View All Items
- Title
- LOW NOISE, NARROW OPTICAL LINEWIDTH SEMICONDUCTOR-BASED OPTICAL COMB SOURCE AND LOW NOISE RF SIGNAL GENERATION.
- Creator
-
Ozdur, Ibrahim, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth...
Show moreRecently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106, which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The mode-locked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively mode-locked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results.
Show less - Date Issued
- 2011
- Identifier
- CFE0003573, ucf:48917
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003573
- Title
- HIGH-SPEED MODELOCKED SEMICONDUCTOR LASERS AND APPLICATIONS IN COHERENT PHOTONIC SYSTEMS.
- Creator
-
Lee, Wangkuen, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
1.55-µm high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with...
Show more1.55-µm high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with broadband optical frequency combs. Laser frequency stability is improved by applying the Pound-Drever-Hall (PDH) frequency stabilization technique to the MSLs. The improved laser performance after the frequency stabilization (a frequency drifting of less than 350 MHz), is extensively studied with respect to the laser linewidth (~ 3 MHz), the relative intensity noise (RIN) (< -150 dB/Hz), as well as the modal RIN (~ 3 dB reduction). MSL to MSL, and tunable laser to MSL synchronization is demonstrated by using a dual-mode injection technique and a modulation sideband injection technique, respectively. Dynamic locking behavior and locking bandwidth are experimentally and theoretically studied. Stable laser synchronization between two MSLs is demonstrated with an injection seed power on the order of a few microwatt. Several coherent heterodyne detections based on the synchronized MSL systems are demonstrated for applications in microwave photonic links and ultra-dense wavelength division multiplexing (UD-WDM) system. In addition, efficient coherent homodyne balanced receivers based on synchronized MSLs are developed and demonstrated for a spectrally phase-encoded optical CDMA (SPE-OCDMA) system.
Show less - Date Issued
- 2007
- Identifier
- CFE0001703, ucf:47326
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001703