and found that impacts are sensitive to the proportion of landfills collecting and utilizing landfill gas, concentration of constituents in leachate, and volume of effluent. Future research should be focused to improving the characterization of these influential parameters, and to similar FEW analysis of other food waste management technologies, such as composting or anaerobic digestion. Better understanding of water and energy impacts of food waste could inform societal decision making regarding investment in FEW-efficient waste management technologies.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006654, ucf:51233
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006654
-
-
Title
-
Design and Verification of a Multi-Terawatt Ti-Sapphire Femtosecond Laser System.
-
Creator
-
Roumayah, Patrick, Shah, Lawrence, Richardson, Martin, Amezcua Correa, Rodrigo, University of Central Florida
-
Abstract / Description
-
Ultrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating...
Show moreUltrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating at 10 Hz. Some background on the generation of very high intensity optical pulses is also presented, alongside an overview of the physics of filamentation. As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor. As part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry technique. The work demonstrates the feasibility of using a compact monolithic pulse stretcher in terawatt class CPA lasers.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006651, ucf:51241
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006651
-
-
Title
-
Control Based Soft Switching Three-phase Micro-inverter: Efficiency and Power Density Optimization.
-
Creator
-
Amirahmadi, Ahmadreza, Batarseh, Issa, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Xinzhang, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
In the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly...
Show moreIn the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly in the form of single-phase grid connected and they aim at the residential and commercial rooftop applications. It would be advantageous to extend the micro-inverter concept to large size PV installations such as MW-class solar farms where three-phase AC connections are used.The relatively high cost of the three-phase micro-inverter is the biggest barrier to its large scale deployment. Increasing the switching frequency may be the best way to reduce cost by shrinking the size of reactive components and heat-sink. However, this approach could cause conversion efficiency to drop dramatically without employing soft switching techniques or using costly new devices.This dissertation presents a new zero voltage switching control method that is suitable for low power applications such as three-phase micro-inverters. The proposed hybrid boundary conduction mode (BCM) current control method increases the efficiency and power density of the micro-inverters and features both reduced number of components and easy digital implementation. Zero voltage switching is achieved by controlling the inductor current bi-directional in every switching cycle and results in lower switching losses, higher operating frequency, and reduced size and cost of passive components, especially magnetic cores. Some practical aspects of hybrid control implementation such as dead-time insertion can degrade the performance of the micro-inverter. A dead-time compensation method that improves the performance of hybrid BCM current control by decreasing the output current THD and reducing the zero crossing distortion is presented.Different BCM ZVS current control modulation schemes are compared based on power losses breakdown, switching frequency range, and current quality. Compared to continuous conduction mode (CCM) current control, BCM ZVS control decreases MOSFET switching losses and filter inductor conduction losses but increases MOSFET conduction losses and inductor core losses. Based on the loss analysis, a dual-mode current modulation method combining ZVS and zero current switching (ZCS) schemes is proposed to improve the efficiency of the micro-inverter.Finally, a method of maintaining high power conversion efficiency across the entire load range of the three-phase micro-inverter is proposed. The proposed control method substantially increases the conversion efficiency at light loads by minimizing switching losses of semiconductor devices as well as core losses of magnetic components. This is accomplished by entering a phase skipping operating mode wherein two phases of an inverter are disabled and three inverters are combined to form a new three-phase system with minimal grid imbalance. A 400W prototype of a three-phase micro-inverter and its hybrid control system have been designed and tested under different conditions to verify the effectiveness of the proposed controller, current modulation scheme, and light load efficiency enhancement method.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005125, ucf:50703
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005125
-
-
Title
-
Data-driven Predictive Analytics For Distributed Smart Grid Control: Optimization of Energy Storage, Voltage and Demand Response.
-
Creator
-
Valizadehhaghi, Hamed, Qu, Zhihua, Behal, Aman, Atia, George, Turgut, Damla, Pensky, Marianna, University of Central Florida
-
Abstract / Description
-
The smart grid is expected to support an interconnected network of self-contained microgrids. Nonetheless, the distributed integration of renewable generation and demand response adds complexity to the control and optimization of smart grid. Forecasts are essential due to the existence of stochastic variations and uncertainty. Forecasting data are spatio-temporal which means that the data correspond to regular intervals, say every hour, and the analysis has to take account of spatial...
