Current Search: Water Treatment (x)
View All Items
- Title
- MECHANISMS OF NANOFILTER FOULING AND TREATMENT ALTERNATIVES FOR SURFACE WATER SUPPLIES.
- Creator
-
Reiss, Charles, Taylor, James, University of Central Florida
- Abstract / Description
-
This dissertation addresses the role of individual fouling mechanisms on productivity decline and solute mass transport in nanofiltration (NF) of surface waters. Fouling mechanisms as well as solute mass transport mechanisms and capabilities must be understood if NF of surface waters is to be successful. Nanofiltration of surface waters was evaluated at pilot-scale in conjunction with advanced pretreatment processes selected for minimization of nanofilter fouling, which constituted several...
Show moreThis dissertation addresses the role of individual fouling mechanisms on productivity decline and solute mass transport in nanofiltration (NF) of surface waters. Fouling mechanisms as well as solute mass transport mechanisms and capabilities must be understood if NF of surface waters is to be successful. Nanofiltration of surface waters was evaluated at pilot-scale in conjunction with advanced pretreatment processes selected for minimization of nanofilter fouling, which constituted several integrated membrane systems (IMSs). Membrane fouling mechanisms of concern were precipitation, adsorption, particle plugging, and attached biological growth. Fouling was addressed by addition of acid and antiscalent for control of precipitation, addition of monochloramine for control of biological growth, microfiltration (MF) or coagulation-sedimentation-filtration (CSF) for control of particle plugging, and in-line coagulation-microfiltration (C/MF) or CSF for control of organic adsorption. Surface water solutes of concern included organic solutes, pathogens, and taste and odor compounds. Solute mass transport was addressed by evaluation of total organic carbon (TOC), Bacillus subtilis endospores, gesomin (G), 2-methlyisoborneol (MIB), and threshold odor number (TON). This evaluation included modeling to determine the role of diffusion in solute mass transport including assessment of the homogeneous solution diffusion equation. A cellulose acetate (CA) NF was less susceptible to fouling than two polyamide (PA) NFs. NF fouling was minimized by the addition of monochloramine, lower flux, lower recovery, and with the use of a coagulant-based pretreatment (C/MF or CSF). NF surface characterization showed that the low fouling CA film was less rough and less negatively charged than the PA films. Thus the theory that a more negatively charged surface would incur less adsorptive fouling, due to charge repulsion, was not observed for these tests. The rougher surface of the PA films may have increased the number of sites for adsorption and offset the charge repulsion benefits of the negatively charged surface. The addition of monochloramine significantly reduced biodegradation and integrity loss of the CA membrane. PA membranes are inherently not biologically degradable due to their chemical structure. Monochloramination reduced the rate of fouling of the PA membrane but resulted in a gradual increase in water mass transfer coefficient and a decrease in TDS rejection over time, which indicated damage and loss of integrity of the PA membrane. Based on surface characterization by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectrometry (FTIR), the PA membrane degradation appeared to be chemically-based and initiated with chlorination of amide nitrogen and/or aromatic rings, which ultimately resulted in disruption of membrane chemical structures. The recommended Integrated Membrane System to control fouling of a surface water nanofiltration system is CSF monochloramine/acid/antiscalent³monochloramine-tolerant NF. This IMS, at low flux and recovery, operated with no discernable fouling and is comparable to a groundwater nanofiltration plant with cleaning frequencies of once per six months or longer. A significant portion of the organic solutes including total organic carbon (TOC) passing through the membranes was diffusion controlled. Permeate concentration increased with increasing recovery and with decreasing flux for both PA and CA membranes. The influence was diminished for the PA membrane, due to its high rejection capabilities. Total rejection of spores used as pathogen surrogates was not achieved as spores were indigenous and high spore concentrations were used in all challenge studies; however, Integrated Membrane System spore rejection exceeded credited regulatory rejection of similar sized microorganisms by conventional treatment by several logs. Spore rejection varied by NF but only slightly by MF as size-exclusion controlled. There was no difference among spore rejection of IMS with and without in-line coagulation. Consequently, these results indicate membrane configuration (Hollow fiber>Spiral Wound) and membrane film (Composite Thin Film>CA) significantly affected spore rejection. Geosmin and methylisoborneol have molecular weights of 182 and 168 respectively, and are byproducts of algal blooms, which commonly increase taste and odor as measured by the threshold odor number (TON) in drinking water. Although these molecules are neutral and were thought to pass through NFs, challenge testing of IMS unit operations found that significant removal of TON, G and MIB was achieved by membrane processes, which was far superior to conventional processes. A CA NF consistently removed 35 to 50 percent of TON, MIB, and G, but did not achieve compliance with the TON standard of 3 units. A PA NF provided over 99 percent removal of MIB and G. Challenge tests using MIB and G indicated that size-exclusion controlled mass transfer of these compounds in NF membranes.