Show moreThe smart grid is expected to support an interconnected network of self-contained microgrids. Nonetheless, the distributed integration of renewable generation and demand response adds complexity to the control and optimization of smart grid. Forecasts are essential due to the existence of stochastic variations and uncertainty. Forecasting data are spatio-temporal which means that the data correspond to regular intervals, say every hour, and the analysis has to take account of spatial dependence among the distributed generators or locations. Hence, smart grid operations must take account of, and in fact benefit from the temporal dependence as well as the spatial dependence. This is particularly important considering the buffering effect of energy storage devices such as batteries, heating/cooling systems and electric vehicles. The data infrastructure of smart grid is the key to address these challenges, however, how to utilize stochastic modeling and forecasting tools for optimal and reliable planning, operation and control of smart grid remains an open issue.Utilities are seeking to become more proactive in decision-making, adjusting their strategies based on realistic predictive views into the future, thus allowing them to side-step problems and capitalize on the smart grid technologies, such as energy storage, that are now being deployed atscale. Predictive analytics, capable of managing intermittent loads, renewables, rapidly changing weather patterns and other grid conditions, represent the ultimate goal for smart grid capabilities.Within this framework, this dissertation develops high-performance analytics, such as predictive analytics, and ways of employing analytics to improve distributed and cooperative optimization software which proves to be the most significant value-add in the smart grid age, as new network management technologies prove reliable and fundamental. Proposed optimization and control approaches for active and reactive power control are robust to variations and offer a certain level of optimality by combining real-time control with hours-ahead network operation schemes. The main objective is managing spatial and temporal availability of the energy resources in different look-ahead time horizons. Stochastic distributed optimization is realized by integrating a distributed sub-gradient method with conditional ensemble predictions of the energy storage capacity and distributed generation. Hence, the obtained solutions can reflect on the system requirements for the upcoming times along with the instantaneous cooperation between distributed resources. As an important issue for smart grid, the conditional ensembles are studied for capturing wind, photovoltaic, and vehicle-to-grid availability variations. The following objectives are pursued:- Spatio-temporal adaptive modeling of data including electricity demand, electric vehicles and renewable energy (wind and solar power)- Predictive data analytics and forecasting- Distributed control- Integration of energy storage systemsFull distributional characterization and spatio-temporal modeling of data ensembles are utilized in order to retain the conditional and temporal interdependence between projection data and available capacity. Then, by imposing measures of the most likely ensembles, the distributed control method is carried out for cooperative optimization of the renewable generation and energy storage within the smart grid.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006408, ucf:51481
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006408
-
-
Title
-
The Mechanical Response and Parametric Optimization of Ankle-Foot Devices.
-
Creator
-
Smith, Kevin, Gordon, Ali, Kassab, Alain, Bai, Yuanli, Pabian, Patrick, University of Central Florida
-
Abstract / Description
-
To improve the mobility of lower limb amputees, many modern prosthetic ankle-foot devices utilize a so called energy storing and return (ESAR) design. This allows for elastically stored energy to be returned to the gait cycle as forward propulsion. While ESAR type feet have been well accepted by the prosthetic community, the design and selection of a prosthetic device for a specific individual is often based on clinical feedback rather than engineering design. This is due to an incomplete...
Show moreTo improve the mobility of lower limb amputees, many modern prosthetic ankle-foot devices utilize a so called energy storing and return (ESAR) design. This allows for elastically stored energy to be returned to the gait cycle as forward propulsion. While ESAR type feet have been well accepted by the prosthetic community, the design and selection of a prosthetic device for a specific individual is often based on clinical feedback rather than engineering design. This is due to an incomplete understanding of the role of prosthetic design characteristics (e.g. stiffness, roll-over shape, etc.) have on the gait pattern of an individual. Therefore, the focus of this work has been to establish a better understanding of the design characteristics of existing prosthetic devices through mechanical testing and the development of a prototype prosthetic foot that has been numerically optimized for a specific gait pattern. The component stiffness, viscous properties, and energy return of commonly prescribed carbon fiber ESAR type feet were evaluated through compression testing with digital image correlation at select loading angles following the idealized gait from the ISO 22675 standard for fatigue testing. A representative model was developed to predict the stress within each of the tested components during loading and to optimize the design for a target loading response through parametric finite element analysis. This design optimization approach, along with rapid prototyping technologies, will allow clinicians to better identify the role the design characteristics of the foot have on an amputee's biomechanics during future gait analysis.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006397, ucf:51502
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006397
-
-
Title
-
Chaotification as a Means of Broadband Vibration Energy Harvesting with Piezoelectric Materials.
-
Creator
-
Geiyer, Daniel, Kauffman, Jeffrey L., Das, Tuhin, Moslehy, Faissal, Shivamoggi, Bhimsen, University of Central Florida
-
Abstract / Description
-
Computing advances and component miniaturization in circuits coupled with stagnating battery technology have fueled growth in the development of high efficiency energy harvesters. Vibration-to-electricity energy harvesting techniques have been investigated extensively for use in sensors embedded in structures or in hard-to-reach locations like turbomachinery, surgical implants, and GPS animal trackers. Piezoelectric materials are commonly used in harvesters as they possess the ability to...
Show moreComputing advances and component miniaturization in circuits coupled with stagnating battery technology have fueled growth in the development of high efficiency energy harvesters. Vibration-to-electricity energy harvesting techniques have been investigated extensively for use in sensors embedded in structures or in hard-to-reach locations like turbomachinery, surgical implants, and GPS animal trackers. Piezoelectric materials are commonly used in harvesters as they possess the ability to convert strain energy directly into electrical energy and can work concurrently as actuators for damping applications. The prototypical harvesting system places two piezoelectric patches on both sides of the location of maximum strain on a cantilever beam. While efficient around resonance, performance drops dramatically should the driving frequency drift away from the beam's fundamental frequency. To date, researchers have worked to improve harvesting capability by modifying material properties, using alternative geometries, creating more efficient harvesting circuits, and inducing nonlinearities. These techniques have partially mitigated the resonance excitation dependence for vibration-based harvesting, but much work remains.In this dissertation, an induced nonlinearity destabilizes a central equilibrium point, resulting in a bistable potential function governing the cantilever beam system. Depending on the environment, multiple stable solutions are possible and can coexist. Typically, researchers neglect chaos and assume that with enough energy in the ambient environment, large displacement trajectories can exist uniquely. When subjected to disturbances a system can fall to coexistent lower energy solutions including aperiodic, chaotic oscillations. Treating chaotic motion as a desirable behavior of the system allows frequency content away from resonance to produce motion about a theoretically infinite number of unstable periodic orbits that can be stabilized through control. The extreme sensitivity to initial conditions exhibited by chaotic systems paired with a pole placement control strategy pioneered by Ott, Grebogi, and Yorke permits small perturbations to an accessible system parameter to alter the system response dramatically. Periodic perturbation of the system trajectories in the vicinity of isolated unstable orbit points can therefore stabilize low-energy chaotic oscillations onto larger trajectory orbits more suitable for energy harvesting.The periodic perturbation-based control method rids the need of a system model. It only requires discrete displacement, velocity, or voltage time series data of the chaotic system driven by harmonic excitation. While the analysis techniques are not fundamentally limited to harmonic excitation, this condition permits the use of standard discrete mapping techniques to isolate periodic orbits of interest. Local linear model fits characterize the orbit and admit the necessary control perturbation calculations from the time series data.This work discusses the feasibility of such a method for vibration energy harvesting, displays stable solutions under various control algorithms, and implements a hybrid bench-top experiment using MATLAB and LabVIEW FPGA. In conclusion, this work discusses the limitations for wide-scale use and addresses areas of further work; both with respect to chaotic energy harvesting and parallel advances required within the field as a whole.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006878, ucf:51718
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006878
-
-
Title
-
RF Energy Harvesting for Implantable ICs with On-chip Antenna.
-
Creator
-
Liu, Yu-chun, Yuan, Jiann-Shiun, Gong, Xun, Jones, W, University of Central Florida
-
Abstract / Description
-
Nowadays, as aging population increasing yearly, the health care technologies for elder people who commonly have high blood pressure or Glaucoma issues have attracted much attention. In order to care of those people, implantable integrated circuits (ICs) in human body are the direct solution to have 24/7 days monitoring with real-time data for diagnosis by patients themselves or doctors. However, due to the small size requirement for the implanted ICs located in human organs, it's quite...