Show less - Date Issued
- 2005
- Identifier
- CFE0000630, ucf:46506
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000630
- Title
- VERIFICATION OF PILOT-SCALE IRON RELEASE MODELS.
- Creator
-
Glatthorn, Stephen, Taylor, James, University of Central Florida
- Abstract / Description
-
A model for the prediction of color release from a pilot distribution system was created in 2003 by Imran. This model allows prediction of the release of color from aged cast iron and galvanized steel pipes as a function of water quality and hydraulic residence time. Color was used as a surrogate measurement for iron, which exhibited a strong linear correlation. An anomaly of this model was an absence of a term to account for pH, due to the influent water being well stabilized. A new study...
Show moreA model for the prediction of color release from a pilot distribution system was created in 2003 by Imran. This model allows prediction of the release of color from aged cast iron and galvanized steel pipes as a function of water quality and hydraulic residence time. Color was used as a surrogate measurement for iron, which exhibited a strong linear correlation. An anomaly of this model was an absence of a term to account for pH, due to the influent water being well stabilized. A new study was completed to evaluate the effectiveness of corrosion inhibitors against traditional adjustment. Two control lines were supplied with nearly same water qualities, one at pH close to pHs and one at pH well above pHs. The resulting data showed that effluent iron values were typically greater in the line with lower pH. The non-linear color model by Imran shows good agreement when the LSI was largely positive, but underpredicted the color release from the lower LSI line. A modification to the Larson Ratio proposed by Imran was able to give a reasonable agreement to the data at lower LSI values. LSI showed no definite relation to iron release, although a visual trend of higher LSI mitigating iron release can be seen. An iron flux model was also developed on the same pilot system by Mutoti. This model was based on a steady state mass balance of iron in a pipe. The constants for the model were empirically derived from experiments at different hydraulic conditions with a constant water quality. Experiments were assumed to reach steady state at 3 pipe volumes due to the near constant effluent turbidity achieved at this point. The model proposes that the iron flux under laminar flow conditions is constant, while the iron flux is linearly related to the Reynolds Number under turbulent conditions. This model incorporates the color release models developed by Imran to calculate flux values from different water qualities. A limited number of experiments were performed in the current study using desalinated and ground water sources at Reynolds Numbers ranging from 50 to 200. The results of these limited experiments showed that the iron flux for cast iron pipe was approximately one-half of the predicted values from Mutoti. This discrepancy may be caused by the more extensive flushing of the pipes performed on the current experiments which allowed attainment of a true steady state. Model changes were proposed to distinguish between near stagnant flow and the upper laminar region, with the upper laminar region showing a slight linear increase. Predictions using the galvanized flux model were not accurate due to an inferior color release model that was developed for galvanized pipes. The model exhibits a high dependence on sulfate concentrations, but concentrations of sulfates in the current experiments were low. This led to low predicted flux values when the actual data showed otherwise. A new galvanized model was developed from a combination of data from the original and current experiments. The predicted flux values using the new model showed great improvement over the old model, but the new model database was limited and the resulting model was not able to be independently tested.
Show less - Date Issued
- 2007
- Identifier
- CFE0001704, ucf:47332
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001704
- Title
- Anthropogenic Organic Chemical Removal from a Surficial Groundwater and Mass Transfer Modeling in a Nanofiltration Membrane Process.
- Creator
-
Jeffery, Samantha, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Yestrebsky, Cherie, University of Central Florida
- Abstract / Description
-
This dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine...