Show moreNowadays, as aging population increasing yearly, the health care technologies for elder people who commonly have high blood pressure or Glaucoma issues have attracted much attention. In order to care of those people, implantable integrated circuits (ICs) in human body are the direct solution to have 24/7 days monitoring with real-time data for diagnosis by patients themselves or doctors. However, due to the small size requirement for the implanted ICs located in human organs, it's quite challenging to integrate with transmitting and receiving antenna in a single chip, especially operating in 5.8-GHz ISM band. This research proposes a new idea to solve the issue of integrating an on-chip antenna with implanted ICs. By adding an additional dielectric substrate upon the layer of silicon oxide in CMOS technology, utilizing the metal-6, it can form an extremely compact 3D-structure on-chip antenna which is able to be placed in human eye, heart or even in a few mm-diameter vessels. The proposed 3D on-chip antenna is only 1(&)#215;1(&)#215;2.8 mm3 with -10 dB gain and 10% efficiency, which has capability to communicate at least within 5 cm distance. The entire implanted battery-less wireless system has also been developed in this research. A designed 30% efficiency Native NMOS rectifier could generate 1 V and 1 mA to supply the designed low power transmitter including voltage-controlled oscillator (VCO) and power amplifier (PA). The entire system performance is well evaluated by link budget analysis and the simulation result demonstrates the possibility and feasibility of future on-demand easy-to-design implantable SoC.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005202, ucf:50652
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005202
-
-
Title
-
Modeling and fault detection in DC side of Photovoltaic Arrays.
-
Creator
-
Akram, Mohd, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
Fault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to...
Show moreFault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to detect and clear. This paper deals with the modeling, detection and classification of these types of DC faults. It is essential to be able to simulate the PV characteristics and faults through software. In this thesis a comprehensive literature survey of fault detection methods for DC side of a PV system is presented. The disparities in the techniques employed for fault detection are studied . A new method for modeling the PV systems information only from manufacturers datasheet using both the Normal Operating Cell temperature conditions (NOCT) and Standard Operating Test Conditions (STC) conditions is then proposed.The input parameters for modeling the system are Isc,Voc,Impp,Vmpp and the temperature coefficients of Isc and Voc for both STC and NOCT conditions. The model is able to analyze the variations of PV parameters such as ideality factor, Series resistance, thermal voltage and Band gap energy of the PV module with temperature. Finally a novel intelligent method based on Probabilistic Neural Network for fault detection and classification for PV farm with string inverter technology is proposed.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005293, ucf:50571
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005293
-
-
Title
-
Development of a Chemical Kinetic Model for a Fluidized-bed Sewage Sludge Gasifier.
-
Creator
-
Champion, Wyatt, Cooper, Charles, Mackie, Kevin, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
As the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass.Within a fluidized-bed gasifier, thermal...
Show moreAs the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass.Within a fluidized-bed gasifier, thermal medium (sand) is heated to operating temperature (around 1350(&)deg;F) and begins to fluidize due to the rapid expansion of air entering the bottom of the reactor. This fluidization allows for excellent heat transfer and contact between gases and solids, and prevents localized (")hot spots(") within the gasifier, thereby reducing the occurrence of ash agglomeration within the gasifier. Solids enter the middle of the gasifier and are rapidly dried and devolatilized, and the products of this step are subsequently oxidized and then reduced in the remainder of the gasifier. A syngas composed mainly of N2, H2O, CO2, CO, CH4, and H2 exits the top of the gasifier.A computer model was developed to predict the syngas composition and flow rate, as well as ash composition and mass flow rate from a fluidized-bed gasifier. A review of the literature was performed to determine the most appropriate modeling approach. A chemical kinetic model was chosen, and developed in MATLAB using the Newton-Raphson method to solve sets of 18 simultaneous equations. These equations account for mass and energy balances throughout the gasifier. The chemical kinetic rate expressions for these reactions were sourced from the literature, and some values modified to better fit the predicted gas composition to literature data.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005089, ucf:50746
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005089
-
-
Title
-
Data-Driven Modeling and Optimization of Building Energy Consumption.
-
Creator
-
Grover, Divas, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Zhou, Qun, University of Central Florida
-
Abstract / Description
-
Sustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the...
Show moreSustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the operation. The City of Orlando has similar goals of sustainability and reduction of energy consumption so, they provided us access to their BAS for the data and study the operation of its facilities. The data scraped from the City's BAS serves can be used to develop statistical/machine learning methods for decision making. We selected a mid-size pilot building to apply these techniques. The process begins with the collection of data from BAS. An Application Programming Interface (API) is developed to login to the servers and scrape data for all data points and store it on the local machine. Then data is cleaned to analyze and model. The dataset contains various data points ranging from indoor and outdoor temperature to fan speed inside the Air Handling Unit (AHU) which are operated by Variable Frequency Drive (VFD). This whole dataset is a time series and is handled accordingly. The cleaned dataset is analyzed to find different patterns and investigate relations between different data points. The analysis helps us in choosing parameters for models that are developed in the next step. Different statistical models are developed to simulate building and equipment behavior. Finally, the models along with the data are used to optimize the building Operation with the equipment constraints to make decisions for building operation which leads to a reduction in energy consumption while maintaining temperature and pressure inside the building.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007810, ucf:52335
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007810
-
-
Title
-
Analysis, Design and Efficiency Optimization of Power Converters for Renewable Energy Applications.
-
Creator
-
Chen, Xi, Batarseh, Issa, Zhou, Qun, Mikhael, Wasfy, Sun, Wei, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
DC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with...
Show moreDC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with the applications where the isolation is required, either these topologies should be modified, or alternative topologies are needed. Among various isolated DC-DC converters, the LLC resonant converter is an attractive selection due to its soft switching, isolation, wide gain range, high reliability, high power density and high conversion efficiency.In low power applications, such as battery chargers and solar microinverters, increasing the switching frequency can reduce the size of passive components and reduce the current ripple and root-mean-square (RMS) current, resulting in higher power density and lower conduction loss. However, switching losses, gate driving loss and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Therefore, switching frequency modulation, components optimization and soft switching techniques have been proposed to overcome these issues and achieve a tradeoff to reach the maximum conversion efficiency.This dissertation can be divided into two categories: the first part is focusing on the well-known non-isolated bidirectional cascaded-buck-boost converter, and the second part is concentrating on the isolated dual-input single resonant tank LLC converter. Several optimization approaches have been presented to improve the efficiency, power density and reliability of the power converters. In the first part, an adaptive switching frequency modulation technique has been proposed based on the precise loss model in this dissertation to increase the efficiency of the cascaded-buck-boost converter. In adaptive switching frequency modulation technique, the optimal switching frequency for the cascaded-buck-boost converter is adaptively selected to achieve the minimum total power loss. In addition, due to the major power losses coming from the inductor, a new low profile nanocrystalline inductor filled with copper foil has been designed to significantly reduce the core loss and winding loss. To further improve the efficiency of the cascaded-buck-boost converter, the adaptive switching frequency modulation technique has been applied on the converter with designed nanocrystalline inductor, in which the peak efficiency of the converter can break the 99% bottleneck.In the second part, a novel dual-input DC-DC converter is developed according to the LLC resonant topology. This design concept minimizes the circuit components by allowing single resonant tank to interface with multiple input sources. Based on different applications, the circuit configuration for the dual-input LLC converter will be a little different. In order to improve the efficiency of the dual-input LLC converter, the semi-active rectifiers have been used on the transformer secondary side to replace the low-side bridge diodes. In this case, higher magnetizing inductance can be selected while maintaining the same voltage gain. Besides, a burst-mode control strategy has been proposed to improve the light load and very light load efficiency of the dual- input LLC converter. This control strategy is able to be readily implemented on any power converter since it can be achieved directly through firmware and no circuit modification is needed in implementation of this strategy.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007612, ucf:52531
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007612
-
-
Title
-
Self-assembly of Amyloid Aggregates Simulated with Molecular Dynamics.
-
Creator
-
Berhanu, Workalemahu, Masunov, Artem, Kolpashchikov, Dmitry, Ye, Jingdong, Zou, Shengli, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
ABSTRACTAmyloids are highly ordered cross-? sheet aggregates that are associated with many diseases such as Alzheimer's, type II diabetes and prion diseases. Recently a progress has been made in structure elucidation, environmental effects and thermodynamic properties of amyloid aggregates. However, detailed understanding of how mutation, packing polymorphism and small organic molecules influence amyloid structure and dynamics is still lacking. Atomistic modeling of these phenomena with...