Show moreThis dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine monitoring of fourteen TrOCs in reclaimed water and at the water treatment facility revealed varying degrees of TrOC detection in the environment. Certain TrOCs, including caffeine and DEET, were detected in a majority of the water sampling locations evaluated in this work. However, subsequent dilution with highly-treated reverse osmosis (RO) permeate from alternative supplies resulted in TrOCs below detection limits in potable water at the point-of-entry (POE). Pilot testing was employed to determine the extent of TrOC removal by NF. Prior to evaluating TrOC removal, hydraulic transients within the pilot process were first examined to determine the required length of time the pilot needed to reach steady-state. The transient response of a center-port NF membrane process was evaluated using a step-input dose of a sodium chloride solution. The pilot was configured as a two-stage, split-feed, center-exit, 7:2 pressure vessel array process, where the feed water is fed to both ends of six element pressure vessels, and permeate and concentrate streams are collected after only three membrane elements. The transient response was described as a log-logistic system with a maximum delay time of 285 seconds for an 85% water recovery and 267 gallon per minute feed flowrate.Eleven TrOC pilot unit experiments were conducted with feed concentrations ranging from 0.52 to 4,500 ?g/L. TrOC rejection was well-correlated with compound molecular volume and polarizability, with coefficient of determination (R2) values of 0.94. To enhance this correlation, an extensive literature review was conducted and independent literature sources were correlated with rejection. Literature citations reporting the removal effectiveness of an additional sixty-one TrOCs by loose NF membranes (a total of 95 data points) were found to be well-correlated with molecular volume and polarizability, with R2 values of 0.72 and 0.71, respectively.Of the TrOC's detected during this research, the anthropogenic solute caffeine was selected to be modeled using the homogeneous solution diffusion model (HSDM) and the HSDM with film theory (HSDM-FT). Mass transfer coefficients, K_w (water) K_s (caffeine), and k_b (caffeine back-transport) were determined experimentally, and K_s was also determined using the Sherwood correlation method. Findings indicate that caffeine transport through the NF pilot could be explained using experimentally determined K_s values without incorporating film theory, since the HSDM resulted in a better correlation between predicted and actual caffeine permeate concentrations compared to the HSDM-FT and the HSDM using K_s obtained using Sherwood applications. Predicted versus actual caffeine content was linearly compared, revealing R2 values on the order of 0.99, 0.96, and 0.99 for the HSDM without FT, HSDM-FT, and HSDM using a K_s value obtained using the Sherwood correlation method. However, the use of the HSDM-FT and the Sherwood number resulted in the over-prediction of caffeine concentrations in permeate streams by 27 percent and 104 percent, respectively.
Show less - Date Issued
- 2016
- Identifier
- CFE0006331, ucf:51545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006331
- Title
- POST TREATMENT ALTERNATIVES FOR STABILIZING DESALINATED WATER.
- Creator
-
Douglas, Susaye, Duranceau , Steven, University of Central Florida
- Abstract / Description
-
The use of brackish water and seawater desalination for augmenting potable water supplies has focused primarily on pre-treatment, process optimization, energy efficiency, and concentrate management. Much less has been documented regarding the impact of post-treatment requirements with respect to distribution system. The goals of this study were to review current literature on post-treatment of permeate water, use survey questionnaires to gather information on post-treatment water quality...