Show moreABSTRACTAmyloids are highly ordered cross-? sheet aggregates that are associated with many diseases such as Alzheimer's, type II diabetes and prion diseases. Recently a progress has been made in structure elucidation, environmental effects and thermodynamic properties of amyloid aggregates. However, detailed understanding of how mutation, packing polymorphism and small organic molecules influence amyloid structure and dynamics is still lacking. Atomistic modeling of these phenomena with molecular dynamics (MD) simulations holds a great promise to bridge this gap. This Thesis describes the results of MD simulations, which provide insight into the effects of mutation, packing polymorphism and molecular inhibitors on amyloid peptides aggregation. Chapter 1 discusses the structure of amyloid peptides, diseases associated with amyloid aggregation, mechanism of aggregation and strategies to treat amyloid diseases. Chapter 2 describes the basic principles of molecular dynamic simulation and methods of trajectory analysis used in the Thesis. Chapter 3 presents the results of the study of several all-atom molecular dynamics simulations with explicit solvent, starting from the crystalline fragments of two to ten monomers each. Three different hexapeptides and their analogs produced with single glycine replacement were investigated to study the structural stability, aggregation behavior and thermodynamics of the amyloid oligomers. Chapter 4 presents multiple molecular dynamics (MD) simulation of a pair polymorphic form of five short segments of amyloid peptide. Chapter 5 describes MD study of single-layer oligomers of the full-length insulin with a goal to identify the structural elements that are important for insulin amyloid stability, and to suggest single glycine mutants that may improve formulation. Chapter 6 presents the investigation of the mechanism of the interaction of polyphenols molecules with the protofibrils formed by an amyloidogenic hexapeptide fragment (VQIVYK) of Tau peptide by molecular dynamics simulations in explicit solvent. We analyzed the trajectories of the large (7(&)#215;4) aggregate with and without the polyphenols.Our MD simulations for both the short and full length amyloids revealed adding strands enhances the internal stability of wildtype aggregates. The degree of structural similarity between the oligomers in simulation and the fibril models constructed based on experimental data may explain why adding oligomers shortens the experimentally observed nucleation lag phase of amyloid aggregation. The MM-PBSA free energy calculation revealed nonpolar components of the free energy is more favorable while electrostatic solvation is unfavorable for the sheet to sheet interaction. This explains the acceleration of aggregation by adding nonpolar co-solvents (methanol, tri?uoroethanol, and hexa?uoroisopropanol). Free energy decomposition shows residues situated at the interface were found to make favorable contribution to the peptide -peptide association.The results from the simulations might provide both the valuable insight for amyloid aggregation as well as assist in inhibitor design efforts. First, the simulation of the single glycine mutants at the steric zipper of the short segments of various pathological peptides indicates the intersheet steric zipper is important for amyloid stability. Mutation of the side chains at the dry steric zipper disrupts the sheet to sheet packing, making the aggregation unstable. Thus, designing new peptidomimetic inhibitors able to prevent the fibril formation based on the steric zipper motif of the oligomers, similar to the ones examined in this study may become a viable therapeutic strategy. The various steric zipper microcrystal structures of short amyloid segments could be used as a template to design aggregation inhibitor that can block growth of the aggregates. Modification of the steric zipper structure (structure based design) with a single amino acid changes, shuffling the sequences, N- methylation of peptide amide bonds to suppress hydrogen bonding ability of NH groups or replacement with D amino acid sequence that interact with the parent steric zipper could be used in computational search for the new inhibitors. Second, the polyphenols were found to interact with performed oligomer through hydrogen bonding and induce conformational change creating an altered aggregate. The conformational change disrupts the intermolecular amyloid contact remodeling the amyloid aggregate. The recently reported microcrystal structure of short segments of amyloid peptides with small organic molecules could serve as a pharamcophore for virtual screening of aggregation inhibitor using combined docking and MD simulation with possible enhancement of lead enrichment. Finally, our MD simulation of short segments of amyloids with steric zipper polymorphism showed the stability depends on both sequence and packing arrangements. The hydrophilic polar GNNQQNY and NNQNTF with interface containing large polar and/or aromatic side chains (Q/N) are more stable than steric zipper interfaces made of small or hydrophobic residues (SSTNVG, VQIVYK, and MVGGVV). The larger sheet to sheet interface of the dry steric zipper through polar Q/N rich side chains was found to holds the sheets together better than non Q/N rich short amyloid segments. The packing polymorphism could influence the structure based design of aggregation inhibitor and a combination of different aggregation inhibitors might be required to bind to various morphologic forms of the amyloid peptides.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004088, ucf:49131
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004088
-
-
Title
-
Characterization of composite broadband absorbing conjugated polymer nanoparticles by steady-state, time-resolved and single particle spectroscopy.
-
Creator
-
Bonner, Maxwell, Gesquiere, Andre, Campiglia, Andres, Santra, Swadeshmukul, Hernandez, Florencio, Perez Figueroa, Jesus, Ye, Jingdong, Fernandez-Valle, Cristina, University of...
Show moreBonner, Maxwell, Gesquiere, Andre, Campiglia, Andres, Santra, Swadeshmukul, Hernandez, Florencio, Perez Figueroa, Jesus, Ye, Jingdong, Fernandez-Valle, Cristina, University of Central Florida
Show less
-
Abstract / Description
-
As the global economy searches for reliable, inexpensive and environmentally friendly renewable energy resources, energy conservation by means of photovoltaics has seen near exponential growth in the last decade. Compared to state-of-the-art inorganic solar cells, organic photovoltaics (OPVs) composed of conjugated polymers are particularly interesting because of their processability, flexibility and the potential for large area devices at a reduced fabrication cost. It has been extensively...
Show moreAs the global economy searches for reliable, inexpensive and environmentally friendly renewable energy resources, energy conservation by means of photovoltaics has seen near exponential growth in the last decade. Compared to state-of-the-art inorganic solar cells, organic photovoltaics (OPVs) composed of conjugated polymers are particularly interesting because of their processability, flexibility and the potential for large area devices at a reduced fabrication cost. It has been extensively documented that the interchain and intrachain interactions of conjugated polymers complicate the fundamental understanding of the optical and electronic properties in the solid-state (i.e. thin film active layer). These interactions are highly dependent on the nanoscale morphology of the solid-state material, leading to a heterogeneous morphology where individual conjugated polymer molecules obtain a variety of different optoelectronic properties. Therefore, it is of the utmost importance to fundamentally study conjugated polymer systems at the single molecule or nanoparticle level instead of the complex macroscopic bulk level.This dissertation research aims to develop simplified nanoparticle models that are representation of the nanodomains found in the solid-state material, while fundamentally addressing light harvesting, energy transfer and interfacial charge transfer mechanisms and their relationship to the electronic structure, material composition and morphology of the nanoparticle system. In preceding work, monofunctional doped nanoparticles (polymer-polymer) were fabricated with enhanced light harvesting and F?rster energy transfer properties by blending Poly[(o-phenylenevinylene)-alt-(2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene)] (BPPV) and Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) at various MEH-PPV doping ratios. While single particle spectroscopy (SPS) reveals a broad distribution of optoelectronic and photophysical properties, time-correlated single photon counting (TC-SPC) spectroscopy displays multiple fluorescence lifetime components for each nanoparticle composition, resulting from changing polymer chain morphologies and polymer-polymer aggregation. In addition, difunctional doped nanoparticles were fabricated by doping the monofunctional doped nanoparticles with PC60BM ([6,6]-phenyl-C61-butyric acid methyl ester) to investigate competition between intermolecular energy transfer and interfacial charge transfer. Specifically, the difunctional SPS data illustrated enhanced and reduced energy transfer mechanisms that are dependent on the material composition of MEH-PPV and PC60BM. These data are indicative of changes in inter- and intrachain interactions of BPPV and MEH-PPV and their respective nanoscale morphologies. Together, these fundamental studies provide a thorough understanding of monofunctional and difunctional doped nanoparticle photophysics, necessary for understanding the morphological, optoelectronic and photophysical processes that can limit the efficiency of OPVs and provide insight for strategies aimed at improving device efficiencies.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004089, ucf:49143
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004089
-
-
Title
-
H(&)#252;ckel Energy of a Graph: Its Evolution From Quantum Chemistry to Mathematics.
-
Creator
-
Zimmerman, Steven, Mohapatra, Ram, Song, Zixia, Brigham, Robert, University of Central Florida
-
Abstract / Description
-
The energy of a graph began with German physicist, Erich H(&)#252;ckel's 1931 paper, QuantenttheoretischeBeitr(&)#228;ge zum Benzolproblem. His work developed a method for computing thebinding energy of the ?-electrons for a certain class of organic molecules. The vertices of thegraph represented the carbon atoms while the single edge between each pair of distinct verticesrepresented the hydrogen bonds between the carbon atoms. In turn, the chemical graphswere represented by an n (&)#215; n...