Show moreThe use of brackish water and seawater desalination for augmenting potable water supplies has focused primarily on pre-treatment, process optimization, energy efficiency, and concentrate management. Much less has been documented regarding the impact of post-treatment requirements with respect to distribution system. The goals of this study were to review current literature on post-treatment of permeate water, use survey questionnaires to gather information on post-treatment water quality characteristics, gather operation information, review general capital and maintenance cost, and identify appropriate "lessons learned" with regards to post-treatment from water purveyors participating in the Project. A workshop was organized where experts from across the United States, Europe and the Caribbean active in brackish and seawater desalination, gathered to share technical knowledge regarding post-treatment stabilization, identify solutions for utilities experiencing problems with post-treatment, note lessons learned, and develop desalination water post-treatment guidelines. In addition, based on initial workshop discussions, the iodide content of reverse osmosis and nanofiltration permeate from two seawater desalination facilities was determined. The literature review identified that stabilization and disinfection are required desalination post-treatment processes, and typically are considerations when considering 1) blending, 2) re-mineralization, 3) disinfection, and 4) materials used for storage and transport of product water. Addition of chemicals can effectively achieve post-treatment goals although considerations relating to the quality of the chemical, dosage rates, and possible chemical reactions, such as possible formation of disinfection by-products, should be monitored and studied. The survey gathered information on brackish water and seawater desalination facilities with specific regards to their post-treatment operations. The information obtained was divided into seven sections 1) general desalination facility information, 2) plant characteristics with schematics, 3) post-treatment water quality, 4) permeate, blend, and point of entry quality, 5) post-treatment operation, 6) operation and maintenance costs, 7) and lessons learned. A major consideration obtained from the survey was that facilities should conduct post-treatment pilot studies in order to identify operational problems that may impact distributions systems prior to designing the plant. Effective design and regulation considerations will limit issues with permitting for the facility. The expert workshop identified fourteen priority issues pertaining to post-treatment. Priority issues were relating to post-treatment stabilization of permeate water, corrosion control, disinfection and the challenges relating to disinfection by-product (DBP) formation, water quality goals, blending, and the importance of informing the general public. For each priority issues guidelines/recommendations were developed for how facilities can effectively manage such issues if they arise. One of the key priorities identified in the workshop was related to blending of permeate and formation of DBPs. However, it was identified in the workshop that the impact of iodide on iodinated-DBP formation was unknown. Consequently, screening evaluations using a laboratory catalytic reduction method to determine iodide concentrations in the permeate of two of the workshop participants: Tampa Bay and Long Beach seawater desalination facilities. It was found that the permeate did contain iodide, although at levels near the detection limit of the analytical method (8 µg/L).
Show less - Date Issued
- 2009
- Identifier
- CFE0002804, ucf:48121
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002804
- Title
- Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions.
- Creator
-
Hardin, Mike, Wanielista, Martin, Cooper, David, Randall, Andrew, University of Central Florida
- Abstract / Description
-
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data...
Show moreStormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model.The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data.The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes.The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005503, ucf:50338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005503
- Title
- Assessment of a Surface Water Supply for Source and Treated Distribution System Quality.
- Creator
-
Rodriguez, Angela, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
This study focused on providing a source to tap assessment of surface water systems with respect to (i) the use of alternative biomonitoring tools, (ii) disinfection byproduct (DBP) formation and control, and (iii) corrosion control. In the first study component, two water systems were microbiologically evaluated using adenosine triphosphate (ATP) bioluminescence technology. It was determined that microbial ATP was useful as a surrogate for biomonitoring within a surface water system when...
Show moreThis study focused on providing a source to tap assessment of surface water systems with respect to (i) the use of alternative biomonitoring tools, (ii) disinfection byproduct (DBP) formation and control, and (iii) corrosion control. In the first study component, two water systems were microbiologically evaluated using adenosine triphosphate (ATP) bioluminescence technology. It was determined that microbial ATP was useful as a surrogate for biomonitoring within a surface water system when paired with traditional methods. Although microbial activity differed between distribution systems that used either chloramine or chlorine disinfectant, in both cases flowrate and season affected microbial ATP values. In the second study component, total trihalomethanes (TTHM) and haloacetic acids (HAA5) DBP formation and disinfectant stability was investigated using a novel DBP control process. The method relied on a combination of sulfate, ultraviolet light irradiation, pH, and aeration unit operations. Results indicate respective decreases in 7-day TTHM and HAA5 formation potentials of 36% - 57% and 20% - 47% for the surface waters investigated. In the third component of this work, a corrosion study assessed the effect of disinfectant chemical transitions on the corrosion rates of common distribution system metals. When a chlorine based disinfection system transitioned between chlorine and chloramine, mild steel corrosion increased by 0.45 mils per year (mpy) under chloramine and returned to baseline corrosion rates under chlorine. However, when a chloramine based disinfection system transitioned between chloramine and chlorine, mild steel corrosion increased in tandem with total chlorine levels. Unlike the chlorine system, the mild steel corrosion rates did not return to baseline under chloramine after exposure to 5 mg/L of total chlorine. Surface water systems should consider the use of ATP as a surrogate for biomonitoring, consider the novel treatment process for DBP formation control, and consider corrosion control in disinfectant decision-making activities.
Show less - Date Issued
- 2019
- Identifier
- CFE0007901, ucf:52751
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007901
- Title
- Trihalomethane Removal and Re-Formation in Spray Aeration Processes Treating Disinfected Groundwater.