Show moreThe energy of a graph began with German physicist, Erich H(&)#252;ckel's 1931 paper, QuantenttheoretischeBeitr(&)#228;ge zum Benzolproblem. His work developed a method for computing thebinding energy of the ?-electrons for a certain class of organic molecules. The vertices of thegraph represented the carbon atoms while the single edge between each pair of distinct verticesrepresented the hydrogen bonds between the carbon atoms. In turn, the chemical graphswere represented by an n (&)#215; n matrix used in solving Schr(&)#246;dinger's eigenvalue/eigenvectorequation. The sum of the absolute values of these graph eigenvalues represented the total?-electron energy. The criteria for constructing these chemical graphs and the chemical interpretationsof all the quantities involved made up the H(&)#252;ckel Molecular Orbital theoryor HMO theory. In this paper, we will show how the chemical interpretation of H(&)#252;ckel'sgraph energy evolved to a mathematical interpretation of graph energy that Ivan Gutmanprovided for us in his famous 1978 definition of the energy of a graph. Next, we will presentCharles Coulson's 1940 theorem that expresses the energy of a graph as a contour integraland prove some of its corollaries. These corollaries allow us to order the energies of acyclicand bipartite graphs by the coefficients of their characteristic polynomial. Following Coulson'stheorem and its corollaries we will look at McClelland's first theorem on the boundsfor the energy of a graph. In the corollaries that follow McClelland's 1971 theorem, we willprove the corollaries that show a direct variation between the energy of a graph and thenumber of its vertices and edges. Finally, we will see how this relationship led to Gutman'sconjecture that the complete graph on n vertices has maximal energy. Although this wasdisproved by Chris Godsil in 1981, we will provide an independent counterexample with thehelp of the software, Maple 13.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004184, ucf:49027
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004184
-
-
Title
-
Properties of High Energy Laser Light Transmission through Large Core Optical Cables.
-
Creator
-
Kennedy, Christopher, Schulzgen, Axel, Bass, Michael, Soileau, Marion, Gordon, Ali, University of Central Florida
-
Abstract / Description
-
Laser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica...
Show moreLaser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica glass. Waveguide theory predicts that light traveling through a bend will form whispering-gallery modes that propagate through total internal reflection bounces along the inside of the outer edge of the bend. This is critical since in these locations the energy density of the light will increase significantly, raising the potential of laser damage, nonlinear effects, and transmission losses. This loss is especially problematic when two 90(&)deg; bends going in opposite directions are in close proximity to each other, forming an 'S-bend'. Light that is grouped along the outer edge going through the first bend will enter the second bend at a sharper angle which causes much high transmission losses and raises the possibility of failure.Models using R-Soft BeamProp and Zemax were developed to study transmission losses, investigate light interactions at critical areas, and predict under which conditions laser damage would occur. BeamProp presents a clearer view of the modal distribution of light within the core of the fiber and is used to analyze how a plane wave with a Gaussian intensity distribution excites the fiber modes. Zemax provides a tool to perform non-sequential ray tracing through the fiber cable and stray light analysis within the core and once the light exits the fiber. Intensity distributions of the cross sectional area of the fiber shows the whispering gallery modes forming as the light propagates around bends and disburses as it propagates afterwards. It was discovered using R-Soft that if the separation distance between bends in an S-bend is approximately 3 mm there exists a condition where maximum transmission occurs. For 365 (&)#181;m diameter core fiber it was calculated that the difference in output power could be as high as 150%. This was initially completely unexpected; however ray tracing using Zemax was able to verify that this distance allows the light to transition so that it enters the 2nd bend at the optimal angle to enter the whispering gallery mode. Experiments were performed that validated the models' predictions and images were captured clearly showing the spatial distribution shift of the light within the core of the fiber.Experiments were performed to verify light grouping together to form whispering gallery modes as predicted by Zemax. Microscope images were taken as a function of distance from various bends to observe the periodic nature in which the laser light fills up the fiber. Additionally, a configuration was setup to examine stimulated Brillioun scattering and determine the onset of laser damage in the fiber. Fibers were tested as a function of bend radius and number of shots and recommendations for future systems were made. Lastly, mechanical failure tests were performed to determine the relationship between stress placed on the fiber through bending and fiber lifetime in a static environment. This allowed a minimum safe bend radius to be calculated for a 30 year lifetime that agreed with previous calculated values.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004871, ucf:49668
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004871
Pages