- Creator
-
Smith, Cassandra, Duranceau, Steven, Randall, Andrew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Historically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to...
Show moreHistorically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to four trihalomethanes (THM) and five haloacetic acids (HAA5), formed when chlorine is used for microbial pathogen control. This thesis examines post-aeration TTHM formation when employing spray-aeration processes to remove semi-volatile TTHMs from chlorinated potable water supplies.A bench scale air stripping unit was designed, constructed and operated to evaluate spray aeration for the removal of the four regulated trihalomethane (THM) species from potable drinking water including bromodichloromethane, bromoform, dibromochloromethane, chloroform. The study was conducted using finished bulk water samples collected from two different water treatment facilities (WTFs) located in Oviedo and Babson Park, Florida. Both treatment plants treat groundwater; however, Oviedo's Mitchell Hammock WTF (MHWTF) supply wells contain dissolved organic carbon and bromide DBP precursors whereas the Babson Park WTF #2 (BPWTF2) supply well contains dissolved organic carbon DBP precursors but is absent of bromide precursor. Three treatment scenarios were studied to monitor impacts on total trihalomethane (TTHM) removal and post-treatment (post-aeration) TTHM formation potential, including 1) no treatment (non-aerated control samples), 2) spray aeration via specially fabricated GridBee(&)#174; nozzle for laboratory-scale applications, 3) spray aeration via a commercially available manufactured BETE(&)#174; nozzle used for full-scale applications. Select water quality parameters, chlorine residual, and total trihalomethane concentrations were monitored throughout the study. The GridBee(&)#174; spray nozzle resulted in TTHM removals ranging from 45.2 (&)#177; 3.3% for the BPWTF2 samples, and 37.7 (&)#177; 3.1% for the MHWTF samples. The BETE(&)#174; spray nozzle removed 54.7(&)#177;3.9% and 48.1(&)#177;6.6% of total trihalomethanes for the Babson Park and Mitchell Hammock WTF samples, respectively. The lower percent removals at the MHWTF are attributed to the detectable presence of bromide and subsequent formation of hypobromous acid in the samples. Post spray aeration TTHM formation potentials were monitored and it was found that the MHWTF experienced significantly higher formation potentials, once again due to the presence of hypobromous acid which led to increases in overall TTHM formation over time in comparison with the Babson Park WTF #2 TTHM formation samples. In addition, chlorine residuals were maintained post spray aeration treatment, and initial chlorine residual and trihalomethane concentrations did not significantly impact overall spray nozzle performance. Among other findings, it was concluded that spray nozzle aeration is a feasible option for the Babson Park WTF #2 for TTHM compliance. For Oviedo's Mitchell Hammock WTF spray aeration was successful in removing TTHMs, however it was not effective in maintaining DBP rule compliance due to the excessive nature of DBP formation in the water samples. This study was not intended to serve as an assessment of varying nozzle technologies; rather, the focus was on the application of spray aerators for TTHM removal and post-formation in drinking water systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0005715, ucf:50117
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005715
- Title
- A Comparison of Aluminum and Iron-based Coagulants for Treatment of Surface Water in Sarasota County, Florida.
- Creator
-
Yonge, David, Duranceau, Steven, Randall, Andrew, Cooper, Charles, University of Central Florida
- Abstract / Description
-
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were...
Show moreIn this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.
Show less - Date Issued
- 2012
- Identifier
- CFE0004621, ucf:49936
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004621
- Title
- Viability of a Residential Integrated Stormwater, Graywater, and Wastewater Treatment System.
- Creator
-
Goolsby, Matthew, Chopra, Manoj, Wanielista, Martin, Randall, Andrew, Chang, Ni-bin, University of Central Florida
- Abstract / Description
-
The subject of water scarcity and the rate of water consumption have become popular over the last few decades. Within the topic of water consumption, there are two separate issues from a residential standpoint. The first concern is the steadily increasing need for viable alternative water sources to be utilized for non-potable applications in an effort to reduce potable water demands. The second concern is the need to significantly reduce of nutrient-laden wastewater effluent discharge from...
Show moreThe subject of water scarcity and the rate of water consumption have become popular over the last few decades. Within the topic of water consumption, there are two separate issues from a residential standpoint. The first concern is the steadily increasing need for viable alternative water sources to be utilized for non-potable applications in an effort to reduce potable water demands. The second concern is the need to significantly reduce of nutrient-laden wastewater effluent discharge from septic systems in order to sustain groundwater quality and prevent adverse ecological impacts. This study addresses both issues with two separate systems integrated into one environmentally functional home that emphasizes low impact development (LID) practices. The first objective of the study is to quantify the performance of the passive treatment Bold (&) GoldTM reactive filter bed (FDOH classified (")innovative system(")) for nutrient removal. The second objective is to monitor the water quality of the combined graywater/stormwater cistern for non-potable use and asses all components (green roof, gutters, graywater treatment, AC condensate, well water, stormwater contribution). The performance of the passive innovative system is compared to past studies and regulatory standards. Also, a bench scale model of the OSTDS is constructed at the University of Central Florida (UCF) Stormwater Management Academy Research and Testing Lab (SMART Lab) and tested to provide effluent data at two different residence times. Complex physical, biological, and chemical theories are applied to the analysis of wastewater treatment performance. The data from the OSTDS and stormwater/graywater cistern both systems are also assessed using statistical analysis. The results of the OSTDS are compared to FDOH regulatory requirements for (")Secondary Treatment Standards("), and (")Advanced Secondary Treatment Standards(") with positive results. The bench scale results verify that both biological nutrient removal and physiochemical sorption are occurring within the filter media and quantified the relationship between removal rates and hydraulic residence time (HRT).The combined graywater/stormwater cistern contains acceptable water quality and operates efficiently. The demand on the cistern results in about 50% capacity utilization of the cistern and there is a consistent dependency on the artesian well. The salinity content and high sodium adsorption ratio (SAR) of the cistern water did not produce any noticeable adverse impacts on the home other than scale formation in the toilet. The results of the research determined that the implementation of the integrated system is a viable option at the residential level.
Show less - Date Issued
- 2011
- Identifier
- CFE0004114, ucf:49094
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004114
- Title
- ANALYSIS OF THE FLORIDAÃÂ'S SHOWCASE GREEN ENVIROHOME WATER/WASTEWATER SYSTEMS AND DEVELOPMENT OF A COST-BENEFIT GREEN ROOF OPTIMIZATION MODEL.
- Creator
-
Rivera, Brian, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
The Florida Showcase Green Envirohome (FSGE) incorporates many green technologies. FSGE is built to meet or exceed 12 green building guidelines and obtain 8 green building certificates. The two-story 3292 ft2 home is a ÃÂ"Near Zero-Loss HomeÃÂÃÂ", ÃÂ"Near Zero-Energy HomeÃÂÃÂ", "Near Zero-Runoff HomeÃÂ", and ÃÂ"Near Zero...
Show moreThe Florida Showcase Green Envirohome (FSGE) incorporates many green technologies. FSGE is built to meet or exceed 12 green building guidelines and obtain 8 green building certificates. The two-story 3292 ft2 home is a ÃÂ"Near Zero-Loss HomeÃÂÃÂ", ÃÂ"Near Zero-Energy HomeÃÂÃÂ", "Near Zero-Runoff HomeÃÂ", and ÃÂ"Near Zero-Maintenance HomeÃÂÃÂ". It is spawned from the consumer-driven necessity to build a home resistant to hurricanes, tornadoes, floods, fire, mold, termites, impacts, and even earthquakes given up to 500% increase in insurance premiums in natural disaster zones, the dwindling flexibility and coverage of insurance policies, and rising energy, water and maintenance costs (FSGE 2008). The FSGE captures its stormwater runoff from the green roof, metal roof and wood decking area and routes it to the sustainable water cistern. Graywater from the home (after being disinfected using ozone) is also routed to the sustainable water cistern. This water stored in the sustainable water cistern is used for irrigation of the green roof, ground level landscape, and for toilet flushing water. This study was done in two phases. During phase one, only stormwater runoff from the green roof, metal roof and wood decking area is routed to the sustainable water cistern. Then, during phase two, the water from the graywater system is added to the sustainable water cistern. The sustainable water cistern quality is analyzed during both phases to determine if the water is acceptable for irrigation and also if it is suitable for use as toilet flushing water. The water quality of the sustainable cistern is acceptable for irrigation. The intent of the home is to not pollute the environment, so as much nutrients as possible should be removed from the wastewater before it is discharged into the groundwater. Thus, the FSGE design is to evaluate a new on-site sewage treatment and disposal (OSTD) system which consists of a sorption media labeled as Bold and GoldTM filtration media. The Bold and GoldTM filtration media is a mixture of tire crumb and other materials. This new OSTD system has sampling ports through the system to monitor the wastewater quality as it passes through. Also, the effluent wastewater quality is compared to that of a conventional system on the campus of the University of Central Florida. The cost-benefit optimization model focused on designing a residential home which incorporated a green roof, cistern and graywater systems. This model had two forms, the base model and the grey linear model. The base model used current average cost of construction of materials and installation. The grey model used an interval for the cost of construction materials and green roof energy savings. Both models included a probabilistic term to describe the rainfall amount. The cost and energy operation of a typical Florida home was used as a case study for these models. Also, some of the parameters of the model were varied to determine their effect on the results. The modeling showed that the FSGE 4500 gallon cistern design was cost effective in providing irrigation water. Also, the green roof area could have been smaller to be cost effective, because the green roof cost is relatively much higher than the cost of a regular roof.
Show less - Date Issued
- 2010
- Identifier
- CFE0003297, ucf:48499
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003297
- Title
- Ozone and GAC Treatment of a Central Florida Groundwater for Sulfide and Disinfectant By-Product Control.
- Creator
-
Lamoureux, Tara, Duranceau, Steven, Randall, Andrew, Wang, Dingbao, University of Central Florida
- Abstract / Description
-
This study evaluated the combination of ozone and granular activated carbon (GAC) treatment for the removal of sulfide and disinfection byproduct (DBP) precursors in drinking water at the pilot-scale. The research conducted was performed at the Auxiliary (Aux) and Main Water Treatment Plants (WTPs) in Sanford, Florida. Both WTPs rely upon groundwater sources that contain total sulfide ranging from 0.02 to 2.35 mg/L and total organic carbon (TOC) ranging from 0.61 to 2.20 mg/L. The Aux WTP's...
Show moreThis study evaluated the combination of ozone and granular activated carbon (GAC) treatment for the removal of sulfide and disinfection byproduct (DBP) precursors in drinking water at the pilot-scale. The research conducted was performed at the Auxiliary (Aux) and Main Water Treatment Plants (WTPs) in Sanford, Florida. Both WTPs rely upon groundwater sources that contain total sulfide ranging from 0.02 to 2.35 mg/L and total organic carbon (TOC) ranging from 0.61 to 2.20 mg/L. The Aux WTP's raw water contains, on average, 88% more sulfide and 24% more TOC than the Main WTP. Haloacetic acids (HAA5) and total trihalomethanes (TTHMs) comprise the regulated forms of DBPs. HAA5 are consistently below the maximum contaminant level (MCL) of 60 ?g/L, while TTHM ranges from 70 to 110 ?g/L, at times exceeding the MCL of 80 ?g/L in the distribution system. Ozone alone removed total sulfide and reduced UV-254 by about 60% at the Aux Plant and 35% at the Main Plant. Producing an ozone residual of 0.50 mg/L prevented the formation of bromate while removing approximately 35 to 60% concentration of DBP precursors as measured by UV-254. Operating the GAC unit at an empty bed contact time (EBCT) of 10 minutes for the Aux Plant and 5.5 minutes for the Main Plant resulted in 75% and 53% of UV-254 reduction, respectively. The average 120 hour TTHM formation potential for the Aux and Main Plants were 66 ?g/L and 52 ?g/L, respectively, after treatment by ozone and GAC. GAC exhaustion was deemed to have occurred after seven weeks for the Aux Plant and eleven weeks for the Main Plant. The GAC columns operated in three phases: an adsorption phase, a transitional phase, and a biologically activated carbon (BAC) phase. The GAC adsorption phase was found to produce the lowest TTHMs; however, TTHMs remained less than 80 ?g/L during the BAC stage at each plant. BAC exhaustion did not occur during the course of this study. Ozone-GAC reduced chlorine demand by 73% for the Aux Plant and 10% for the Main Plant.
Show less - Date Issued
- 2013
- Identifier
- CFE0004708, ucf:49824
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004708